
ECE264: Advanced C Programming
Summer 2019

Week 7: Binary Tree Traversal (contd.), Binary Search Trees,
Misc. topics (const, variadic functions, macros, bitwise

operations, bit fields), Parallel programming using threads

Breadth First Traversal (of a tree)

• Level order traversal

• 11, 6, 19, 4, 8, 17, 43, 5, 10, 31, 49

11

196

4 8 17 43

5 10 4931

Level 0

Level 1

Level 2

Level 3

Breadth first traversal (of a tree)

void LOT(Node * root) {
Queue q;
push(&q, root);
while (IsEmpty(&q) == false) {
Node* headNode = Dequeue(&q)
print(headNode->val)
Enqueue(&q, headNode->leftChild);
Enqueue(&q headNode->rightChild);

}
}

Depth first traversal (of a tree) –
iterative code

• Recall Preorder, Inorder, and Postorder were written as recursive
codes

Preorder(Node* n) {
if(n->val == NULL)

return;
print(n->val)
Preorder(n->leftChild);
Preorder(n->rightChild);
}

Inorder(Node* n) {
if(n->val == NULL)

return;
Inorder(n->leftChild);
print(n->val)
Inorder(n->rightChild);
}

PostOrder(Node* n) {
if(n->val == NULL)

return;
Postorder(n->leftChild);
Postorder(n->rightChild);
print(n->val)
}

void Preorder(Node * root) {
stack s;
push(&s, root);
while (IsEmpty(&s) == false) {
Node* topNode = Pop(&s)
print(topNode->val)
Push(&q, topNode->rightChild);
Push(&q topNode->leftChild);

}
}

Exercise

What data structure do you need to use for writing an iterative
code of Postorder traversal?

Full Binary Tree

• Every node except leaf has two children

11

196

4 8 17 43

5 10 4931

Level 0

Level 1

Level 2

Level 39413 32 35

Complete Binary Tree

• Every level except the last is filled and all nodes at
the last level are as far left as possible

11

196

4 8 17 43

510

Level 0

Level 1

Level 2

Level 34931

Exercise

• Complete or Full ?

11

196

4 8 17 43

5 104931

Level 0

Level 1

Level 2

Level 3

Binary Search Trees (BST)

• For efficient sorting, searching, retrieving

• BST Property:
• Keys in left subtree are lesser than parent node key
• Keys in right subtree are greater than parent node key
• Duplicate keys not allowed

Binary Search Tree

• Example

11

196

4 8 17 43

5 10 4931

Binary Search Tree

• Insertion: inserts element without violating the BST
property

11

196

4 8 17 43

5 10 493112

Binary Search Tree

• Insertion
1 bool add(TreeNode **rootPtr, int key) {
2 if (*rootPtr == NULL) {
3 *rootPtr = buildNode(key);
4 return true;
5 } else if ((*rootPtr)->val == key) {
6 return false;
7 } else if ((*rootPtr)->val < key) {
8 return add(&((*rootPtr)->right), key);
9 } else {
10 return add(&((*rootPtr)->left), key);
11 }
12 }

Binary Search Tree

• Search: returns true if key exists. False otherwise.

11

196

4 8 17 43

5 10 493112

Binary Search Tree

• Search

bool Contains(Node* n, int key) {
if(n == NULL)

return false;
if(n->val == key)

return true;
else if (n->val > key)

return Contains(n->leftChild, key);
else

return Contains(n->rightChild, key);
}

Binary Search Tree

• Removal: remove without violating BST property
• Delete 11

11

196

4 8 17 43

5 10 493116

Binary Search Tree

• Removal cases
• Not in a tree
• Is a leaf
• Has one or more children

• Return true if key removed. False otherwise.

Exercise

• Remove 19?
• Remove 17?
• Remove 8?

11

196

4 8 17 43

5 10 493112

BST remove node

• Removal code: see bst.c

Applications – parsing of
expression trees

• Goal: turn 2 + 3 into 2 3 +

• We did this using stacks

• We can use binary trees to do the same job

• Binary trees allow us to create a more useful program

• earlier we never checked if the input was a valid infix
expression

We can build a basic compiler!

