Optimizing a Super-fast Eigensolver
for
Hierarchically Semiseparable Matrices

Abhishek Josyula Pritesh Verma Amar Gaonkar
Amlan Barua Nikhil Hegde

Indian Institute of Technology Dharwad, Karnataka, India

¢

| 4
A

e
N

=_NF

1131 e a famgad
URATT WefAih TR yRare

Indian Institute of Technology Dharwad

Hierarchically Semiseparable Matrices

« Off diagonal blocks have relatively small ranks w.r.t. size of the

matrix. So, they can be represented product of low-ranked
matrices

- the off-diagonal blocks have hierarchical bases

222) |
By Ug

Hierarchically Semiseparable Matrices

Off diagonal blocks have relatively small ranks w.r.t. size of the
matrix. So, they can be represented product of low-ranked
matrices

the off-diagonal blocks have hierarchical bases

HSS matrices appear naturally in different applications, e.g. in
structural mechanics or fluid dynamics, through the spatial
discretization of partial differential equations and in integral
equations, ct scans.

Standard eigen solvers in libraries like LAPACK are of O(N3)
time complexity and fail to take advantage of the inherent
structure of matrix.

SuperDC for Symmetric HSS Matrices

« SuperDC is a divide-conquer algorithm to compute the
eigenvalues and eigenvectors of symmetric HSS Matrices
« Compute eigenvalues in O(r’N log(N)) + O(rN log?N), where r is
rank of block matrix.
* The ‘Super’ terminology is due to the sub-N? computational complexity.

O D,
Level-1 -===========moccccmcon- -
By
D.;.U33 '/ \O D. U
Level-2 ----=====-=--» d
R, R, R4 R
?1'3 ___B_x_\
1, Ned 4 5
Level-3 ------- > O’ \O OV b
Dy, U, D,, U, D4, U, DU

Challenges and Opportunities

- The HSS matrices are often huge, of the order of few millions to
few hundred millions.

- Previous implementation of SuperDC, HSSEigen, IS a
sequential MATLAB implementation.

« HSSEigen uses a dense-matrix storage representation for all inputs.
This is wasteful for some matrices like tridiagonal, banded etc.

Efficient parallel and distributed implementations are necessary.

Our Focus: Optimizing and Parallelizing SuperDC

Contributions

Shared- and distributed-memory parallel algorithms for
computing eigenvalues and eigenvectors of Symmetric HSS
Matrices. Also, present a span and available parallelism
analysis.

Optimize for storage and present an efficient problem
decomposition for distributed-memory parallel algorithm.

Implement using multiple programming paradigms
(OpenMP, OpenCilk, MPI) and evaluate with different
scheduling policies, sparsity structures of input matrices,
and program configurations.

Cuppen’s DC Algorithm

Goal: Compute A = QAQT, A = diag(1;), Q0T =1
1. Recursive decomposition

a; by a, b,
b.__i azz: b\i az"-_.._._._\
Bm-‘l.am b, By amtby, ¥b,| b,
by | 3ma t3n_1+1 = Anatby by * b |+ bn
Pmea a"”z Bt E'!1"+2"“"'"'
an_l -n_an bnl a, B

A = D, | . azZ"
o,

2. Solve for D1 = Q;A{Qf and D2 = Q,A,0Q7
3 0, 0 A 0 ol o
+{Iﬂﬂ‘r
0 Q2 |\l 0 Ay

where v = diag(A{,A,)Z

A=

0 Qf

Cuppen’s DC Algorithm

Q1 0 A1 0 RYEE
A= + {IEJUI
0 Q2 |\[0 Az 0 Qg
4. Eigenvalues of the matrix A = diag(A{,A,) + avv! are the
roots of the secular equation: n 9

where v; are elements of vector v, A; belong to either A; or A,

5. Eigenvectors of A obtained using g; = (diag(A{,A,) — A, D)~ v

6. Eigenvectors of A are [Ql 0] Q
2

HSS Matrix Definition

Notation:

I; is index set of a tree node numbered i. A m-level, complete
binary tree is considered and nodes are numbered in post-order.

Each node of an m-level tree represents a contiguous index set
I; €{1,2,..2™ — 1}. E.g. for root node, I,m_; = {1,2,..2™ — 1}

forany non-leafnodei: I, NI, =¢pand [UIL. =1;and ., I; # ¢
, L and r denote the left and right children resp.

