
ECE264: Advanced C Programming
Summer 2019

Week 2: Addresses, Pointers, Pointer Arithmetic, Dynamic memory 
Allocation



• Humans are not good at remembering numerical 
addresses.

• What are the GPS coordinates (latitude and longitude) 
of your residence?

• Addresses in computer programs are just numbers.

Addresses



• Addresses in computer programs identify memory 
locations. 

• Computer programs think and live in terms of 
memory locations.



• Every memory location is a box holding data

• Each box has an address

Program Memory Layout -
Revisited

0x1234AA00

0x1234AA04

0x1234AA08

0x1234AA0B



• A program navigates by visiting one address after 
another.

• We (humans) choose convenient ways to identify 
addresses so that we can give directions to a 
program

• Variables

Addresses Contd..



• What is a variable?
• Its just a handle to an address / program memory location

• int x = 7;

• Read x => Read the content at address 0x401C

• Write x=> Write at address 0x401C

7
0x401c 
x

Handles to Addresses



• The address of (&) operator fetches a variable’s 
address in C.

• &x would return the address 0x401C.

• Format specifier ‘p’:

printf(“%p\n”,&x)

prints the Hexadecimal 
address of x

Visualizing Addresses



• Pointer is a data type that holds an address.

<type>* <pointer_name>;

We read it as “pointer to <type>”

• Example:
• int* p;

is a variable named p whose type is pointer to int
OR p is an integer pointer

Note that the variable declared is p, not *p

Pointers



• A pointer always stores an address

• <type> of the pointer tells us what kind of data is 
stored at that address

• Example:
• int* p;

declares a pointer variable p holding an address, which 
identifies a memory location capable of storing an 
integer.



• int* p;
Remember p is a variable and all variables are just 
names identifying addresses.  

0x4004 
int *p



• int* p=&x;
//p holds the address of a memory location that stores an integer.

• We say p points to x

Initializing Pointers

0x401C
0x4004 
int *p

7
0x401C 

x



• Cannot assign arbitrary addresses to pointers.
• Example:

int* p=5;

• Operating system determines addresses available to 
each program.



• NULL is a special address

• Example
int* p=NULL; //p points to nowhere

• Useful when it is not yet known where p points to.

• Uninitialized pointers store garbage addresses

The NULL address



• The dereference operator (*)
• Lets us access the memory location at the address stored 

in the pointer

int x=7;
int *p = &x; //p now points to x
*p = 10; //this is the same as x=10
int  y=*p; //this is the same as y=x

The expression *p is equivalent to x

Using Pointers



• Pointers as alternate names to memory locations
int x=7;
int *p = &x; //p now points to x
*p = 10; //this is the same as x=10
int  y=*p; //this is the same as y=x

The expression *p is equivalent to x

x is the name for an address
*p is the name for an address

7

0x401c 
x
*p



• Pointers as “dynamic” names to memory locations
int x=7;

//x always names the location 0x401C
int *p = &x; //*p is now another name for x
int y = *p //like saying y=x
p = &y; //*p is now another name for y
*p=8; //like saying y=8

7

0x401c 
x



int a = 8; 
int b = 10; 

void swap(int x, int y) { 
int tmp = x; 
x = y; 
y = tmp; 

}

void main() { 
swap(a, b); //a is still 8, b is still 10 

} 

The swap function



• C functions operate on copies of arguments.

• Change the data inside the function, you change the 
copy. Not the original.

• In swap, x and y are names of memory locations 
that are copies of a and b

What if x and y held addresses of a and b?

• *x and *y would name the same memory locations 
that a and b did.

Pass by value



int a = 8; 
int b = 10; 

void swap(int* x, int* y) { 
int tmp =*x; //tmp = whatever is in the 

location that x points to.
*x = *y; 
*y = tmp; 

}

void main() { 
//remember, we have to pass addresses now, 

not ints.
swap(&a, &b); //a is now 10, b is 8 

} 

The swap function



• What can pointers point to? any data type!
• Basic data types,

• Structures, 

• Functions, and 

• even Pointers!

