
ECE264: Advanced C Programming
Summer 2019

Week 2: Addresses, Pointers, Pointer Arithmetic, Dynamic memory
Allocation

• Humans are not good at remembering numerical
addresses.

• What are the GPS coordinates (latitude and longitude)
of your residence?

• Addresses in computer programs are just numbers.

Addresses

• Addresses in computer programs identify memory
locations.

• Computer programs think and live in terms of
memory locations.

• Every memory location is a box holding data

• Each box has an address

Program Memory Layout -
Revisited

0x1234AA00

0x1234AA04

0x1234AA08

0x1234AA0B

• A program navigates by visiting one address after
another.

• We (humans) choose convenient ways to identify
addresses so that we can give directions to a
program

• Variables

Addresses Contd..

• What is a variable?
• Its just a handle to an address / program memory location

• int x = 7;

• Read x => Read the content at address 0x401C

• Write x=> Write at address 0x401C

7
0x401c
x

Handles to Addresses

• The address of (&) operator fetches a variable’s
address in C.

• &x would return the address 0x401C.

• Format specifier ‘p’:

printf(“%p\n”,&x)

prints the Hexadecimal
address of x

Visualizing Addresses

• Pointer is a data type that holds an address.

<type>* <pointer_name>;

We read it as “pointer to <type>”

• Example:
• int* p;

is a variable named p whose type is pointer to int
OR p is an integer pointer

Note that the variable declared is p, not *p

Pointers

• A pointer always stores an address

• <type> of the pointer tells us what kind of data is
stored at that address

• Example:
• int* p;

declares a pointer variable p holding an address, which
identifies a memory location capable of storing an
integer.

• int* p;
Remember p is a variable and all variables are just
names identifying addresses.

0x4004
int *p

• int* p=&x;
//p holds the address of a memory location that stores an integer.

• We say p points to x

Initializing Pointers

0x401C
0x4004
int *p

7
0x401C

x

• Cannot assign arbitrary addresses to pointers.
• Example:

int* p=5;

• Operating system determines addresses available to
each program.

• NULL is a special address

• Example
int* p=NULL; //p points to nowhere

• Useful when it is not yet known where p points to.

• Uninitialized pointers store garbage addresses

The NULL address

• The dereference operator (*)
• Lets us access the memory location at the address stored

in the pointer

int x=7;
int *p = &x; //p now points to x
*p = 10; //this is the same as x=10
int y=*p; //this is the same as y=x

The expression *p is equivalent to x

Using Pointers

• Pointers as alternate names to memory locations
int x=7;
int *p = &x; //p now points to x
*p = 10; //this is the same as x=10
int y=*p; //this is the same as y=x

The expression *p is equivalent to x

x is the name for an address
*p is the name for an address

7

0x401c
x
*p

• Pointers as “dynamic” names to memory locations
int x=7;

//x always names the location 0x401C
int *p = &x; //*p is now another name for x
int y = *p //like saying y=x
p = &y; //*p is now another name for y
*p=8; //like saying y=8

7

0x401c
x

int a = 8;
int b = 10;

void swap(int x, int y) {
int tmp = x;
x = y;
y = tmp;

}

void main() {
swap(a, b); //a is still 8, b is still 10

}

The swap function

• C functions operate on copies of arguments.

• Change the data inside the function, you change the
copy. Not the original.

• In swap, x and y are names of memory locations
that are copies of a and b

What if x and y held addresses of a and b?

• *x and *y would name the same memory locations
that a and b did.

Pass by value

int a = 8;
int b = 10;

void swap(int* x, int* y) {
int tmp =*x; //tmp = whatever is in the

location that x points to.
*x = *y;
*y = tmp;

}

void main() {
//remember, we have to pass addresses now,

not ints.
swap(&a, &b); //a is now 10, b is 8

}

The swap function

• What can pointers point to? any data type!
• Basic data types,

• Structures,

• Functions, and

• even Pointers!

Pointers to Different Types

int x = 7;
int *p = x; //p points to x; *p is same
as x.

int * * q; //q is a pointer to pointer
to int

*q is same as p.
*(*q) is the same as *p, which is same as x

Pointer Chains

typedef struct {
int year;
char model;
float acceleration; //0-60mph in seconds

}Car;

Car t1 = {.year = 2017, .model = ‘S’,
.acceleration = 2.8 };

Car * pt1 = &t1; //now you can use *pt1
anywhere you use t1

Pointers to Structures

(*pt1).acceleration = 2.3;
(*pt1).year = 2019;
(*pt1).model = ‘X’;
float avg_acceleration = ((*pt1).acceleration
+ (*pt2).acceleration) / 2.0;

We can also use the -> operator to access structure
members.

pt1->acceleration = 2.3;
pt1->year = 2019;
pt1->model = ‘X’
float avg_acceleration = (pt1->acceleration +
pt2->acceleration) / 2.0;

