
Optimizing a Super-fast Eigensolver
for

Hierarchically Semiseparable Matrices

Abhishek Josyula Pritesh Verma Amar Gaonkar

Amlan Barua Nikhil Hegde

Indian Institute of Technology Dharwad, Karnataka, India

1

2

• Off diagonal blocks have relatively small ranks w.r.t. size of the
matrix. So, they can be represented product of low-ranked
matrices

• the off-diagonal blocks have hierarchical bases

Hierarchically Semiseparable Matrices

3

• Off diagonal blocks have relatively small ranks w.r.t. size of the
matrix. So, they can be represented product of low-ranked
matrices

• the off-diagonal blocks have hierarchical bases

Hierarchically Semiseparable Matrices

• HSS matrices appear naturally in different applications, e.g. in
structural mechanics or fluid dynamics, through the spatial
discretization of partial differential equations and in integral
equations, ct scans.

• Standard eigen solvers in libraries like LAPACK are of O(N3)
time complexity and fail to take advantage of the inherent
structure of matrix.

4

• SuperDC is a divide-conquer algorithm to compute the
eigenvalues and eigenvectors of symmetric HSS Matrices

• Compute eigenvalues in O(r2N log(N)) + O(rN log2N), where r is
rank of block matrix.
• The ‘Super’ terminology is due to the sub-N2 computational complexity.

SuperDC for Symmetric HSS Matrices

• The HSS matrices are often huge, of the order of few millions to

few hundred millions.

•Previous implementation of SuperDC, HSSEigen, is a

sequential MATLAB implementation.

• HSSEigen uses a dense-matrix storage representation for all inputs.

This is wasteful for some matrices like tridiagonal, banded etc.

Efficient parallel and distributed implementations are necessary.

5

Challenges and Opportunities

Our Focus: Optimizing and Parallelizing SuperDC

• Shared- and distributed-memory parallel algorithms for
computing eigenvalues and eigenvectors of Symmetric HSS
Matrices. Also, present a span and available parallelism
analysis.

• Optimize for storage and present an efficient problem
decomposition for distributed-memory parallel algorithm.

• Implement using multiple programming paradigms
(OpenMP, OpenCilk, MPI) and evaluate with different
scheduling policies, sparsity structures of input matrices,
and program configurations.

6

Contributions

Cuppen’s DC Algorithm

Goal: Compute A = 𝑄Λ𝑄𝑇 , Λ = diag 𝜆𝑖 , 𝑄𝑄
𝑇 = 𝐼

1. Recursive decomposition

7

2. Solve for 𝐷1 = 𝑄1Λ1𝑄1
𝑇 and 𝐷2 = 𝑄2Λ2𝑄2

𝑇

3.

where 𝑣 = diag Λ1, Λ2 𝑍

Cuppen’s DC Algorithm

4. Eigenvalues of the matrix ෨Λ = diag(Λ1, Λ2) + 𝛼𝑣𝑣𝑇 are the
roots of the secular equation:

where 𝑣𝑖 are elements of vector 𝑣, 𝜆𝑖 belong to either Λ1 or Λ2

5. Eigenvectors of ෨Λ obtained using 𝑞𝑖 = diag Λ1, Λ2 − 𝜆𝑖𝐼
−1 𝑣

6. Eigenvectors of A are
𝑄1

𝑄2
𝑄

8

Notation:

• 𝐼𝑖 is index set of a tree node numbered 𝑖. A m-level, complete
binary tree is considered and nodes are numbered in post-order.

• Each node of an m-level tree represents a contiguous index set
𝐼𝑖 ⊆ 1,2, . . 2𝑚 − 1 . E.g. for root node, 𝐼2𝑚−1 = {1,2, . . 2𝑚 − 1}

• for any non-leaf node 𝑖: 𝐼𝑙 ∩ 𝐼𝑟 = 𝜙 and 𝐼𝑙 ∪ 𝐼𝑟 = 𝐼𝑖 and 𝐼𝑟 , 𝐼𝑖 ≠ 𝜙

, 𝑙 and 𝑟 denote the left and right children resp.