Pointers to Different Types



int x = 7;
int *p = x; //p points to x; *p is same 
as x.

int * * q; //q is a pointer to pointer 
to int

*q is same as p.
*(*q) is the same as *p, which is same as x

Pointer Chains



typedef struct { 
int year; 
char model; 
float acceleration; //0-60mph in seconds

}Car; 

Car t1 = {.year = 2017, .model = ‘S’, 
.acceleration = 2.8 }; 

Car * pt1 = &t1; //now you can use *pt1 
anywhere you use t1 

Pointers to Structures



(*pt1).acceleration = 2.3;
(*pt1).year = 2019;
(*pt1).model = ‘X’;
float avg_acceleration = ((*pt1).acceleration 
+ (*pt2).acceleration) / 2.0;

We can also use the -> operator to access structure 
members.

pt1->acceleration = 2.3;
pt1->year = 2019;
pt1->model = ‘X’
float avg_acceleration = (pt1->acceleration + 
pt2->acceleration) / 2.0;



• Adding & to a variable adds * to its type

• Example:
• if a is an int,  then &a is an int*

• if b is an int*, then &b is an int** 

• if c is an int**, then &c is an int*** 

• …

Address of (&) operator and Type



• Adding * to a variable subtracts * from its type

• Example:
• if a is an int*,  then *a is an int

• if b is an int**, then *b is an int* 

• if c is an int***, then *c is an int** 

• …

Dereference (*) operator and Type



• Every function in a C program refers to a specific 
address (remember disassembling code during buffer 
overflow attack)

• Function pointers store addresses of functions

• Syntax:

typedef type (*name) (argument types)

Pointers to Functions
(Function Pointers)



typedef void (*myfuncptr) (int, int)

• myfuncptr is a pointer to a function that returns a 
void and accepts two arguments of type int.

Function Pointers - Example



void swap(int x, int y) {
int tmp = x;
x = y;
y = tmp;

}

myfuncptr ptrswap = swap; //initialization.

int main(int argc, char* argv[]) {
int a=10;
int b=20;
ptrswap(a,b); //swap called by a function 

pointer
}

Function Pointers - Example



How about these?

(*ptrswap)(a,b);

(****ptrswap)(a, b)

C says dereferencing a function pointer returns a 
function pointer. Behavior different from normal ‘&’ 
and ‘*’ operators.

Function Pointers 



int y = 1040;
int* p= &y;

• What does *(p+1) mean?
• Data at “one element past” p

• What does “one element past” mean?
• p is a pointer, so holds the address of a memory location

• p is an int pointer, so that memory location holds an 
integer

• p+1 is interpreted as address of the next integer

Pointer Arithmetic



• Our representation of 

int y=2064;
int* p = &y;

Pointer Arithmetic

2064
0x401C 

y

0x401C
0x1000 

p



• ints occupy 4 bytes. 0x401C is the address of the 
first byte*:

• (*p) = data at 0x401C
• returns the correct value of 2064 and not 0x10. Why?

Pointer Arithmetic

10 08 00 00
0x401C 0x401D 0x401E 0x401F 

*2064 = 0x810 (=0x00,00,08,10 when written using 8 digits and x86 is little-endian) 



• (p+1) gets the “address of the next integer”

What is the address of the next integer?

Pointer Arithmetic

2064
0x401C 

y

0x401C
0x1000 

p



• What is the address of the next integer?

• Add 4 to current value of p (0x401C)

Pointer Arithmetic

10 08 00 00

0x401C 0x401D 0x401E 0x401F 0x4020 0x4021 0x4022 0x4023 

= 0x4020 

y



• (p-1) computes the address before y

int y=2064;
int* p = &y;

subtract 4 from the current value of p (0x401C) = 0x4018

• Similarly we can add/subtract any number to/from a pointer 
variable.

• Compare to a specific address (E.g. if(p == NULL))

Pointer Arithmetic

10 08 00 00

0x401C 0x401D 0x401E 0x401F 0x4018 0x4019 0x401A 0x401B 
y



• Pointer to double (double occupies 8 bytes)

double pi=3.1428;
double* ptrPi = &pi;

What is the address computed for (ptrPi+1)?

