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Locks

• Provide mutual exclusion for shared data

• Most popular mutual-exclusion primitive

• Common usage:
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m.Lock()

m.Unlock()

Critical Section (CS)



• Tens of lock algorithms over the past couple

of decades

Many Locking Algorithms
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Test and Set 

(TAS) TAS-BO Ticket
Anderson’s 

Array-based

Graunke and 

Thakker
MCS TATAS HBO

CLH MCS-K42 Cohort HCLH HMCS Hemlock

Reader-Writer

CNA Flat-combining FissileBRAVO Delegation

Malthusian FLOCK TWA

All focus on performance



Our Focus: Lock Misuse
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if cond {

m.Lock()

}

m.Unlock()



• Accidental call to unlock() without lock()

• Impact

• Mutex violation?

• Starvation?

• Corruption of lock internals?

• Program corruption?

• Benign?

• Can we

• detect unbalanced-unlock?

• devise/alter lock algorithms to avoid problematic
situations?

Problem: Unbalanced Unlock
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Analysis of and remedy
to popular spinlocks



• Show unbalanced-unlock is a common problem

• Analyze popular locks in

unbalanced-unlock situations

• Remedy popular locks to be resilient to 

unbalanced-unlock

• Show remedied lock designs remain 

performant

Contributions
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Unbalanced-unlock in the Linux Kernel
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if (wilc->quit){
goto out;

}
mutex_lock(...);
tqe = …;
if (!tqe){

goto out;
}

...
out:

mutex_unlock(...);

return ret;

Linux Kernel code: drivers/staging/wilc1000/wlan.c (commit id: bd4217c)
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Unbalanced-unlock in the Open-Source 



Unbalanced-lock: forgetting to call 
unlock

9

if cond {

m.Lock()

...

return;

}

m.unlock()

Well-known problem



How do different locks fare in the presence of

unbalanced-unlock?

Lock Protocol Analysis -
Summary
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Lock Violates Mutex Starves Tm Starves Others

TAS ✓ ✗ NA

Ticket ✓ ✗ ✓

Anderson ABQL ✓ ✗ ✗

Graunke-Thakker ✗ ✗ ✓

MCS ✓ ✓ ✗

CLH ✓ ✗ ✓

MCS-K42 ✓ ✓ ✓

Hemlock ✗ ✓ ✗

HMCS ✓ ✓ ✗

HCLH ✗ ✗ ✗

C-RW-NP/RP/WP ✓ ✗ ✓

Peterson’s lock ✗ ✗ ✗

Fisher’s lock ✓ ✗ ✗

Lamport’s lock ✓ ✗ ✓

Notation: Tm denotes thread that misbehaves and Tx denotes all other threads
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Test and Set (TAS) Lock

lock object L, shared-variable  / Global

lock L: UNLOCKED

T1: lock()

LOCKED

Tx: lock()

spin

T1: unlock()

UNLOCKED

Tm: unlock()

Unbalanced-Unlock

T1 and Tx are both in CS. 
Violation of mutual 
exclusion!



Test and Set Lock Analysis
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Lock Violates Mutex Starves Tm Starves Others

TAS ✓ ✗ NA

Ticket ✓ ✗ ✓

Anderson ABQL ✓ ✗ ✗

Graunke-Thakker ✗ ✗ ✓

MCS ✓ ✓ ✗

CLH ✓ ✗ ✓

MCS-K42 ✓ ✓ ✓

Hemlock ✗ ✓ ✗

HMCS ✓ ✓ ✗

HCLH ✗ ✗ ✗

C-RW-NP/RP/WP ✓ ✗ ✓

Peterson’s lock ✗ ✗ ✗

Fisher’s lock ✓ ✗ ✗

Lamport’s lock ✓ ✗ ✓

● Mutual exclusion is violated 
○ every instance of unbalanced-unlock releases at most 

one waiting thread into CS

● No starvation 
○ thread involved in unbalanced-unlock (Tm) returns from 

the call to unlock()
○ By design, TAS lock does not ensure starvation 

freedom



Test and Set Lock - Remedy
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● Intuition: store the PID (unique thread identifier) of
the current lock holder instead of the flag
(LOCKED/UNLOCKED) in the lock

unlock(unsigned long tid) {
if L is tid 

set L to ULONG_MAX; return true
return false
}

lock L: ULONG_MAX

T1: lock()

1

T1: unlock()

ULONG_MAX

Tm: unlock()

Unbalanced-Unlock

tid = m

Caller PID is m, stored PID (in L) is 1. 
There is a mismatch.



MCS Lock: Analysis and Remedy 
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MCS Lock - Analysis

lock L: NULL

T1: lock(t1)

Locked  Next

t1:

T2: lock(t2)

Locked  Next

t2:

T3: lock(t3)

true

Locked  Next

t3:

T1: unlock(t1) T2: unlock(t2) T3: unlock(t3)

NULL

spin spin 

● No successors / waiters for the lock.  Reset L to NULL.

● Caution: before resetting, 

Check if L still points to t3 (no successor has appeared in the 

meanwhile).  If not:

● wait till the successor appears in t3->next

● set the successor’s locked to false and return

truefalse false

swaps the lock with itself, gets the predecessor, and attaches 
itself to predecessor
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MCS Lock - Analysis

lock L: NULL

Locked  Next

t1: true

Locked  Next

t2: true

Locked  Next

t3:

node objects still exist and the fields are not reset. Links 
may exist.

false false
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MCS Lock - Analysis (Scenario 1)

● Now: suppose T3 is holding the lock and T2 is spinning: 

lock L:

true

Locked  Next

t2:t3:

Locked  Next

false

● Earlier -

● Next: T1: unlock(t1) (unbalanced-unlock!)

spin

● T1 sets t1->next->locked to false. 