Apy; indicates submatrix of A obtained from index sets I,

A matrix is in symmetric HSS form if there is a mapping of nodes {1,2,..2™ —
1} to matrices D, U, R, B — called generators as follows:

HSS Matrix Definition

DIl UIlBIl:IrUI’I;]
Uy, BJ,1,Ur, Dy,

U = Ull Rll
Iy — UIT er

Note that for all non-leaf descendants of root node i.e. nodes
numbered j € {2 1 to 2™ — 2}, R; ; is zero matrix and not

needed.

AIiXIi — Dli — [

U;, and U, can be combined to form the basis matrix for a larger
matrix U;, (node i is the parent of nodes [and r here)

HSS Matrix Definition - Visualization

(i) One level of HSS blocks. (ii) Two levels of HSS blocks.

=] | _ Ol |
DI |:|f-'r|55 Vi [.
— UsBiV
| ’
_ D[—] (0 | —
D-'-'I- :|f-'_134l'_§
: STO5 | 2
| — D {_,l'rl._, rrl E)'r_‘g:- lfz I-"r.l':]'F4 {JFS} Jrﬁ
| 5 D, D, D, Ds | level

Note: for symmetric matrices, V and W matrices are not needed. Also, B3 = B6,

B1=B2, and B4=B5 for symmetric matrices. .

SuperDC for Symmetric HSS matrices

Goal: Compute D; = QAQT, A = diag(X;), note: D; is in HSS form

1. Recursive decomposition - cast D; as sum of a diagonal matrix
and a rank-r update:

D; = diag (f}g,ﬁr) +7;ZF', where D, =D; — U;B;B/ U/
D,= D, -UU/

U B
(6
D; and D,- must be in HSS form and the rank of Z;-ZET remains at mostr.
2. Solve forD, = Q,A; Qf and D, = Q,A, QF
3.D; = diag (Qy, Or) diag (Q;T 0,)

where: ZI' — dlElg (Q?, Q;‘:—) Zf 12

diag (ﬁ,f, ;’ir) + 2,27

SuperDC for Symmetric HSS matrices

4. Eigendecomposition of the matrix \diﬂg (f:‘xbﬁr) + ZEZ;E_‘
needs to be computed.

ting (3 2) 100 (o) = QAW ()’

(), @ (@) @i (@)

A+ (“) = QWA (Q) With k eigenvalue
problems need to be
solved (rank-k
updates)

Ak=1) 4 (k) (ﬂm):’" = oAK) (th)T

Let Z; = (51}52} : .,,Ek) ~where 2z’ are columns of the matrix
o) — (Qgi‘lj]Tgil
Qw} = diﬂg (QI! Qr)

13

SuperDC for Symmetric HSS matrices

5. Eigendecomposition of the matrix

Di = (0" i) dmg(ﬁj”*F) (00))"

J=1

where Q; = Q" ... Q" and A = diag (ﬁ}”

n
j=1

n

3 (r)
diag (.r]lj i

) are the eigenvalues of D;

(QED}QT') is the eigenmatrix of D;

14

Parallel SuperDC

* Focus: parallelize the conquer stage only

e Map the tree nodes to processes as per the following:

* Precludes block-cyclic distribution of matrix blocks

* Necessary to minimize communication and avoid fragmentation of
generators.

* Results in O(p) communication, p = number of processes.

Shared-memory parallel implementations

* Create two OMP tasks / Cilk threads repeatedly for every level
of recursive decomposition.

* OMP Tasks are mapped to worker threads. Untied tasks allow for
resumption of a task by any idle thread.

* OpenCilk uses work-stealing scheduler

* Stop creating new tasks / Cilk threads based on program input

if node is leaf then
computeLeafEig()

else if node is non-leaf then
left,right = hsstree->GetChildren(node)
cilk_spawn cilkSuperDC(left, ++level)
cilk_spawn cilkSuperDC(right, ++level)
cilk_sync
QtMulZz()
r_RankOneUpdate()

end if

16

Shared-memory parallel implementations

* Available parallelism analysis

Teo (n) = 2% To (n/2) + O (QtMUl Z)
+(O (r_RankOneUpdate)

= Too (n) =2 % Do (n/2) + O (rnlogn) +r + O (rznlug n)

= Tao (n) = m(r'ﬁnlugn)
log n

Ti(n) | oo (n)= Of) knownthat: 71 (n),is O (rzn log® n)

* Bulk-synchronous / level-wise synchronization not suitable

* When the eigenvalue computation at all nodes at a level are complete,
proceed to the next lower level (i.e. up the tree).