What is the address computed for (ptrPi-1)?

Pointer Arithmetic

0x401C
0x1000 
ptrPi

3.1428

0x401C 
pi 

0x4024

0x4014



• Pointer to char

char model=‘S’;
char* ptrModel = &model;

What is the address computed when we do (ptrModel+1)?

Pointer Arithmetic

0x401C
0x1000 

ptrModel

‘S’

0x401C 
model 



• Pointer to pointer

char model=‘S’;
char* ptrModel = &model;
char** doublePtr = &ptrModel;

Bonus: what is the address computed when we do 
(doublePtr+1)? (assuming we are using 32-bit machines)

Pointer Arithmetic

‘S’

0x401C 
model 

0x401C
0x1000 

ptrModel

0x1000
0x0500 

doublePtr



• Pointer to struct
typedef struct { 

int year; 
char model; 
double acceleration; //0-60mph in seconds

}Car; 

Car tesla = {.year = 2017, .model = ‘S’, 
.acceleration = 2.8 }; 

Car* ptr = &tesla; 

Pointer Arithmetic



• Pointer to struct

• With #pragma pack(1)

Pointer Arithmetic

0x4010

0x1000 
ptr

0x4010 
tesla 

4 bytes 8 bytes1 byte
(year) (acceleration)(model)



• What address does (ptr+1) evaluate to?
• Add 13 (4+1+8) to the value at ptr

• ptr+1 = 0x401D

Pointer Arithmetic

0x4010

0x1000 
ptr

0x4010 
tesla 

4 bytes 8 bytes1 byte
(year) (acceleration)(model)



• Preprocessor directive (starts with ‘#’)
• Preprocessor specifies instructions for the compiler on 

how to pack structure members in memory.
• Varies from compiler to compiler

Detour - #pragma pack

0x4010

0x1000 
ptr

0x4010 
Tesla (13 bytes) 

4 bytes 8 bytes1 byte
(year) (acceleration)(model)



• Normally (without #pragma pack) structure members are 
padded to create an alignment of the structure size with 
memory addresses.

#pragma pack

0x4010 
Tesla (16 bytes) 

4 bytes 8 bytes1 byte
(year) (acceleration)(model)

3 bytes
(padding)

0x4020 



• Another data type!
• Array of ints, structs etc.

• Array of chars (strings in C)

• Work a little bit like pointers
int a[10]={1,2,3,4,5,6,7,8,9,10};
//array of 10 integers

10 elements guaranteed to be next to each other in memory

Arrays

1 2 3 4 5 6 7 8 9 10
a[0]   a[1]   a[2]   a[3]  a[4]   a[5]  a[6]   a[7]   a[8]   a[9]



int a[10]={1,2,3,4,5,6,7,8,9,10};

• 0x4001 is starting address of the array = address of a[0] = 
&a[0]

• Fetch the address of a = &a = 0x4001

Arrays

1 2 3 4 5 6 7 8 9 10
a[0]   a[1]   a[2]   a[3]  a[4]   a[5]  a[6]   a[7]   a[8]   a[9]

a
0x4001



• Array name in C is the address of the first element of 
the array
int a[10]={1,2,3,4,5,6,7,8,9,10};

Therefore, a == &a[0]

a, &a, &a[0] are the same and have values 0x4001.

Arrays



• Array name in C is the address of the first element of 
the array

Array names are converted to pointers (in most 
cases) but a’s type is not a pointer.

int* ptr=a; //ptr holds the address of the 
first element of the array (also &a[0]).

ptr[1] gets a[1]
ptr[2] gets a[2]
...
How is this possible?

Arrays



• Array dereferencing operator [ ] is implemented in 
terms of pointers.

• a[3] means: start at the address a, go forward 3 
elements, fetch the data at that address.

• In pointer arithmetic syntax, this is equivalent to:

*(a+3)

So,

a[0] really means: *(a+0)
a[1] really means: *(a+1)

Arrays



• So, when 
int* ptr = a;

• ptr[0] really means *(ptr+0), which is the same as 
*(a+0), which is a[0]

• ptr[1] really means *(ptr+1), which is the same as 
*(a+1), which is a[1]

...

