Protecting Locks Against
Unbalanced Unlock()

}/ivek Shahare 1 Milind Chabbi %1 Nikhil Hegde

LIndian Institute of Technology Dharwad, India
2 Programming Systems Group, Ub 3r Technologies Inc., USA

\J
v

11 =7 e e

YR eIl e eRars
Indian Institute of Technology Dharwad

Locks

Provide mutual exclusion for shared data

Most popular mutual-exclusion primitive

. Common usage:

m.Lock ()

m.Unlock () a

Many Locking Algorithms

Tens of lock algorithms over the past couple
of decades

Test and Set
(TAS) 17550

Anderson’s

Array-based

e ear TATAS HBO

All focus on performance

Our Focus: Lock Misuse

1f cond {

m.Lock ()
}
\\7ﬁTUnlock() (?Gy:

Problem: Unbalanced Unlock

 Accidental call to unlock () without 1ock ()

* Impact
« Mutex violation?
« Starvation?
« Corruption of lock internals?
* Program corruption?
* Benign?
« Can we
« detect unbalanced-unlock?

« devise/alter lock algorithms to avoid problematic

situations? _
Analysis of and remedy

to popular spinlocks

Contributions

Show unbalanced-unlock is a common problem

Analyze popular locks in
unbalanced-unlock situations

Remedy popular locks to be resilient to
unbalanced-unlock

Show remedied lock designs remain
performant

Unbalanced-unlock in the Linux Kernel

if (wilc->quit){

| goto out;

S
mutex_lock(...);
tge = ..;

if (!tqge){

goto out;
}
out:

mutex_unlock(...);

return ret;

Linux Kernel code: drivers/staging/wilc1000/wlan.c (commit id: bd4217c)

Unbalanced-unlock in the Open-Source

Categorization of Misuse Type in Lock Related
Code Changes

B Unbalanced-unlock 2 Unbalanced-lock

a0

Golang Linux kernel LWMIPEU{ECI @ MySQL memcached
nte

Unbalanced-lock: forgetting to call
unlock

1f cond {

m. Lockj) pamaN s
return; g
}

m.unlock ()

Well-known problem

Lock Protocol Analysis -
Summary

How do different locks fare in the presence of

unbalanced-unlock? ,
Notation: Tm denotes thread that misbehaves and Tx denotes all other threads

TAS

Ticket

Anderson ABQL
Graunke-Thakker
MCS

CLH

MCS-K42
Hemlock

HMCS

HCLH
C-RW-NP/RP/WP

Peterson’s lock

<
=<
Z
>

Fisher’s lock
10

C A X A X A XA A A X AL
X X X X X { L X X X X X X
X X A X X X A A X A X L

Lamport’s lock

Test and Set (TAS) Lock

lock object L, shared-variable / Global

lock L: UNLOCKED

T1: lock() Tx: lock() T1 and Tx are both in CS.

Violation of mutual
spin exclusion!

T1: unlock() Tm: unlock()
Unbalanced-Unlock

11

Test and Set Lock Analysis

TAS v X NA

e Mutual exclusion is violated
o every instance of unbalanced-unlock releases at most
one waiting thread into CS
e No starvation
o thread involved in unbalanced-unlock (Tm) returns from
the call to unlock()

o By design, TAS lock does not ensure starvation
freedom

12

Test and Set Lock - Remedy

e Intuition: store the PID (unique thread identifier) of
the current lock holder instead of the flag
(LOCKED/UNLOCKED) in the lock

lock L:|ULONG_MAX

T1l: lock()
Caller PID is m, stored PID (inL) is 1.

There is a mismatch.
T1l: unlock()

unlock(unsigned long tid) { tid = m

if L is tid Tm: unlock()
set L to ULONG_MAX; return true

return false

}

Unbalanced-Unlock

MCS Lock: Analysis and Remedy

MCS Lock - Analysis

lock L: |[NULE
spin @

T1: lock(tl) T2: lock(t2) T3: lock(t3)
tl: | t2: | false t3: false | |
Locked Next Locked Next Next
T1l:unlock(tl) T2:unlock(t2) T3:unlock(t3)

swaps the lock with itself, gets the predecessor, and attaches

itself to IRr'edecessor' _
° 0 successors / waiters for the lock. Reset L to NULL.

