
Protecting Locks Against
Unbalanced Unlock()

Vivek Shahare 1 Milind Chabbi 2,1 Nikhil Hegde
1

1 Indian Institute of Technology Dharwad, India

2 Programming Systems Group, Uber Technologies Inc., USA

1

Locks

• Provide mutual exclusion for shared data

• Most popular mutual-exclusion primitive

• Common usage:

2

m.Lock()

m.Unlock()

Critical Section (CS)

• Tens of lock algorithms over the past couple

of decades

Many Locking Algorithms

3

Test and Set

(TAS) TAS-BO Ticket
Anderson’s

Array-based

Graunke and

Thakker
MCS TATAS HBO

CLH MCS-K42 Cohort HCLH HMCS Hemlock

Reader-Writer

CNA Flat-combining FissileBRAVO Delegation

Malthusian FLOCK TWA

All focus on performance

Our Focus: Lock Misuse

4

if cond {

m.Lock()

}

m.Unlock()

• Accidental call to unlock() without lock()

• Impact

• Mutex violation?

• Starvation?

• Corruption of lock internals?

• Program corruption?

• Benign?

• Can we

• detect unbalanced-unlock?

• devise/alter lock algorithms to avoid problematic
situations?

Problem: Unbalanced Unlock

5
Analysis of and remedy
to popular spinlocks

• Show unbalanced-unlock is a common problem

• Analyze popular locks in

unbalanced-unlock situations

• Remedy popular locks to be resilient to

unbalanced-unlock

• Show remedied lock designs remain

performant

Contributions

6

Unbalanced-unlock in the Linux Kernel

7

if (wilc->quit){
goto out;

}
mutex_lock(...);
tqe = …;
if (!tqe){

goto out;
}

...
out:

mutex_unlock(...);

return ret;

Linux Kernel code: drivers/staging/wilc1000/wlan.c (commit id: bd4217c)

8

Unbalanced-unlock in the Open-Source

Unbalanced-lock: forgetting to call
unlock

9

if cond {

m.Lock()

...

return;

}

m.unlock()

Well-known problem

How do different locks fare in the presence of

unbalanced-unlock?

Lock Protocol Analysis -
Summary

10

Lock Violates Mutex Starves Tm Starves Others

TAS ✓ ✗ NA

Ticket ✓ ✗ ✓

Anderson ABQL ✓ ✗ ✗

Graunke-Thakker ✗ ✗ ✓

MCS ✓ ✓ ✗

CLH ✓ ✗ ✓

MCS-K42 ✓ ✓ ✓

Hemlock ✗ ✓ ✗

HMCS ✓ ✓ ✗

HCLH ✗ ✗ ✗

C-RW-NP/RP/WP ✓ ✗ ✓

Peterson’s lock ✗ ✗ ✗

Fisher’s lock ✓ ✗ ✗

Lamport’s lock ✓ ✗ ✓

Notation: Tm denotes thread that misbehaves and Tx denotes all other threads

11

Test and Set (TAS) Lock

lock object L, shared-variable / Global

lock L: UNLOCKED

T1: lock()

LOCKED

Tx: lock()

spin

T1: unlock()

UNLOCKED

Tm: unlock()

Unbalanced-Unlock

T1 and Tx are both in CS.
Violation of mutual
exclusion!

Test and Set Lock Analysis

12

Lock Violates Mutex Starves Tm Starves Others

TAS ✓ ✗ NA

Ticket ✓ ✗ ✓

Anderson ABQL ✓ ✗ ✗

Graunke-Thakker ✗ ✗ ✓

MCS ✓ ✓ ✗

CLH ✓ ✗ ✓

MCS-K42 ✓ ✓ ✓

Hemlock ✗ ✓ ✗

HMCS ✓ ✓ ✗

HCLH ✗ ✗ ✗

C-RW-NP/RP/WP ✓ ✗ ✓

Peterson’s lock ✗ ✗ ✗

Fisher’s lock ✓ ✗ ✗

Lamport’s lock ✓ ✗ ✓

● Mutual exclusion is violated
○ every instance of unbalanced-unlock releases at most

one waiting thread into CS

● No starvation
○ thread involved in unbalanced-unlock (Tm) returns from

the call to unlock()
○ By design, TAS lock does not ensure starvation

freedom

Test and Set Lock - Remedy

13

● Intuition: store the PID (unique thread identifier) of
the current lock holder instead of the flag
(LOCKED/UNLOCKED) in the lock

unlock(unsigned long tid) {
if L is tid

set L to ULONG_MAX; return true
return false
}

lock L: ULONG_MAX

T1: lock()

1

T1: unlock()

ULONG_MAX

Tm: unlock()

Unbalanced-Unlock

tid = m

Caller PID is m, stored PID (in L) is 1.
There is a mismatch.