• 𝐴𝐼×𝐽 indicates submatrix of 𝐴 obtained from index sets 𝐼, 𝐽

A matrix is in symmetric HSS form if there is a mapping of nodes {
}

1,2, . . 2𝑚 −
1 to matrices 𝐷,𝑈, 𝑅, 𝐵 – called generators as follows:

9

HSS Matrix Definition

• 𝐴𝐼𝑖×𝐼𝑖 = 𝐷𝐼𝑖 =
𝐷𝐼𝑙 𝑈𝐼𝑙𝐵𝐼𝑙,𝐼𝑟𝑈𝐼𝑟

𝑇

𝑈𝐼𝑟𝐵𝐼𝑙,𝐼𝑟
𝑇 𝑈𝐼𝑙

𝑇 𝐷𝐼𝑟

𝑈𝐼𝑖 =
𝑈𝐼𝑙

𝑈𝐼𝑟

𝑅𝐼𝑙
𝑅𝐼𝑟

• Note that for all non-leaf descendants of root node i.e. nodes
numbered j ∈ {2𝑚−1 to 2𝑚 − 2} , 𝑅𝐼𝑗 is zero matrix and not

needed.

• 𝑈𝐼𝑙 and 𝑈𝐼𝑟 can be combined to form the basis matrix for a larger
matrix 𝑈𝐼𝑖 (node 𝑖 is the parent of nodes 𝑙 and 𝑟 here)

10

HSS Matrix Definition

Note: for symmetric matrices, V and W matrices are not needed. Also, B3 = B6,
B1=B2, and B4=B5 for symmetric matrices.

11

HSS Matrix Definition - Visualization

SuperDC for Symmetric HSS matrices

Goal: Compute 𝐷𝑖 = 𝑄Λ𝑄𝑇 , Λ = diag 𝜆𝑖 , note: 𝐷𝑖 is in HSS form

1. Recursive decomposition - cast 𝐷𝑖 as sum of a diagonal matrix
and a rank-r update:

, where ෪𝐷𝑙 =

෪𝐷𝑟=

෪𝐷𝑙 and ෪𝐷𝑟 must be in HSS form and the rank of remains at most r.

12

2. Solve for෪𝐷𝑙 = 𝑄𝑙
෪Λ𝑙 𝑄𝑙

𝑇 and෪𝐷𝑟 = 𝑄𝑟
෪Λ𝑟 𝑄𝑟

𝑇

3.

where:

SuperDC for Symmetric HSS matrices

4. Eigendecomposition of the matrix
needs to be computed.

13

Let , where are columns of the matrix

With k eigenvalue
problems need to be
solved (rank-k
updates)

SuperDC for Symmetric HSS matrices

5. Eigendecomposition of the matrix

14

are the eigenvalues of 𝐷𝑖

is the eigenmatrix of 𝐷𝑖

Parallel SuperDC

• Focus: parallelize the conquer stage only

• Map the tree nodes to processes as per the following:

• Precludes block-cyclic distribution of matrix blocks

• Necessary to minimize communication and avoid fragmentation of
generators.

• Results in O(p) communication, p = number of processes.

15

Shared-memory parallel implementations

• Create two OMP tasks / Cilk threads repeatedly for every level
of recursive decomposition.

• OMP Tasks are mapped to worker threads. Untied tasks allow for
resumption of a task by any idle thread.

• OpenCilk uses work-stealing scheduler

• Stop creating new tasks / Cilk threads based on program input

16

Shared-memory parallel implementations

• Available parallelism analysis

• Bulk-synchronous / level-wise synchronization not suitable

• When the eigenvalue computation at all nodes at a level are complete,
proceed to the next lower level (i.e. up the tree).