• Expressions (algebraic notation) are the normal way we are used
to seeing them. E.g. 2 + 3

• Fully-parenthesized expressions are simpler versions: every
binary operation is enclosed in parenthesis

• E.g. (2 + (3 * 7))

• So can ignore order-of-operations (PEMDAS rule)

• Recursive definition

1. A number (floating point in our example)

2. Open parenthesis ‘(‘ followed by

fully-parenthesized expression followed by

an operator (‘+’, ‘-’, ‘*’, ‘/’) followed by

fully-parenthesized expression followed by

closed parenthesis ‘)’

Fully-parenthesized expression –
definition

1. E -> lit

2. E -> (E op E)

Fully-parenthesized expression –
notation

Parsing is:

1. The process of determining if an expression is a
valid fully-parenthesized expression

2. Breaking the expression into components
• Why do we need this step?

We need not worry if a number has single digit, or
multiple digits, or how many blank spaces separate two
components etc.

Expression parsing

Parsing

• Get the next token
• If the next token is a VAL (matches rule 1), return true.
• If the next token is an LPAREN match all of rule 2:

• We have already seen the LPAREN, so the next thing we expect to see is a fully-
parenthesized expression. We can just call this same function recursively to do
that! If the recursive call returns true, it means we have found a fully-
parenthesized expression

• The next part of rule 2 is to match an operation, so we grab the next token and
see if it is an ADD, SUB, MUL, or DIV. If it is, we continue.

• Then we call this same function recursively again to find another fully-
parenthesized expression.

• Finally, we grab the next token to see if it is an RPAREN. If it is, we have
matched rule 2, and this is a fully-parenthesized expression, so we return true.

Rules: 1) E -> lit 2) E -> (E op E)

Example of a recursive descent parser
Can check if an expression is fully parenthesized

Can’t check if a C program is valid

Parsing

• Each leaf node is a number, non-leaf (interior) node a binary
operation.

((7 + (8 * 10)) - (2 + 3))

Expression trees

(7 + (8 * 10))

• Can build while parsing a fully parenthesized expression

Via bottom-up building of the tree

• Create subtrees, make those subtrees left- and right-children of a
newly created root.
Modify recursive parser:
1. If token == VAL, return a pointer to newly created node

containing a number
2. Else

1. store pointers to nodes that are left- and right- expression
subtrees

2. Create a new node with value = ‘OP’

Building expression trees

• Example: (7 + (8 * 10))

Expression trees

What traversal order needs to be followed for tree deletion?

Exercise

• const, volatile, restrict

• Examples:

const int x=10; //equivalent to: int const x=10;
volatile int y=0; //eq to: int volatile y;
int *restrict c;

Type Qualifiers

• The type is a constant (cannot be modified).

• const is the keyword
const int x=10; //x is a constant integer (hence, in RO
memory). x cannot be modified.

• We can also declare a const variable as:
int const x=10;

Const Qualifier

• Needs to be initialized at the time of definition

• Can’t modify after definition
• const int x=10;

x=20; //compiler would throw an error

• int const x=10;
x=10; //can’t even assign the same value

• int const y; //uninitialized const variable y. Useless.

Const Properties

10

x

Can’t alter the content of this box

/*ptrCX is a pointer to a constant integer. So, can’t
modify what ptrCX points to.*/
const int* ptrCX;
int const* ptrCX;

int const x=10;
ptrCX = &x;
*ptrCX = 20; //Error

Const Example1 (error)

10

x
Addr: 1234

Can’t alter the content of this box

using ptrCX or x
1234

ptrCX

/*cptrX is a constant pointer to an integer. So, can’t
point to anything else after initialized.*/
int x=10, y=20;
int *const cptrX=&x;
cptrX = &y; //Error

Const Example2 (error)

10

x
Addr: 1234

1234

cptrX

Can’t alter the
content of this box

20

y
Addr: 5678

/*cptrXC is a constant pointer to a constant integer. So,
can’t point to anything else after initialized. Also,
can’t modify what cptrXC points to.*/

const int x=10, y=20;
const int *const cptrXC=&x;
int const *const cptrXC2=&x; //equivalent to prev. defn.
cptrXC = &y; //Error
*cptrX = 40; //Error

Const Example3 (error)

10

x
Addr: 1234

Can’t alter the content of
this box using cptrCX or x1234

cptrXC

Can’t alter the
content of this box

/*p2x is a pointer to an integer. So, we can use p2x to
alter the contents of the memory location that it points
to. However, the memory location contains read-only data -
cannot be altered. */

const int x=10;
const int *p1x=&x;
int *p2x=&x; //warning
*p2x = 20; //goes through. Might crash depending on memory
location accessed

Const Example4 (warning)

10

x
Addr: 1234

Can’t alter the content of
this box using p1x or x.
Can alter using p2x.