« Caution: before resetting,
Check if L still points to t3 (no successor has appeared in the
meanwhile). If not:
e walit till the successor appears in t3->next
e set the successor’s locked to false and return

15

MCS Lock - Analysis

lock L: |NULL

tl: t2:, false t3: | false
Locked Next Locked Next Locked Next

node objects still exist and the fields are not reset. Links
may exist.

16

MCS Lock - Analysis (Scenario 1)

e Farlier- lock L: | NULL

:,| false t3: | false
Locked Next Locked Next Locked Next

t1: t2

® Now: suppose T3 is holding the lock and T2 is spinning:

lock L: \‘ @

t3: | false t2: 1 false
Locked Next Locked\\yext
e Next: T1: unlock(t1) (unbalanced-unlock!) t1: N
e Tlsetstl->next->lockedto false. Locked Next

T3 and T2 are both in CS. Violation of mutual exclusion. .

MCS Lock - Analysis (Scenario 2)

e Farlier- lock L: | NULL

:,| false t3: | false
Locked Next Locked Next

t1: t2

Next

® Now - T3: unlock(t3) (unbalanced-unlock!)

e No successors / waiters for the lock. Reset L to NULL.

e before resetting,
Check if L still points to t3 (no successor has appeared in the
meanwhile). If not:
e wait till the successor appears in t3->next

®

This is never going to happen! T3 starves.

18

MCS Lock - Remedy

o Intuition: maintain an invariant that a flag (Locked)
should be true whenever the releaser wants to
release the lock.

Initialize, reset and check Locked

lock L:
T1: lock(tl) \%O(:k(‘tz) @
tl: | false _t2: true INULL
Locked Next Locked Next
T1:unlock(tl)
Tm:unlock(tm) { false| —_
if (10Cked == False) Locked Next

return false

CLH Lock: Analysis and
Remedy

CLH Lock - Analysis

lock L: |
//)Tl?ibqgiii? T2: lock(t2)
tl: t2:
(false L \4' false T false
prev must wait prev must wait prev must wait

T1l:unlock(tl) T2:unlock(t2)

21

CLH Lock - Analysis (Scenario 1)

e Farlier- lock L:

tl:

false

t2

A

prev must wait

\bOOt st rap:

false

false

A

prev must wait

prev must wait

® Now: suppose T1 is holding the lock and T3 is spinning:

lock L: .
bootstrap: t2°t1: t3
false |«—— false | «+— |true

prev must wait

prev must wait

® Next: T2: unlock(t2) (unbalanced-unlock!)

® T2setst2->must wait = false

prev must wait

e Takes ownership of t1l! (predecessor of t2) 22

T2: unlock(t2) now releases T3 from spinning : T3 and T1 are both in
CS. Violation of mutual exclusion.

CLH Lock - Analysis (Scenario 2)

® [xtension of scenario 1 from previous slide

lock L: .
bootstrap: t2°t1: t3

false |~—— false |~—+—— |[true
prev must wait prev must wait prev must wait

e T2:unlock(t2)and T1:unlock(tl) racily update the
must wait field

e The updates may be lost preventing waiting threads from getting the
lock. Successors starvel

23

CLH Lock - Remedy

o Intuition: maintain an invariant that prev pointer is

not null only when a lock is being held
o Initialize, reset and check prev

o After an episode of successful lock-unlock:

lock L: ~
t1: t2:\\\\\\\\\\\\\\\\\\Nkootstrap:
NULL NULL NULL

false false false
prev must wait prev must wait prev must wait
Tm: unlock(tm) {
Tm: unlock(tm) { if(tm->prev == NULL)
. return false
tm->prev = NULL »

return true Detects and prevents unbalanced-unlock

Fischer's Software Lock

start: 10Ck()
while <x !'= 0>;

<X := 1>;
<delay>

if <x '= i> goto start;

critical section;

if <x != i> goto exit; |unlock()

More Locks, Analysis and Remedies...