Arrays



char s[3] = “Hi”;

char *t = “Si”;

int u[3] = {5, 6, 7};

int n=8;

Expression      Type Comments

Exercise

s
t
u
&u[0]

char[3] array of 3 chars
char* address of a char
int[3] array of 3 ints
int* address of an int



char s[3] = “Hi”;

char *t = “Si”;

int u[3] = {5, 6, 7};

int n=8;

Expression      Type Comments

Exercise

*&n
*t

int value at n
char data at address

Held by t



• Array initializers:
1. int u[3] = {5, 6};
Is this valid?
If yes, what is the value held in the third element u[2]?

2. int u[3] = {5, 6, 7, 8};
Is this valid?

3. char s1[]=“Hi”;
What is the size of s1? (how many bytes are reserved for s1)

4. char s2[3]=“Si”;
Is this valid?

Exercise

Presenter
Presentation Notes
Yes, u[2] contains is initialized to 0.
No. the compiler complains about providing too many inputs to the initializer list.
3 bytes
Yes. The string literal needs 3 bytes and s2 has space to store all three bytes.



int u[3] = {5, 6, 7};
int* p=u;
p[0]=7;
p[1]=6;
p[2]=5;
//At this line, u would contain the numbers in reverse order. 
u[0] = 7, u[1]=6, u[2]=5.

char *str = “Hello”;
char* p=str;
p[0]=‘Y’;
//At this line, what would str contain?

Exercise



• How do we creating them?
• Declare types
1. char* strArray1[3]; //declares an array of 

3 pointers to char. 

2. char strArray2[3][10]; //declares a two 
dimensional array. This can hold 3 
strings, each of a maximum length of 10 
bytes.

Array of Strings



• Initializing (method 1)

char* strArray1[3]; //declares an array of 3 
pointers to char. 
strArray1[0]=“RED”;
strArray1[1]=“BLUE”;
strArray1[2]=“GREEN”;

OR
char* strArray1[3]={“RED”, ”BLUE”, “GREEN”};
OR
char* strArray1[]={“RED”, ”BLUE”, “GREEN”};

Array of Strings



• Modifying (method 1)

char* strArray1[3]; //declares an array of 3 
pointers to char. 
strArray1[0]=“RED”;
strArray1[1]=“BLUE”;
strArray1[2]=“GREEN”;
strArray1[1]=“CLUE”; //modifies strArray1 by 
changing the 2nd string

NOT ALLOWED TO MODIFY strArray1 as in:
char* cptr= strArray1[1];
cptr[1]=‘C’; //to change “BLUE” to “CLUE”
OR   strcpy(strArray[1],”CLUE”);

Array of Strings



• Initializing (method 2)
char strArray2[3][10]; //declares a two 
dimensional array.
strcpy(strArray2[0],“RED”);
strcpy(strArray2[1],“BLUE”);
strcpy(strArray2[2],“GREEN”);

OR
char strArray2[3][10]={“RED”, ”BLUE”, “GREEN”};
OR
char strArray2[][10]={“RED”, ”BLUE”, “GREEN”};
BUT NOT
char strArray2[][]={“RED”, ”BLUE”, “GREEN”};
• Second and subsequent dimensions must be given.

Array of Strings



• Modifying (method 2)
char strArray2[3][10]; //declares a two 
dimensional array.
strcpy(strArray2[0],“RED”);
strcpy(strArray2[1],“BLUE”);
strcpy(strArray2[2],“GREEN”);
strcpy(strArray2[1],“CLUE”);
OR
strArray2[1][0]=‘C’;
BUT NOT
strArray2[1]=“CLUE”;
Array name strArray2 does not convert (decay) into a pointer 
(exception 1)

Array of Strings



1. char* strArray1[3];

What is the type of strArray1?

2. char strArray2[3][10];

What is the type of strArray2?