* Stragglers take long time to execute

17

Experimental Setup

* Single node experiments:

e 36-core dual-socket, Intel Xeon Gold 6240C@2.60GHz processor

* CPU has 64 KB shared data and instruction caches, 1 MB unified L2
and 36 MB L3 unified caches

* 128GB DDR4 memory

 Ubuntu 20.04, Clang 14.0.6 for OpenCilk, GCC 12.0.0, LAPACK 3.9,
Matlab 2020

« Multi node experiments:

 Each node has: Xeon 8268, 2.9GHz processor, 48 cores, 192GB
RAM.

e Data Sets

* Tridiagonal, Banded, and Discretized kernel matrix

Results - Summary

Input | ImPIemenlaliﬂns* _
eig_lapack | hsseigen | hssedc_dist | speedup
Tri (8192) 0.9436 1.087978 0.02487 43.745
Tri (16384) 3.5630 2871914 0.04432 64.799
Tri (32768) 13.4933 8.120748 0.11925 68.097
Tri (65536) 23.4653 33.25809 0.22488 147.891
Tri(262144) 776.1905 ME 0.6421 -
Band5 (8192) 23.7676 13.697263 4.4736 3.141
Band5 (16384) 207.1346 29.362002 6.8811 4,267
Band5 (32768) 1897.354 58.43701 10,9187 5.351
Band5 (65536) TLE 135.456462 22,5023 6.019
Band5 (262144) ME ME 46.1816 -
DEM (8192) 491961 99.914571 26.7133 1.761
DKM (16384) 217.2924 | 364.477255 231.924 1.571

* execution times in seconds

e eig lapack - LAPACKE APl based C++ implementation. Sequential.
 hsseigen— MATLAB based sequential implementation. Sequential.

* hssedc_dist -distributed-memory parallel implementation. Speedup is
w.r.t. the best baseline i.e. hssedc_seq, our sequential C++ implementation.
shows execution with highest core count (also the best one). 19

Results — strong-scaling

*¥

HSSEigen Tridiagonal Speedup Compared to State of Art solver

& Tridiagonal 8k W Tridiagonal 16k Tri32k @ TriGsk

150 +—

100 +

0 | | | |
1 1 T T
8 16 32 64 128 512

Speadup

Cores

Symmetric tridiagonal inputs:

* larger input sizes yield better speedups. 147.8x speedup with 512-core
execution of 64K sized input. Larger inputs also evaluated.

* Rank-1 updated involved. Finer HSS matrix decomposition makes more

parallelism available.

Other (banded and DKM) inputs:

 Uptorank-r updates involved. This is inherently sequential. 0

Results — serial bottleneck

B Tridiagonal [Half Bandwidth 5 Ex4 8k
30.00% =

20.00% -

10.00%

Total CPU Time Spent in part

B

r_rankoneupdate communication

Part of hssedc_dist

Obtained from HPCToolkit.

Percentage time spent in r_rankoneupdate increases for matrices having
higher ranks in their off-diagonal blocks. This module is the serial part of the
computation.

Communication overhead is not the cause of smaller speedups in DKM and

Banded matrices
21

Results — implementation overheads

(No tag) execution time (No tag) speedup
T ® Observed 351 e Observed
1.6 1 —— Perfect linear speedup —— Perfect linear speedup
—— Burdened-dag bound 30 Burdened-dag bound

1.4 - Span bound = 0.17329 s Parallelism = 9.619

1.2+ 25
2 1.0 2 20
w
E Ji
£ 0.8 9
3 ()]
o 15 4

0.6 A

10
0.4 *
]
* o
0.2 5 e
0.0 1 0
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Number of workers Number of workers

* Data collected using CilkScale, scalability analyzer for OpenCilk programs.

* Shows that “observed” is in between “burdened dag bound” and “span
bound”. This indicates that the implementation overheads, if any, do not
significantly affect the performance.