1234

p1x

1234

p2x

/*p1x is a pointer to a constant integer. So, we can’t use
p1x to alter the content of the memory location that it
points to. However, the memory location it points to can
be altered (through some other means e.g. using x)*/

int x=10;
const int *p1x=&x;

Const Example5 (no warning, no
error)

10

x
Addr: 1234

1234

p1x

Can’t alter the content of
this box using p1x.

Can alter using x.

/*p1x is a constant pointer to an integer. So, we can use
p1x to alter the contents of the memory location that it
points to (and we can’t let p1x point to something else
other than x). However, the memory location contains read-
only data - cannot be altered. */

const int x=10;
int *const p1x=&x;//warning
*p1x = 20; //goes through. Might crash depending on memory
location accessed

Const Example6 (warning)

10

x
Addr: 1234

Can’t alter the content of
this box using x. Can
alter using p1x.

1234

p1x

Can’t alter the
content of this box

/*p1x is a pointer to a constant integer. So, we can’t use
p1x to alter the content of the memory location that it
points to. However, the memory location it points to can
be altered (through some other means e.g. using x)*/

int x=10;
const int *const p1x=&x;

Const Example7 (no warning, no
error)

10

x
Addr: 1234

1234

p1x

Can’t alter the content of
this box using p1x.

Can alter using x.

Can’t alter the
content of this box

• strchr is a library function that accepts a string and a char
and returns a pointer to the first occurrence of the char
• char* strchr(const char* str, char c)

• Returns a pointer to a char. So, we could modify the content
of the memory location that the return value (a pointer) points
to!
• Exercise: is this an error or warning?

const Case Study - strchr

• Hint to the compiler indicating that a variable can change in
unexpected ways (is volatile)

• signals the compiler to not do any optimizations with the
variable

• Example:

volatile int* x = (volatile int *)0x1234; //x
is a pointer to a memory location with address
0x1234

volatile Qualifier

• Hint to the compiler indicating that a variable can change in
unexpected ways (is volatile)

• signals the compiler to not do any optimizations with the
variable

• Example:

volatile int* x = (volatile int *)0x1234; //x
is a pointer to a memory location with address
0x1234

volatile Qualifier

• Special memory locations in embedded systems programming
are assigned certain addresses
• Control registers, output buffers, input buffers

• For example, memory location at address 0x1234 could be a
control register.

• We can then access this register as we would access an
unsigned int:

unsigned int *ctrlReg = (unsigned int *) 0x1234;

printf(“current val of ctrl reg: %u”, ctrlReg);

*ctrlReg=0x00000001; /*setting least significant bit to
indicate that input buffer has some data (we put some
data in input buffer and whoever is interested may
consume it)*/

unsigned int* ctrlReg = (unsigned int *)0x1234;

while (0 == *ctrlReg) {

//no data in input buffer. do some other work

}

sample assembly code (when optimizations turned on):

mov ctrlReg, #0x1234
mov a, @ctrlReg
loop:
...
bz loop

volatile Qualifier

volatile unsigned int* ctrlReg = (volatile unsigned int
*)0x1234;

while (0 == *ctrlReg) {

//no data in input buffer. do some other work

}

sample assembly code (when optimizations turned on):

mov ctrlReg, #0x1234
loop:
mov a, @ctrlReg
...
bz loop

volatile Qualifier

• Introduced in C99

• May only be used with pointers

• Tells that the pointer is the only way to access a memory
location

int * restrict source;

Example:

https://en.wikipedia.org/wiki/Restrict

restrict Qualifier

• Functions that can take variable number of
arguments.

• Examples
• Concatenating strings str1 + str2 + . . .

• Adding numbers num1 + num2 + num3 +. . .

• printf and scanf functions

• Functions that have indefinite ‘arity’ – number of
operands.

Variadic Functions

• Adding two integers
• int add2(int num1, int num2)

• Adding three integers
• int add3(int num1, int num2, int num3)

• Adding ‘N’ integers?
• int addN(int count, . . .)