• Adding & to a variable adds * to its type

• Example:
• if a is an int, then &a is an int*

• if b is an int*, then &b is an int**

• if c is an int**, then &c is an int***

• …

Address of (&) operator and Type

• Adding * to a variable subtracts * from its type

• Example:
• if a is an int*, then *a is an int

• if b is an int**, then *b is an int*

• if c is an int***, then *c is an int**

• …

Dereference (*) operator and Type

• Every function in a C program refers to a specific
address (remember disassembling code during buffer
overflow attack)

• Function pointers store addresses of functions

• Syntax:

typedef type (*name) (argument types)

Pointers to Functions
(Function Pointers)

typedef void (*myfuncptr) (int, int)

• myfuncptr is a pointer to a function that returns a
void and accepts two arguments of type int.

Function Pointers - Example

void swap(int x, int y) {
int tmp = x;
x = y;
y = tmp;

}

myfuncptr ptrswap = swap; //initialization.

int main(int argc, char* argv[]) {
int a=10;
int b=20;
ptrswap(a,b); //swap called by a function

pointer
}

Function Pointers - Example

How about these?

(*ptrswap)(a,b);

(****ptrswap)(a, b)

C says dereferencing a function pointer returns a
function pointer. Behavior different from normal ‘&’
and ‘*’ operators.

Function Pointers

int y = 1040;
int* p= &y;

• What does *(p+1) mean?
• Data at “one element past” p

• What does “one element past” mean?
• p is a pointer, so holds the address of a memory location

• p is an int pointer, so that memory location holds an
integer

• p+1 is interpreted as address of the next integer

Pointer Arithmetic

• Our representation of

int y=2064;
int* p = &y;

Pointer Arithmetic

2064
0x401C

y

0x401C
0x1000

p

• ints occupy 4 bytes. 0x401C is the address of the
first byte*:

• (*p) = data at 0x401C
• returns the correct value of 2064 and not 0x10. Why?

Pointer Arithmetic

10 08 00 00
0x401C 0x401D 0x401E 0x401F

*2064 = 0x810 (=0x00,00,08,10 when written using 8 digits and x86 is little-endian)

• (p+1) gets the “address of the next integer”

What is the address of the next integer?

Pointer Arithmetic

2064
0x401C

y

0x401C
0x1000

p

• What is the address of the next integer?

• Add 4 to current value of p (0x401C)

Pointer Arithmetic

10 08 00 00

0x401C 0x401D 0x401E 0x401F 0x4020 0x4021 0x4022 0x4023

= 0x4020

y

• (p-1) computes the address before y

int y=2064;
int* p = &y;

subtract 4 from the current value of p (0x401C) = 0x4018

• Similarly we can add/subtract any number to/from a pointer
variable.

• Compare to a specific address (E.g. if(p == NULL))

Pointer Arithmetic

10 08 00 00

0x401C 0x401D 0x401E 0x401F 0x4018 0x4019 0x401A 0x401B
y

• Pointer to double (double occupies 8 bytes)

double pi=3.1428;
double* ptrPi = π

What is the address computed for (ptrPi+1)?

What is the address computed for (ptrPi-1)?

Pointer Arithmetic

0x401C
0x1000
ptrPi

3.1428

0x401C
pi

0x4024

0x4014

• Pointer to char

char model=‘S’;
char* ptrModel = &model;

What is the address computed when we do (ptrModel+1)?

Pointer Arithmetic

0x401C
0x1000

ptrModel

‘S’

0x401C
model

• Pointer to pointer

char model=‘S’;
char* ptrModel = &model;
char** doublePtr = &ptrModel;

Bonus: what is the address computed when we do
(doublePtr+1)? (assuming we are using 32-bit machines)

Pointer Arithmetic

‘S’

0x401C
model

0x401C
0x1000

ptrModel

0x1000
0x0500

doublePtr

• Pointer to struct
typedef struct {

int year;
char model;
double acceleration; //0-60mph in seconds

}Car;

Car tesla = {.year = 2017, .model = ‘S’,
.acceleration = 2.8 };

Car* ptr = &tesla;

Pointer Arithmetic

• Pointer to struct

• With #pragma pack(1)

Pointer Arithmetic

0x4010

0x1000
ptr

0x4010
tesla

4 bytes 8 bytes1 byte
(year) (acceleration)(model)

• What address does (ptr+1) evaluate to?
• Add 13 (4+1+8) to the value at ptr

• ptr+1 = 0x401D

Pointer Arithmetic

0x4010

0x1000
ptr

0x4010
tesla

4 bytes 8 bytes1 byte
(year) (acceleration)(model)

• Preprocessor directive (starts with ‘#’)
• Preprocessor specifies instructions for the compiler on

how to pack structure members in memory.
• Varies from compiler to compiler

Detour - #pragma pack

0x4010

0x1000
ptr

0x4010
Tesla (13 bytes)

4 bytes 8 bytes1 byte
(year) (acceleration)(model)

• Normally (without #pragma pack) structure members are
padded to create an alignment of the structure size with
memory addresses.