Hierarchical locks
Reader-Writer locks
Reentrant Locks
Hemlock

MCS-K42 lock
Software locks

Experimental Setup

« Configuration

dual-socket system

24-core, Intel Xeon Gold 6240C@2.60GHz processor
CPU has 64 KB shared data and instruction caches

1 MB unified L2 and 36 MB L3 unified caches

384GB DDR4 memory

Rocky Linux 9

e Benchmarks

SPLASH-2x [6] and PARSEC 3.0 [5]

barnes, dedup, ferret ,fluidanimite, fmm, ocean,
radiosity, raytrace, and streamcluster

Native input dataset

Results

Takeaway: Overhead of proposed remedy for lock

algorithms is negligible (<5%)

Barnes (48) -0.14 | 104 | -0.12 | 0.54 | 0.93 | 1.18
Dedup (48) -1.89 | 347 | -3.32 | 0.32 | 4.25 | 1.62
Ferret (48) -0.31 | 0.42 | -0.45 | -0.05 | 1.45 | -0.97
Fluidanimate (32) 019 | 28 |-0.78] 196 | NA | 1.96
FMM (48) 0 064 [-029[-085] 04 | -0.29
Ocean (32) 168 | 423 | 3.79 | 0.94 | 3.31 | 0.55
Radiosity (48) 208 | 195 | 087 | 262 | 1./2 | -0.88
Raytrace (48) 16.9 | 86.7 | 3.08 | -0.89 | 2.83 | 2.38
Streamcluster (48) 1.3 [613 | 1.72 | 113 | NA | -2.17
Synthetic (48) 22 118 1-0.15] 32 | 3.27 | 1.64

Numbers indicate overhead percentage at maximum thread count (48)

Conclusions

Unbalanced-unlock is surprisingly common in popular open-
source repositories.

A systematic analysis of popular locks in unbalanced-unlock
situation shows:

* Mutex violation

« Starvation
e Corruption of lock internals and program

« sometimes be side-effect free

Remedy to eliminate side effects are simple and we apply the
remedy to a representative set of lock implementations
The modified lock implementations did not significantly affect
performance

References

Spinlocks. (n.d.). www.cs.rochester.edu. Retrieved April 14, 2022, from
https://www.cs.rochester.edu/research/synchronization/pseudocode/ss.html

John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchronization on
slgagrled-memory multiprocessors. ACM Transactions on Computer Systems, 9(1):21-65,

Queue locks on cache coherent multiprocessors. International Parallel Processing
Symposium, pages 26-29, 1994.

Hugo Guiroux. 2018. LiTL: Library for Transparent Lock interposition.
https://github.com/multicore-locks/litl

Dave Dice and Alex Kogan. 2021. Hemlock: Compact and Scalable Mutual Exclusion. In
Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA’21). New York, NY, USA, 173-183.

Milind Chabbi, Michael Fagan, and John Mellor-Crummey. 2015. High performance locks for
multi-level NUMA systems. ACM SIGPLAN Notices 50, 8 Y2015),215—226. Anders Landin and
Eric Hagersten.

Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. Dissertation. Princeton
University.

PARSEC Group et al. 2011. A memo on exploration of SPLASH-2 input sets. Princeton
University (2011).

Synchronization Constructs - OMSCS Notes; www.omscs-notes.com. Retrieved April 12,
2022, from https://www.omscs-notes.com/operating-systems/synchronization-constructs/

30

https://www.cs.rochester.edu/research/synchronization/pseudocode/ss.html

	Slide 1: Protecting Locks Against Unbalanced Unlock()
	Slide 2: Locks
	Slide 3: Many Locking Algorithms
	Slide 4: Our Focus: Lock Misuse
	Slide 5: Problem: Unbalanced Unlock
	Slide 6: Contributions
	Slide 7: Unbalanced-unlock in the Linux Kernel
	Slide 8: Unbalanced-unlock in the Open-Source
	Slide 9: Unbalanced-lock: forgetting to call unlock
	Slide 10: Lock Protocol Analysis - Summary
	Slide 11: Test and Set (TAS) Lock
	Slide 12: Test and Set Lock Analysis
	Slide 13: Test and Set Lock - Remedy
	Slide 14: MCS Lock: Analysis and Remedy
	Slide 15: MCS Lock - Analysis
	Slide 16: MCS Lock - Analysis
	Slide 17: MCS Lock - Analysis (Scenario 1)
	Slide 18: MCS Lock - Analysis (Scenario 2)
	Slide 19: MCS Lock - Remedy
	Slide 20: CLH Lock: Analysis and Remedy
	Slide 21: CLH Lock - Analysis
	Slide 22: CLH Lock - Analysis (Scenario 1)
	Slide 23: CLH Lock - Analysis (Scenario 2)
	Slide 24: CLH Lock - Remedy
	Slide 25: Fischer’s Software Lock
	Slide 26: More Locks, Analysis and Remedies…
	Slide 27: Experimental Setup
	Slide 28: Results
	Slide 29: Conclusions
	Slide 30: References

