
ECE264: Advanced C Programming
Summer 2019

Week 6: Exam2 Review, Priority Queues, Trees, Binary 
Trees



• Cause 1: Invalid memory access
• Accessing memory at address 0 (i.e. dereferencing a NULL 

pointer)

• Accessing memory out of scope (dereferencing address of a 
variable outside where it is defined) 

• Accessing memory that we no longer own (i.e. dereferencing 
pointer that is freed)

• Accessing uninitialized pointer

• Cause 2: Using up all the memory
• Example: stack overflow

Segmentation Faults



• Releasing memory allocated to a linked-list

Example: using memory after 
free

void DeallocateList(Node* head) {
Node* temp;
for(temp=head;temp!=NULL;temp=temp->next) {

free(temp);
}

}



• Factorial

Example: using up all memory

n x (n-1)!    when n>=1

1             when n=0 // factorial of 
negative numbers not defined.

n!=

int factorial(int n) {
if(n == 0)

return 1;
else

return n * factorial(n-1); 
}



• If a pointer is returned, always check the return value 
for NULL

• Always initialize pointers to NULL

• Set pointers to NULL after freeing

Segmentation Faults – Preventive 
Measures



Priority Queues (brief intro)

• Special types of queues: every item in the queue has a 
priority associated with it

• Enqueuing is same (as in normal queues)

• Dequeuing is different: 

• item with higher priority is dequeued before one with lower 
priority

• If two items have same priority, the item that is ahead (closer 
to head) in queue is dequeued first



Priority Queues (insertion)

Enqueue(&q, <A,2>)
PriorityQueue pq={.head = NULL, .tail=NULL}; 

A head
tail

Enqueue(&q, <C,3>)

C tail

Enqueue(&q, <D,8>)

D tail

Enqueue(&q, <E,1>)
E tailEnqueue(&q, <B,3>) 1

8

3

2

//<X,Y>: X is data, Y is priority, larger Y indicates higher priority

B tail3



Priority Queues (deletion)

Enqueue(&q, <A,2>)
PriorityQueue pq={.head = NULL, .tail=NULL}; 

A head
tail

Enqueue(&q, <C,3>)

C tail

Enqueue(&q, <D,8>)

D tail

Enqueue(&q, <E,1>)

E tailEnqueue(&q, <B,3>) 1

8

3

2

//<X,Y>: X is data, Y is priority, larger Y 
indicates higher priority

B tail3

retval=Dequeue(&q) //gets 
highest priority element = D

retval=Dequeue(&q) //returns C, 
since B is ahead in queue order



• Applications:

• CPU assignment to processes

• Computing shortest paths

Represented as trees



Trees

• Linked Lists, Stacks, Queues are linear data structures

• One item follows another

• Trees are non-linear data structures (also called as 
hierarchical data structures)

• More than one item can follow an item

• The number of items that follow can vary from item to item



Trees

• Uses: 

• Organizing files in a disk

• Simulating galaxies

• Suggesting items bought together in a web shopping (e-
commerce) portal



Trees - representation

• As a set of nodes connected on a plane:

A

B C Z

D F M



Trees - terminology

• Elements of a tree: nodes and edges

• A node holds data and connections (references) to other 
nodes

• An edge connects two nodes

• Every node connected by an edge from exactly one 
node (parent)

• Each node can be connected to any number of nodes 
(children)



More terminology

• Root: node at the top

• Leaves: bottom most nodes

• Depth of a node (level): number of edges from root to 
the node

• Path in a tree: sequence of zero or more connected 
nodes. Path length is the number of edges in the path* 
(Alternative definitions exist).

• Height of a node: number of edges from the node to 
the deepest leaf



Exercise
A

B C Z

D F M

Root = A
Leaves = C D F G

Depth of F = 2

Depth of A = 0
Height of A = 3
Height of Z = 

G

2
Path length from Z to G = 2

Path length from D to G = ?



Binary Trees

• Trees with at most two children per node

• Given 

• A is parent, B and C are children, B is left child, C is 
right child. 

A

B C



• Subtree of a node: includes one of node’s children and 
all of its descendants

• Descendants of a node: all nodes reachable from that 
node



Binary tree traversals

• Process of visiting all nodes in the tree

• Why?

• To print all values

• To check nodes with interesting properties

• Order

• Breadth-first

• Depth-first

• Preorder, inorder, postorder


	ECE264: Advanced C Programming
	Segmentation Faults
	Example: using memory after free
	Example: using up all memory
	Segmentation Faults – Preventive Measures
	Priority Queues (brief intro)
	Priority Queues (insertion)
	Priority Queues (deletion)
	Slide Number 9
	Trees
	Trees
	Trees - representation
	Trees - terminology
	More terminology
	Exercise
	Binary Trees
	Slide Number 17
	Binary tree traversals