T3 and T2 are both in CS. Violation of mutual exclusion.

lock L: NULL

Locked  Next

t1:

Locked  Next

t1: true

Locked  Next

t2: true

Locked  Next

t3:false false

false
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Locked  Next

t1: true

Locked  Next

t2: true

Locked  Next

t3:

● Now - T3: unlock(t3) (unbalanced-unlock!)

● Earlier -

MCS Lock - Analysis (Scenario 2)

lock L: NULL

This is never going to happen! T3 starves.

● No successors / waiters for the lock.  Reset L to NULL.

● before resetting, 
Check if L still points to t3 (no successor has appeared in the 
meanwhile).  If not:
● wait till the successor appears in t3->next

false false



19

MCS Lock - Remedy

● Intuition: maintain an invariant that a flag (Locked)
should be true whenever the releaser wants to
release the lock.

Initialize, reset and check Locked

lock L:

false NULL

Locked  Next

t1: false NULL

Locked  Next

t2: true

NULL

true

T1: lock(t1) spin T2: lock(t2)

T1: unlock(t1)

Tm: unlock(tm) false

Locked  Next

{ 
if (locked == false)

return false
...

falsefalse true



CLH Lock: Analysis and 
Remedy 
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CLH Lock - Analysis

lock L:

false

prev  must_wait  

bootstrap:

T1: unlock(t1) T2: unlock(t2)

T1: lock(t1)

true

prev  must_wait  

t1:

T2: lock(t2)

true

prev  must_wait  

t2:

false

spin 

truefalse

t1:

falsefalse

t2:

false
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CLH Lock - Analysis (Scenario 1)

lock L:

false

prev  must_wait  

bootstrap:

true

prev  must_wait  

t1:

true

prev  must_wait  

t2:

false truefalse

t1:

falsefalse

t2:

false

● Earlier -

bootstrap:

● Now: suppose T1 is holding the lock and T3 is spinning: 

lock L:

false

prev  must_wait  

bootstrap:

true

prev  must_wait  

t1:

true

prev  must_wait  

t3

spin 
● Next: T2: unlock(t2) (unbalanced-unlock!)

● T2 sets t2->must_wait = false

T2: unlock(t2) now releases T3 from spinning : T3 and T1 are both in 
CS. Violation of mutual exclusion.

t2:

● Takes ownership of t1! (predecessor of t2)

false
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CLH Lock - Analysis (Scenario 2)

● Extension of scenario 1  from previous slide

lock L:

false

prev  must_wait  

bootstrap:

true

prev  must_wait  

t1:

true

prev  must_wait  

t3

spin 

t2:
false

● T2: unlock(t2) and T1: unlock(t1) racily update the 
must_wait field

● The updates may be lost preventing waiting threads from getting the 
lock. Successors starve!
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CLH Lock - Remedy

● Intuition: maintain an invariant that prev pointer is
not null only when a lock is being held
○ Initialize, reset and check prev

Tm: unlock(tm)  { 
...

tm->prev = NULL
return true

lock L:

NULL false

prev  must_wait  

bootstrap:

NULL true

prev  must_wait  

t1:

NULL true

prev  must_wait  

t2:

false truefalse

t1:

falsefalse

t2:

false

bootstrap:

● After an episode of successful lock-unlock:

Tm: unlock(tm) { 
if(tm->prev == NULL)

return false
...

NULL NULL NULL

Detects and prevents unbalanced-unlock



Fischer’s  Software Lock

start:    

while <x != 0>;        

<x := i>;        

<delay>     

if <x != i> goto start;    

critical section; 

if <x != i> goto exit;

x := 0

exit:
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lock()

unlock()



● Hierarchical locks

● Reader-Writer locks

● Reentrant Locks

● Hemlock

● MCS-K42 lock

● Software locks
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More Locks, Analysis and Remedies…



Experimental Setup

• Configuration

• dual-socket system 

• 24-core, Intel Xeon Gold 6240C@2.60GHz processor 

• CPU has 64 KB shared data and instruction caches

• 1 MB unified L2 and 36 MB L3 unified caches

• 384GB DDR4 memory 

• Rocky Linux 9

• Benchmarks

• SPLASH-2x [6] and PARSEC 3.0 [5]

• 𝑏𝑎𝑟𝑛𝑒𝑠, 𝑑𝑒𝑑𝑢𝑝, 𝑓𝑒𝑟𝑟𝑒𝑡 ,𝑓𝑙𝑢𝑖𝑑𝑎𝑛𝑖𝑚𝑖𝑡𝑒, 𝑓𝑚𝑚, 𝑜𝑐𝑒𝑎𝑛, 

𝑟𝑎𝑑𝑖𝑜𝑠𝑖𝑡𝑦, 𝑟𝑎𝑦𝑡𝑟𝑎𝑐𝑒, and 𝑠𝑡𝑟𝑒𝑎𝑚𝑐𝑙𝑢𝑠𝑡𝑒𝑟

• 𝑁𝑎𝑡𝑖𝑣𝑒 input dataset
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Results

28
Numbers indicate overhead percentage at maximum thread count (48)

Takeaway: Overhead of proposed remedy for lock 

algorithms is negligible (<5%)



Conclusions

• Unbalanced-unlock is surprisingly common in popular open-

source repositories.

• A systematic analysis of popular locks in unbalanced-unlock

situation shows:

• Mutex violation

• Starvation

• Corruption of lock internals and program

• sometimes be side-effect free

• Remedy to eliminate side effects are simple and we apply the

remedy to a representative set of lock implementations

• The modified lock implementations did not significantly affect

performance
29
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