Flexibility in programming*

Variadic Functions - Motivation

*N numbers can be added in a loop. In this example, we would like to ‘modularize’ our addition.

int addN(int count, . . .)

Variadic Functions - definition

Fixed parameter
Variable number of parameters
(represented as three dots)

Fixed parameter must precede three dots.

• Useful macros and types
1. va_list //type to hold the list of arguments

2. va_start

3. va_arg

4. va_end

5. va_copy //used to copy arguments

• Include stdarg.h (varargs.h is the older
version. Not used anymore)

Variadic Functions

Macros for stepping through the list
of arguments

• Type to hold the variable arguments passed while
calling a function

• Example:
• va_list nums;

• Also used as a parameter to other macros used in a
variadic function definition

va_list

• Macro used to initialize the va_list variable
• va_start(nums, count);

• Also used as a parameter to other macros used in a
variadic function definition

va_start

Name of the fixed parameterName of the type declared
previously using va_list

• Macro used to step through the argument list
va_arg(nums, type);

• A call to va_arg modifies nums. Next call returns
the next argument in the list

• Caution: calling this macro more than required number of
times will take you past the end of the argument list

va_arg

Name of the data type of the
argument (int, float, etc.)

Name of the type declared
previously using va_list

• Macro that must be called whenever va_list is
used in a function

• Cleanup macro
va_end(nums);

va_end

Name of the type declared
previously using va_list

int addN(int count, . . .) {
va_list nums;
int sum=0, i=0;
va_start(nums, count)
for(i=0;i<count;i++)

sum += va_arg(nums, int);
va_end(nums)
return sum;

}

int main() {

printf(“Sum:%d\n”,addN(3,100,101,102));

}

Example – Adding N Numbers

1. Write a variadic function to find the minimum of N
numbers

2. Write your version of the printf function that
interprets and prints only integers (%d) and floats (%f).
Internally, you can use printf, the built-in function.

myprintf(“%d%f”,x,y) //should print x and y values
myprintf(“%cdef”) //should print %cdef

Exercise

• Format string attacks

char* str=“ECE”;
printf(“Hello %s”,str);

Variadic Functions - vulnerability

Format parameter

• What you can do:
• Crash someone’s program
• View stack content
• Overwrite return address

//crashing program
int main() {

printf(%s%s%s%s%s%s%s%s%s);
}

Format string attack

• We have seen preprocessor macros
• #define, #ifdef, #ifndef, #else etc.

• #define MAXNAMELEN 80 //the token
MAXNAMELEN is replaced by 80 whenever it
appears in a program (during compilation)

E.g. char buf[MAXNAMELEN]; //declares a variable
buf and reserves 80 bytes of memory for it.

Macros

• We can pass parameters to #define
• Examples:

#define INCREMENT(x) x++
#define ADD(a,b) a+b
#define MAX(a,b) (a >= b)?a:b

int main() {
int a=10;
int b=INCREMENT(a);
int c=ADD(a,b);
int maxAC = MAX(a,c);
printf(“a:%d b:%d c:%d max:%d\n”,a,b,c,maxAC);

}

More #define

• Sometimes more efficient than writing functions for
smaller tasks
• Expanded inline – no creation of stack

frames

#define INCREMENT(a) a++
int main() {
int a=10;
int b=INCREMENT(a);
printf(“a:%d b:%d\n”,a,b);
}

#define INCREMENT(a) a++
int main() {
int a=10;
int b=a++;
printf(“a:%d b:%d\n”,a,b);
}

#define MUL(x, y) x*y
int main() {
int e=2+3*4+5; //not (2+3) * (4+5) as expected
printf(“e:%d\n”,e);
}

• However, there are side effects

• Can fix this easily – add parenthesis around
parameters

#define MUL(x, y) x*y
int main() {
int e=MUL(2+3,4+5);
printf(“e:%d\n”,e);
}

#define MUL(x, y) (x)*(y)

• Can write multi-line macros using \

#define SWAP(x, y, type) { \
type tmp=x;\
x=y;\
y=tmp;\
}

int main() {
int x=10, y=20;
SWAP(x,y, int);
printf(“x:%d y:%d\n”,x,y);
}

• Can pass pointers to SWAP

#define SWAP(x, y, type) { \
type tmp=x;\
x=y;\
y=tmp;\
}

int main() {
int x=10, y=20;
int *px=&x, *py=&y;
SWAP(px,py, int*);
printf(“*px:%d *py:%d\n”,*px,*py);
}

• However, there is a problem with SWAP

int main() {
int x=10, y=20;
if (x > 5)
{

int tmp=x;
x=y;
y=tmp;

};
else

printf(“Not allowed to swap\n”)
}
//Throws compiler error.