MCS Lock: Analysis and Remedy

14

15

MCS Lock - Analysis

lock L: NULL

T1: lock(t1)

Locked Next

t1:

T2: lock(t2)

Locked Next

t2:

T3: lock(t3)

true

Locked Next

t3:

T1: unlock(t1) T2: unlock(t2) T3: unlock(t3)

NULL

spin spin

● No successors / waiters for the lock. Reset L to NULL.

● Caution: before resetting,

Check if L still points to t3 (no successor has appeared in the

meanwhile). If not:

● wait till the successor appears in t3->next

● set the successor’s locked to false and return

truefalse false

swaps the lock with itself, gets the predecessor, and attaches
itself to predecessor

16

MCS Lock - Analysis

lock L: NULL

Locked Next

t1: true

Locked Next

t2: true

Locked Next

t3:

node objects still exist and the fields are not reset. Links
may exist.

false false

17

MCS Lock - Analysis (Scenario 1)

● Now: suppose T3 is holding the lock and T2 is spinning:

lock L:

true

Locked Next

t2:t3:

Locked Next

false

● Earlier -

● Next: T1: unlock(t1) (unbalanced-unlock!)

spin

● T1 sets t1->next->locked to false.

T3 and T2 are both in CS. Violation of mutual exclusion.

lock L: NULL

Locked Next

t1:

Locked Next

t1: true

Locked Next

t2: true

Locked Next

t3:false false

false

18

Locked Next

t1: true

Locked Next

t2: true

Locked Next

t3:

● Now - T3: unlock(t3) (unbalanced-unlock!)

● Earlier -

MCS Lock - Analysis (Scenario 2)

lock L: NULL

This is never going to happen! T3 starves.

● No successors / waiters for the lock. Reset L to NULL.

● before resetting,
Check if L still points to t3 (no successor has appeared in the
meanwhile). If not:
● wait till the successor appears in t3->next

false false

19

MCS Lock - Remedy

● Intuition: maintain an invariant that a flag (Locked)
should be true whenever the releaser wants to
release the lock.

Initialize, reset and check Locked

lock L:

false NULL

Locked Next

t1: false NULL

Locked Next

t2: true

NULL

true

T1: lock(t1) spin T2: lock(t2)

T1: unlock(t1)

Tm: unlock(tm) false

Locked Next

{
if (locked == false)

return false
...

falsefalse true

CLH Lock: Analysis and
Remedy

20

21

CLH Lock - Analysis

lock L:

false

prev must_wait

bootstrap:

T1: unlock(t1) T2: unlock(t2)

T1: lock(t1)

true

prev must_wait

t1:

T2: lock(t2)

true

prev must_wait

t2:

false

spin

truefalse

t1:

falsefalse

t2:

false

22

CLH Lock - Analysis (Scenario 1)

lock L:

false

prev must_wait

bootstrap:

true

prev must_wait

t1:

true

prev must_wait

t2:

false truefalse

t1:

falsefalse

t2:

false

● Earlier -

bootstrap:

● Now: suppose T1 is holding the lock and T3 is spinning:

lock L:

false

prev must_wait

bootstrap:

true

prev must_wait

t1:

true

prev must_wait

t3

spin
● Next: T2: unlock(t2) (unbalanced-unlock!)

● T2 sets t2->must_wait = false

T2: unlock(t2) now releases T3 from spinning : T3 and T1 are both in
CS. Violation of mutual exclusion.

t2:

● Takes ownership of t1! (predecessor of t2)

false

23

CLH Lock - Analysis (Scenario 2)

● Extension of scenario 1 from previous slide

lock L:

false

prev must_wait

bootstrap:

true

prev must_wait

t1:

true

prev must_wait

t3

spin

t2:
false

● T2: unlock(t2) and T1: unlock(t1) racily update the
must_wait field

● The updates may be lost preventing waiting threads from getting the
lock. Successors starve!

24

CLH Lock - Remedy

● Intuition: maintain an invariant that prev pointer is
not null only when a lock is being held
○ Initialize, reset and check prev

Tm: unlock(tm) {
...

tm->prev = NULL
return true

lock L:

NULL false

prev must_wait

bootstrap:

NULL true

prev must_wait

t1:

NULL true

prev must_wait

t2:

false truefalse

t1:

falsefalse

t2:

false

bootstrap:

● After an episode of successful lock-unlock:

Tm: unlock(tm) {
if(tm->prev == NULL)

return false
...

