
ECE264: Advanced C Programming
Summer 2019

 Week 3: Recursion

• Function calling itself!

Recursion

int factorial(int n)
{

if(n == 0)
return 1;

else
return n * factorial(n-1);

}

• Better to think of recursion as a problem solving
technique rather than a programming principle.

• A common pattern in problem solving:
1. Break the problem into smaller problems

2. Apply the same function to solve the smaller
problems

3. Use the solutions created in previous step to solve
original problem

Recursion

• Is the pattern never ending?
No.

• Repeating the process creates smaller and smaller
problems. Eventually, the problem becomes trivial to solve.

trivial problem = base case

Recursion

• n! is just n * (n-1)!
Break the problem into smaller version of the same problem
(step 1)

Example - Factorial

int factorial(int n)
{

if(n == 0)
return 1;

else
return n * factorial(n-1);

}

• call factorial again to solve the smaller problem
Solve the smaller problem by calling the same function
(step 2)

Example - Factorial

int factorial(int n)
{

if(n == 0)
return 1;

else
return n * factorial(n-1);

}

• Multiply the result of previous step (calling
factorial(n-1)) by n to find factorial(n)

Use the solution of the smaller problem to solve the original
problem (step 3)

Example - Factorial

int factorial(int n)
{

if(n == 0)
return 1;

else
return n * factorial(n-1);

}

• The base case is simple: we know that
factorial(0) = 1

Example - Factorial

int factorial(int n)
{

if(n == 0)
return 1;

else
return n * factorial(n-1);

}

• Intuitive
• Easier way to think of a solution

• Sometimes, the only way to effectively solve a
problem!

Why recursive codes?

• Think inductively:
• Assume that the recursive function already works, but..

only on smaller problems than the original problem

• Write recursive function for the original problem
assuming it works

• Write correct base case

Why recursive codes work?

• Factorial example:
• Assume that factorial(n-1) works

• If we have (n-1)!computing n! is easy:
just multiply by n

• Make sure that there exists a working base case: provide
answer to the smallest argument passed to factorial

Why recursive codes work?

• Computing sum of array elements – toy example

Divide-and-Conquer – A common
recursive pattern

int sum(int * arr, int nels)
{

if (nels == 1)
return arr[0];

int sum1 = sum(arr, nels/2);
int sum2 = sum(&arr[nels/2], (nels + 1)/2);
return sum1 + sum2;

}

• Computing sum of array elements – toy example

Divide-and-Conquer – A common
recursive pattern

int sum(int * arr, int nels)
{

if (nels == 1)
return arr[0];

int sum1 = sum(arr, nels/2);
int sum2 = sum(&arr[nels/2], (nels + 1)/2);
return sum1 + sum2;

}

• A problem can be broken into two or more smaller
problems of similar or related type

• More realistic examples:
Quicksort, Merge sort, finding closest pair of points

Divide-and-Conquer

• Can have multiple base cases
• Fibonacci series

• Tail recursion
• Factorial

Recursion – observations

• Demo

Using gdb to understand recursion

#include<stdio.h>
int foo(int n)
{

int retval = n;
if (n == 0)

return 1;
retval = retval * foo(n-1);
return retval;

}

int main()
{

int x = foo(5);
printf(“foo(5)=%d\n”,x);

}

Recursive vs. iterative codes
int sum(int * arr, int nels)
{

if (nels == 1)
return arr[0];

int sum1 = sum(arr, nels/2);
int sum2 = sum(&arr[nels/2], (nels + 1)/2);
return sum1 + sum2;

}

int sum(int * arr, int nels)
{

int total=0;
for(int i=0;i<nels;i++)

total += arr[i];
return total;

}

• Tail recursion and its implementation advantages

Using gdb to understand recursion

• What happens in memory when recursion never
terminates?

Recursion - Exercise

	ECE264: Advanced C Programming
	Recursion
	Recursion
	Recursion
	Example - Factorial
	Example - Factorial
	Example - Factorial
	Example - Factorial
	Why recursive codes?
	Why recursive codes work?
	Why recursive codes work?
	Divide-and-Conquer – A common recursive pattern
	Divide-and-Conquer – A common recursive pattern
	Divide-and-Conquer
	Recursion – observations
	Using gdb to understand recursion
	Recursive vs. iterative codes
	Using gdb to understand recursion
	Recursion - Exercise