22

Results — tree decomposition

60
== Tridiagonal 64k == Halfband 5 64k

40

20

Execution Time (s)

S 6 7 8 9 10

Cutoff (Tree Height)

» Suitable height / level of the tree up to which parallel tasks can be spawned:
= log(p) , p = number of processes / worker threads.

» Suitable partitioning scheme: split the tree horizontally at height / level =
log(p). Let each subtree (arising out of split) be handled independently by

processes.
23

Results — others

hfb5 64k Speedup == Omp Tasks == OmpUntied Tasks Cilk tridiagonal 64k Speedup = OmpTask == Ompuntied Task OpenCllk
4 / a
3 4 -
o o 3
@ a2 2
1
1
0 0
8 16 32 fid g 16 32 64

Threads Threads

Work stealing offers no benefit.
OMP implementation is better than that of OpenCilk and work-stealing

offers no major advantage.

24

Conclusions

SuperDC is a state-of-the art Divide-Conquer algorithm for
computing eigenvalues and eigenvectors of Symmetric HSS
matrices.

We optimize SuperDC to:

- allow for parallel execution of the Conquer stage.

- allow large HSS matrices to be input.

- reduce storage requirements for banded matrices from O(N?2) to O(N)

Results show:

- Parallel implementations show scalable performance with tridiagonal
inputs. For other inputs, the serial bottleneck causes slowdown.

- Overall, a significant improvement over the state-of-the-art
implementation of SuperDC

References

2021. hsseigen hitps://github. com/ tastsolvers

James ‘l-"ugel Jialin Xia, Stephen Cduley and Venkataramanan Balakrishnan. 2016.
Superfast divide-and-conquer method and perturbation analysis for structured
eigenvalue solutions. SIAM Journal on Scientific Computing 38, 3 (2016), A1358-
A1382.

Xiaofeng Ou and Jianlin Xia. 2022. SuperDC: Superfast Divide-And-Conquer
Eigenvalue Decomposition With Improved Stability for Rank-5tructured Matrices,
SIAM Journal on Scientific Computing 44, 5 (2022), A3041-A3066. https://doi.org/
10.1137/21M1438633

Jan JM Cuppen. 1980. A divide and conquer method for the symmetric tridiagonal
eigenproblem. Numer. Math. 36, 2 (1980}, 177-195.

Ming Gu and Stanley C Eisenstat. 1994. A stable and efficient algorithm for the
rank-one modification of the symmetric eigenproblem. SIAM journal on Matrix

Analysis and Applications 15, 4 (1994), 1266-1276.

Jack] Dongarra and Danny C Sorensen. 1987. A fully parallel algorithm for
the symmetric eigenvalue problem. S5SIAM 7 Sci. Statist. Comput. &, 2 (1987),
51395154,

Nathan Tallent, John Mellor-Crummey, Laksono Adhianto, Michael Fagan, and
Mark Krentel. 2008, HPCToolkit: performance tools for scientific computing. In
Journal of Physics: Conference Series, Vol 125. IOP Publishing, 012088,

Tao B Schardl and I-Ting Angelina Lee, 2023, OpenCilk: A Modular and Extensible
Software Infrastructure for Fast Task-Parallel Code. In Proceedings of the 28th ACM
SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming.
189=205,

26

	Slide 1: Optimizing a Super-fast Eigensolver for Hierarchically Semiseparable Matrices
	Slide 2: Hierarchically Semiseparable Matrices
	Slide 3: Hierarchically Semiseparable Matrices
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Cuppen’s DC Algorithm
	Slide 8: Cuppen’s DC Algorithm
	Slide 9: HSS Matrix Definition
	Slide 10: HSS Matrix Definition
	Slide 11: HSS Matrix Definition - Visualization
	Slide 12: SuperDC for Symmetric HSS matrices
	Slide 13: SuperDC for Symmetric HSS matrices
	Slide 14: SuperDC for Symmetric HSS matrices
	Slide 15: Parallel SuperDC
	Slide 16: Shared-memory parallel implementations
	Slide 17: Shared-memory parallel implementations
	Slide 18: Experimental Setup
	Slide 19: Results - Summary
	Slide 20: Results – strong-scaling
	Slide 21: Results – serial bottleneck
	Slide 22: Results – implementation overheads
	Slide 23: Results – tree decomposition
	Slide 24: Results – others
	Slide 25: Conclusions
	Slide 26: References