3. Give an example of string array that you saw in 
PA01main.c?

Array of Strings - Exercise

char* [3]

char [3][10]



bash-4.1$./pa01 input1
//this is how we ran pa01 (the Makefile did it for us)

• The main function is defined as:
int main(int argc, char* argv[])
{

//some code here.
}

Command Line Arguments



bash-4.1$./pa01 input1
int main(int argc, char* argv[])
{

//some code here.
}

Command Line Arguments

Identifier Comments Value
argc Number of command-line 

arguments (including the 
executable)

2

argv each command-line argument 
stored as a string

argv[0]=“./pa01”
argv[1]=“input1”



char* argv[]

1. is method1 of declaring string arrays.

2. In method1, we can only assign string literals 
(constants) to array elements. (“./pa01” and 
“input1” are string literals here)

3. string literals reside on read-only data segment.

4. In an earlier lecture we learnt that command-line 
arguments passed to main reside on stack segment.

is there a contradiction?

Command Line Arguments -
Exercise



• Method 2 (strArray2)
• Wastes space (how?)
• Modification is easy

• Method 1 (strArray1)
• Does not waste space
• Modification is not possible

• How to get the best of both worlds?
• Dynamic memory allocation

Array of Strings - Comparison



• Returns the size of a type or variable in bytes. 

• The return value is of type size_t.
• unsigned integer of at least 16 bits.

• Unary operator
• Takes a single operand

• Computes results at compile time

sizeof operator



• Example:
1.printf(“sizeof(int)=%zu\n”,sizeof(int));
2.printf(“sizeof(double)=%zu\n”,sizeof(double));
3.printf(“sizeof(char*)=%zu\n”,sizeof(char*));
4.printf(“sizeof(int[10])=%zu\n”,sizeof(int[10]));

int x=2064;
double y=3.142832;
char cArr[10];
5.printf(“sizeof(x)=%zu\n”,sizeof(x));
6.printf(“sizeof(y)=%zu\n”,sizeof(y));
7.printf(“sizeof(cArr[10])=%zu\n”,sizeof(cArr));

• What is %z?
• Introduced in C99 for portability of code

sizeof operator

Presenter
Presentation Notes
7 p



• Example:
char cArr[10]=“Hi”;

char* cPtr = cArr; //array name converted to pointer

printf(“sizeof(cPtr)=%zu\n”,sizeof(cPtr));

printf(“sizeof(cArr)=%zu\n”,sizeof(cArr)); //array 
name NOT converted to pointer

The array name cArr does not convert (decay) into a 
pointer when used as an operand of sizeof operator 
(exception 2).

sizeof operator



• Computing array length:
int iArr[]={1,3,5,9,6,8,4,3,2,1};

int numElements = sizeof(iArr) / sizeof(iArr[0]);

• In dynamic memory allocation

sizeof operator - uses

What does sizeof(1000000) return?



• Statically allocated arrays:

int arr[3]={1, 2, 3};

• Can’t expand arr once defined

• Memory for arr is invalid when the function 
returns

Dynamic Memory Allocation

Must be known at 
compile time



• What if we don’t know the array length?
• Option 1: Variable length arrays.
Not an option with -Wvla, -Wall, and -Werror flags

• Option 2: use heap.
Preferred option

Dynamic Memory Allocation



• We interact with heap using
• malloc
“Give us X bytes of storage space (memory) from the 
heap so that we can use it to store data”

• free
“take back this memory so that it can be used for 
something else”

Dynamic Memory Allocation



void * malloc(size_t X)
//Gives us access to X bytes of memory from the heap. 
Returns the address of the first byte of the memory 
location”

• What is void*
• A generic pointer that can hold the address of a 

variable of any type

• cannot dereference (*) or do pointer arithmetic.

• Must convert to appropriate type before use.

malloc



• Way to convert from one type to another.
• We saw an example of implicit conversion:
array names to pointers (int* p=arr;)

• type enclosed in brackets is a typecast operator:
(type) expression
E.g. (int) (2.3+1.5)

• Use case: e.g. force floating point division.
int numMiles=41;
int numGallons = 2;
double mpg = (double) numMiles/numGallons;

Detour - type casting



int N=10;
int * arr=malloc(N * sizeof(int))

• Find 40 bytes of heap and reserve it for program’s use.
• Return the address of the beginning of the chunk.
• arr is guaranteed to be 40 bytes of contiguous 

memory.
• We can now treat arr just like an array:
arr[0] accesses the first integer element
arr[1] accesses the second integer element
….

malloc



Suggestions:
1. malloc returns void *. So, to convert the return 

address to int * in the above example, you need not
typecast the return value to an int *

int *arr = (int *)malloc(N * sizeof(int))

2. Use sizeof(expression) instead of sizeof(int)

int *arr = malloc(N * sizeof(*arr))
Later when you change int to long long, you just need to 
change at one place.