• Stragglers take long time to execute

17

known that:

Experimental Setup

• Single node experiments:
• 36-core dual-socket, Intel Xeon Gold 6240C@2.60GHz processor

• CPU has 64 KB shared data and instruction caches, 1 MB unified L2

and 36 MB L3 unified caches

• 128GB DDR4 memory

• Ubuntu 20.04, Clang 14.0.6 for OpenCilk, GCC 12.0.0, LAPACK 3.9,

Matlab 2020

• Multi node experiments:
• Each node has: Xeon 8268, 2.9GHz processor, 48 cores, 192GB

RAM.

• Data Sets
• Tridiagonal, Banded, and Discretized kernel matrix

18

Results - Summary

19

* execution times in seconds

*

• eig_lapack – LAPACKE API based C++ implementation. Sequential.

• hsseigen – MATLAB based sequential implementation. Sequential.

• hssedc_dist – distributed-memory parallel implementation. Speedup is
w.r.t. the best baseline i.e. hssedc_seq, our sequential C++ implementation.
shows execution with highest core count (also the best one).

Results – strong-scaling

20

*

Symmetric tridiagonal inputs:
• larger input sizes yield better speedups. 147.8x speedup with 512-core

execution of 64K sized input. Larger inputs also evaluated.
• Rank-1 updated involved. Finer HSS matrix decomposition makes more

parallelism available.

Other (banded and DKM) inputs:
• Up to rank-r updates involved. This is inherently sequential.

Results – serial bottleneck

21

*

• Obtained from HPCToolkit.
• Percentage time spent in r_rankoneupdate increases for matrices having

higher ranks in their off-diagonal blocks. This module is the serial part of the
computation.

• Communication overhead is not the cause of smaller speedups in DKM and
Banded matrices

Results – implementation overheads

22

*

• Data collected using CilkScale, scalability analyzer for OpenCilk programs.
• Shows that “observed” is in between “burdened dag bound” and “span

bound”. This indicates that the implementation overheads, if any, do not
significantly affect the performance.

Results – tree decomposition

23

*

• Suitable height / level of the tree up to which parallel tasks can be spawned:
= log(p) , p = number of processes / worker threads.

• Suitable partitioning scheme: split the tree horizontally at height / level =
log(p). Let each subtree (arising out of split) be handled independently by
processes.

Results – others

24

• Work stealing offers no benefit.
• OMP implementation is better than that of OpenCilk and work-stealing

offers no major advantage.

Conclusions

SuperDC is a state-of-the art Divide-Conquer algorithm for
computing eigenvalues and eigenvectors of Symmetric HSS
matrices.

We optimize SuperDC to:
- allow for parallel execution of the Conquer stage.
- allow large HSS matrices to be input.
- reduce storage requirements for banded matrices from O(N2) to O(N)

Results show:
- Parallel implementations show scalable performance with tridiagonal
inputs. For other inputs, the serial bottleneck causes slowdown.
- Overall, a significant improvement over the state-of-the-art
implementation of SuperDC

25

References

26

hsseigen*
*

*

*

*

*

*

*

	Slide 1: Optimizing a Super-fast Eigensolver for Hierarchically Semiseparable Matrices
	Slide 2: Hierarchically Semiseparable Matrices
	Slide 3: Hierarchically Semiseparable Matrices
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Cuppen’s DC Algorithm
	Slide 8: Cuppen’s DC Algorithm
	Slide 9: HSS Matrix Definition
	Slide 10: HSS Matrix Definition
	Slide 11: HSS Matrix Definition - Visualization
	Slide 12: SuperDC for Symmetric HSS matrices
	Slide 13: SuperDC for Symmetric HSS matrices
	Slide 14: SuperDC for Symmetric HSS matrices
	Slide 15: Parallel SuperDC
	Slide 16: Shared-memory parallel implementations
	Slide 17: Shared-memory parallel implementations
	Slide 18: Experimental Setup
	Slide 19: Results - Summary
	Slide 20: Results – strong-scaling
	Slide 21: Results – serial bottleneck
	Slide 22: Results – implementation overheads
	Slide 23: Results – tree decomposition
	Slide 24: Results – others
	Slide 25: Conclusions
	Slide 26: References