#define SWAP(x, y, type)
{ \
type tmp=x;\
x=y;\
y=tmp;\
}

//SWAP(x, y, int);
expanded

• Solution: enclose SWAP in a do-while loop

• Syntax of do-while:
do {
...
}while(cond);

#define do { SWAP(x, y, type) { \
type tmp=x;\
x=y;\
y=tmp;\
} while(0);

• Consider

• How to fix this?
• “inlining” is an option

#define SQUARE(x) x*x
int main() {

printf(“%d\n”,4/SQUARE(2));
}

• C99 introduced them
• Hints to the compiler to insert code in-place rather

than generating code for a function call

inline int SQUARE(x)
{

return x*x;
}

int main() {
printf(“%d\n”,4/SQUARE(2));

}

inline Functions

• Removes already defined macro
#define PI
int main() {
#ifdef PI

printf(“PI defined\n”); //prints “PI defined”
#else

printf(“PI not defined\n”);
#endif
#undef PI
#ifdef PI

printf(“PI defined\n”);
#else

printf(“PI not defined\n”); //prints “PI not
defined”

#endif
}

Undef Macro

• ## (concatenation) and # (stringizing)

#define GETNEWTOKEN(a,b) a##b
#define GETSTR(a) #a
int main() {
printf(“%f\n”,GETNEWTOKEN(12,34.56));

//prints 1234.560000
int i=264;
printf(“%s\n”,GETSTR(myVal)); //prints “i”
}

Concatenation and
Stringizing

• For optimizing memory-space of structure objects
• Example:

typedef struct Date {
unsigned int dd;
unsigned int mm;
unsigned int yy;

}; //takes 12 bytes (4 bytes each for dd,mm,and yy)

typedef struct Date {
unsigned int dd:5; //tells to reserve 5 bits for dd

(sufficient since dd can take values from 1 to 31)
unsigned int mm:4; //4 bits for mm
unsigned int yy:7; //7 bits for yy

}; //takes 2 bytes (5+4+7=16 bits)

Bit fields

• Same as structure members
• Pointers to bit-field members not allowed
typedef struct Date {

unsigned int dd:5; //reserves 5 bits for dd (sufficient
since dd can take values from 1 to 31)

unsigned int mm:4; //reserves 4 bits for mm
unsigned int yy:7; //reserves 7 bits for yy

}; //takes 2 bytes (4 bytes each for dd,mm,and yy)

int main() {
Date d1={.dd=25,.yy=19,.mm=7};
//prints “25:7:19”
printf(“Todays date: %d:%d:%d\n”,d1.mm,d1.dd,d1.yy);
unsigned int* pdd=&(d1.dd); //Error. Not allowed

}

Bit fields – Data access

• & (bitwise AND), | (bitwise OR), ^(bitwise-XOR), ~ (negation),
<< (left shift), and >> (right shift)

int main() {
int j=15,i=16; //16 = 0001 0000, 15=0000 1111 in binary
printf(“%d\n”,i&j); //prints 0 10000&01111 becomes 00000
printf(“%d\n”,i|j); //prints 31 10000|01111 becomes 11111
printf(“%d\n”,~i); //prints 15 10000 becomes 01111
printf(“%d\n”,i^i); //prints 0
printf(“%d\n”,i<<2); //prints 32: 10000 becomes 100000
printf(“%d\n”,i>>2); //prints 8: 10000 becomes 1000

}

Bitwise operations

• Unlike 15 years ago, today’s computers have
multiple cores

• Each core is capable of executing independent set
of instructions
• So you can listen to music while browsing the internet

• You can also split up the work of a single program to
speedup its completion

• Parallel programming lets you take advantage of
collective computing power of multiple cores
• Necessary for AI

Parallel Programming

• Parallel programming is a broad concept
I. Multiple cores within a single computer

common paradigm: shared-memory parallel
programming (all the cores share a common memory)

II. Multiple cores from several computers
common paradigm: distributed-memory parallel
programming (each core has its own independent

memory)

Parallel Programming

• Embarrassingly Parallel
• Trivial to split up work of a program and execute different

parts simultaneously
• E.g. Blurring an image.