3. Always check if the return value is NULL:

if(arr == NULL) {}

malloc



• When we no longer need the heap memory chunk 
reserved for us:
free(arr);

• free(void *ptr) //take back the chunk of 
memory, where ptr points to the beginning of that 
chunk 

• Next time you call malloc you may get the same address 
as earlier or an entirely new address

free



• Forget to call free

• Use the memory after calling free

• Call free twice (or multiple times)

• Call free on a different address

free – Don’ts



• IMPORTANT:
malloc’ed memory remains with the program until we 

free it;

What happens if we don’t call free?



• What happens when you call malloc inside a 
function foo
void foo(int N) { 

//allocate an array of N integers 
int * p = malloc(N * sizeof(int)); 

//code to do something with the array 

return; 
} 

Memory Leaks



• When foo returns, local variable p goes away.
void foo(int N) { 

//allocate an array of N integers 
int * p = malloc(N * sizeof(int)); 

//code to do something with the array 

return; 
} 

• We can no longer reach the block of memory 
allocated inside foo!

• We have no way of getting the address of that block.
(can’t free it).

Memory Leaks



void foo(int N) { 
//allocate an array of N integers 
int * p = malloc(N * sizeof(int)); 

//code to do something with the array 

free(p); //avoid memory leak

return; 
} 

Memory Leaks



• Memory leaks are bugs

• Eat up memory space as long as program is 
running

• When program terminates (that memory space is 
made available to other programs by most
operating systems (OS))

Memory Leaks



int* foo(int N) { 
//allocate an array of N integers 
int * p = malloc(N * sizeof(int)); 
//code to do something with the array 
free(p); //THIS IS TOO EARLY! 
return p; 

} 

Calling free Early



int ** bar(int N) { 
//allocate an array of N integers
int * p = malloc(N * sizeof(int));
//allocate space for an int*
int ** q = malloc(sizeof(int *)); 
//the box q now holds the address of the array
* q = p; 
//return the address of the box q points to.
return q; 
}

int** i = bar(10); //i points to a box which points 
to the array 
(* i)[5] = 12; //this sets the 6th element of the 
array. 
(* i) = NULL; //now i points to a box which contains 
NULL 

Calling free – is it safe?



int ** bar(int N) { 
//allocate an array of N integers
int * p = malloc(N * sizeof(int));
//allocate space for an int*
int ** q = malloc(sizeof(int *)); 
//the box q now holds the address of the array
* q = p; 
//return the address of the box q points to.
return q; 
}

int** i = bar(10); //i points to a box which points 
to the array 
(* i)[5] = 12; //this sets the 6th element of the 
array. 
free(*i); //free the array.
(* i) = NULL; //now i points to a box which contains 
NULL 

Calling free – is it safe?



int* foo(int N) { 
int * f_p = malloc(N * sizeof(int)); 
//..some code here
free(f_p);
return f_p; 

}
void bar(int* x) { 

int * b_p = malloc(N * sizeof(int)); 
if(x != NULL)

free(x) //freeing twice. Frees b_p as well if 
b_p == x

return; 
}
main(){

int* f_x=foo(10);
bar(f_x);

}

Calling free twice



Detecting Memory Leaks

• Detecting memory leaks can be tricky
• Not free the memory early

• Free the memory late enough

• Be absolutely sure that you are done with it

(is it safe)?

• Use valgrind



valgrind

• Does more than just memory leak detection.
• profiling, memory analysis

• Options that we use to detect memory leaks:
--tool=memcheck --leak-check=full

Presenter
Presentation Notes
Understanding valgrind output: https://aleksander.es/data/valgrind-memcheck.pdf
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