NULL NULL NULL

Detects and prevents unbalanced-unlock

Fischer’s Software Lock

start:

while <x != 0>;

<x := i>;

<delay>

if <x != i> goto start;

critical section;

if <x != i> goto exit;

x := 0

exit:

25

lock()

unlock()

● Hierarchical locks

● Reader-Writer locks

● Reentrant Locks

● Hemlock

● MCS-K42 lock

● Software locks

26

More Locks, Analysis and Remedies…

Experimental Setup

• Configuration

• dual-socket system

• 24-core, Intel Xeon Gold 6240C@2.60GHz processor

• CPU has 64 KB shared data and instruction caches

• 1 MB unified L2 and 36 MB L3 unified caches

• 384GB DDR4 memory

• Rocky Linux 9

• Benchmarks

• SPLASH-2x [6] and PARSEC 3.0 [5]

• 𝑏𝑎𝑟𝑛𝑒𝑠, 𝑑𝑒𝑑𝑢𝑝, 𝑓𝑒𝑟𝑟𝑒𝑡 ,𝑓𝑙𝑢𝑖𝑑𝑎𝑛𝑖𝑚𝑖𝑡𝑒, 𝑓𝑚𝑚, 𝑜𝑐𝑒𝑎𝑛,

𝑟𝑎𝑑𝑖𝑜𝑠𝑖𝑡𝑦, 𝑟𝑎𝑦𝑡𝑟𝑎𝑐𝑒, and 𝑠𝑡𝑟𝑒𝑎𝑚𝑐𝑙𝑢𝑠𝑡𝑒𝑟

• 𝑁𝑎𝑡𝑖𝑣𝑒 input dataset

27

Results

28
Numbers indicate overhead percentage at maximum thread count (48)

Takeaway: Overhead of proposed remedy for lock

algorithms is negligible (<5%)

Conclusions

• Unbalanced-unlock is surprisingly common in popular open-

source repositories.

• A systematic analysis of popular locks in unbalanced-unlock

situation shows:

• Mutex violation

• Starvation

• Corruption of lock internals and program

• sometimes be side-effect free

• Remedy to eliminate side effects are simple and we apply the

remedy to a representative set of lock implementations

• The modified lock implementations did not significantly affect

performance
29

References

1. Spinlocks. (n.d.). www.cs.rochester.edu. Retrieved April 14, 2022, from
https://www.cs.rochester.edu/research/synchronization/pseudocode/ss.html

2. John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems, 9(1):21–65,
1991

3. Queue locks on cache coherent multiprocessors. International Parallel Processing
Symposium, pages 26-29, 1994.

4. Hugo Guiroux. 2018. LiTL: Library for Transparent Lock interposition.
https://github.com/multicore-locks/litl

5. Dave Dice and Alex Kogan. 2021. Hemlock: Compact and Scalable Mutual Exclusion. In
Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA ’21). New York, NY, USA, 173–183.

6. Milind Chabbi, Michael Fagan, and John Mellor-Crummey. 2015. High performance locks for
multi-level NUMA systems. ACM SIGPLAN Notices 50, 8 (2015),215–226. Anders Landin and
Eric Hagersten.

7. Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. Dissertation. Princeton
University.

8. PARSEC Group et al. 2011. A memo on exploration of SPLASH-2 input sets. Princeton
University (2011).

9. Synchronization Constructs - OMSCS Notes; www.omscs-notes.com. Retrieved April 12,
2022, from https://www.omscs-notes.com/operating-systems/synchronization-constructs/

30

https://www.cs.rochester.edu/research/synchronization/pseudocode/ss.html

	Slide 1: Protecting Locks Against Unbalanced Unlock()
	Slide 2: Locks
	Slide 3: Many Locking Algorithms
	Slide 4: Our Focus: Lock Misuse
	Slide 5: Problem: Unbalanced Unlock
	Slide 6: Contributions
	Slide 7: Unbalanced-unlock in the Linux Kernel
	Slide 8: Unbalanced-unlock in the Open-Source
	Slide 9: Unbalanced-lock: forgetting to call unlock
	Slide 10: Lock Protocol Analysis - Summary
	Slide 11: Test and Set (TAS) Lock
	Slide 12: Test and Set Lock Analysis
	Slide 13: Test and Set Lock - Remedy
	Slide 14: MCS Lock: Analysis and Remedy
	Slide 15: MCS Lock - Analysis
	Slide 16: MCS Lock - Analysis
	Slide 17: MCS Lock - Analysis (Scenario 1)
	Slide 18: MCS Lock - Analysis (Scenario 2)
	Slide 19: MCS Lock - Remedy
	Slide 20: CLH Lock: Analysis and Remedy
	Slide 21: CLH Lock - Analysis
	Slide 22: CLH Lock - Analysis (Scenario 1)
	Slide 23: CLH Lock - Analysis (Scenario 2)
	Slide 24: CLH Lock - Remedy
	Slide 25: Fischer’s Software Lock
	Slide 26: More Locks, Analysis and Remedies…
	Slide 27: Experimental Setup
	Slide 28: Results
	Slide 29: Conclusions
	Slide 30: References