• Inherently sequential
• Not possible to execute any split to speed up completion
• E.g. Reading from keyboard

• Intermediate
• Training and Testing of Artificial Neural Networks

Target Programs for Parallel
Computing

#define LEN 10
int main() {
int i, a[LEN], b[LEN], c[LEN];

//initialize a and b arrays
for(i=0;i<LEN;i++) {

a[i] = i*100;
b[i] = i;

}

//compute c array
for(i=0;i<LEN;i++)

c[i] = a[i] + b[i];

Toy Example

10 times

10 times

//compute c array
for(i=0;i<LEN;i++)

c[i] = a[i] + b[i];

Toy Example

c[0] = a[0] + b[0]
c[1] = a[1] + b[1]
c[2] = a[2] + b[2]
c[3] = a[3] + b[3]
c[4] = a[4] + b[4]
c[5] = a[5] + b[5]
c[6] = a[6] + b[6]
c[7] = a[7] + b[7]
c[8] = a[8] + b[8]
c[9] = a[9] + b[9]

c[0] to c[9] can be computed simultaneously!

Example – summing array
elements

Sum subarray elements

Combine partial sums computed

pthreads - A tool for parallel
programming

• POSIX threads

• Based on shared-memory parallel programming

• Threads – workers that can do come computation
simultaneously (in parallel)

Can we have multiple threads working on a single-core system?

pthreads - A tool for parallel
programming

• Useful constructs

• pthread_t //data type of a thread

• pthread_create //function to assign work to workers
and begin executing the work.

• pthread_join //function to let workers meet at a
common point before terminating

• pthread_cancel //function to terminate a thread

• Must include pthread.h in a .c/.h file and use the flag –
pthread with gcc

pthread_t

• A data type (structure) to create a thread object

• pthread_t myThread;

• pthread_t myThreads[NUM_THREADS];

pthread_create

• A function to assign work to worker and begin executing

int pthread_create(pthread_t* t, const pthread_attr_t* attr,

void* (*startRoutine)(void*), void *arg);

pthread_create(&myThread, NULL, computePartialSum, arg);

Pthread_join

• A function to let workers meet

• pthread_join(pthread_t* t, void** retval);

pthreads - Example

• https://hegden.github.io/ece264/notes/example.c

	ECE264: Advanced C Programming
	Breadth First Traversal (of a tree)
	Breadth first traversal (of a tree)
	Depth first traversal (of a tree) – iterative code
	Slide Number 5
	Exercise
	Full Binary Tree
	Complete Binary Tree
	Exercise
	Binary Search Trees (BST)
	Binary Search Tree
	Binary Search Tree
	Binary Search Tree
	Binary Search Tree
	Binary Search Tree
	Binary Search Tree
	Binary Search Tree
	Exercise
	BST remove node
	Applications – parsing of expression trees
	Slide Number 21
	Fully-parenthesized expression – definition
	Fully-parenthesized expression – notation
	Expression parsing
	Parsing
	Parsing
	Expression trees
	Building expression trees
	Expression trees
	Exercise
	Type Qualifiers
	Const Qualifier
	Const Properties
	Const Example1 (error)
	Const Example2 (error)
	Const Example3 (error)
	Const Example4 (warning)
	Const Example5 (no warning, no error)
	Const Example6 (warning)
	Const Example7 (no warning, no error)
	const Case Study - strchr
	volatile Qualifier
	volatile Qualifier
	Slide Number 44
	volatile Qualifier
	volatile Qualifier
	restrict Qualifier
	Variadic Functions
	Variadic Functions - Motivation
	Variadic Functions - definition
	Variadic Functions
	va_list
	va_start
	va_arg
	va_end
	Example – Adding N Numbers
	Exercise
	Variadic Functions - vulnerability
	Format string attack
	Macros
	More #define
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	inline Functions
	Undef Macro
	Concatenation and Stringizing
	Bit fields
	Bit fields – Data access
	Bitwise operations
	Parallel Programming
	Parallel Programming
	Target Programs for Parallel Computing
	Toy Example
	Toy Example
	Example – summing array elements
	pthreads - A tool for parallel programming
	pthreads - A tool for parallel programming
	pthread_t
	pthread_create
	Pthread_join
	pthreads - Example