#pragma pack

0x4010
Tesla (16 bytes)

4 bytes 8 bytes1 byte
(year) (acceleration)(model)

3 bytes
(padding)

0x4020

• Another data type!
• Array of ints, structs etc.

• Array of chars (strings in C)

• Work a little bit like pointers
int a[10]={1,2,3,4,5,6,7,8,9,10};
//array of 10 integers

10 elements guaranteed to be next to each other in memory

Arrays

1 2 3 4 5 6 7 8 9 10
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

int a[10]={1,2,3,4,5,6,7,8,9,10};

• 0x4001 is starting address of the array = address of a[0] =
&a[0]

• Fetch the address of a = &a = 0x4001

Arrays

1 2 3 4 5 6 7 8 9 10
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

a
0x4001

• Array name in C is the address of the first element of
the array
int a[10]={1,2,3,4,5,6,7,8,9,10};

Therefore, a == &a[0]

a, &a, &a[0] are the same and have values 0x4001.

Arrays

• Array name in C is the address of the first element of
the array

Array names are converted to pointers (in most
cases) but a’s type is not a pointer.

int* ptr=a; //ptr holds the address of the
first element of the array (also &a[0]).

ptr[1] gets a[1]
ptr[2] gets a[2]
...
How is this possible?

Arrays

• Array dereferencing operator [] is implemented in
terms of pointers.

• a[3] means: start at the address a, go forward 3
elements, fetch the data at that address.

• In pointer arithmetic syntax, this is equivalent to:

*(a+3)

So,

a[0] really means: *(a+0)
a[1] really means: *(a+1)

Arrays

• So, when
int* ptr = a;

• ptr[0] really means *(ptr+0), which is the same as
*(a+0), which is a[0]

• ptr[1] really means *(ptr+1), which is the same as
*(a+1), which is a[1]

...

Arrays

char s[3] = “Hi”;

char *t = “Si”;

int u[3] = {5, 6, 7};

int n=8;

Expression Type Comments

Exercise

s
t
u
&u[0]

char[3] array of 3 chars
char* address of a char
int[3] array of 3 ints
int* address of an int

char s[3] = “Hi”;

char *t = “Si”;

int u[3] = {5, 6, 7};

int n=8;

Expression Type Comments

Exercise

*&n
*t

int value at n
char data at address

Held by t

• Array initializers:
1. int u[3] = {5, 6};
Is this valid?
If yes, what is the value held in the third element u[2]?

2. int u[3] = {5, 6, 7, 8};
Is this valid?

3. char s1[]=“Hi”;
What is the size of s1? (how many bytes are reserved for s1)

4. char s2[3]=“Si”;
Is this valid?

Exercise

Presenter
Presentation Notes
Yes, u[2] contains is initialized to 0.
No. the compiler complains about providing too many inputs to the initializer list.
3 bytes
Yes. The string literal needs 3 bytes and s2 has space to store all three bytes.

int u[3] = {5, 6, 7};
int* p=u;
p[0]=7;
p[1]=6;
p[2]=5;
//At this line, u would contain the numbers in reverse order.
u[0] = 7, u[1]=6, u[2]=5.

char *str = “Hello”;
char* p=str;
p[0]=‘Y’;
//At this line, what would str contain?

Exercise

• How do we creating them?
• Declare types
1. char* strArray1[3]; //declares an array of

3 pointers to char.

2. char strArray2[3][10]; //declares a two
dimensional array. This can hold 3
strings, each of a maximum length of 10
bytes.

Array of Strings

• Initializing (method 1)

char* strArray1[3]; //declares an array of 3
pointers to char.
strArray1[0]=“RED”;
strArray1[1]=“BLUE”;
strArray1[2]=“GREEN”;

OR
char* strArray1[3]={“RED”, ”BLUE”, “GREEN”};
OR
char* strArray1[]={“RED”, ”BLUE”, “GREEN”};

Array of Strings

• Modifying (method 1)

char* strArray1[3]; //declares an array of 3
pointers to char.
strArray1[0]=“RED”;
strArray1[1]=“BLUE”;
strArray1[2]=“GREEN”;
strArray1[1]=“CLUE”; //modifies strArray1 by
changing the 2nd string

NOT ALLOWED TO MODIFY strArray1 as in:
char* cptr= strArray1[1];
cptr[1]=‘C’; //to change “BLUE” to “CLUE”
OR strcpy(strArray[1],”CLUE”);

Array of Strings

• Initializing (method 2)
char strArray2[3][10]; //declares a two
dimensional array.
strcpy(strArray2[0],“RED”);
strcpy(strArray2[1],“BLUE”);
strcpy(strArray2[2],“GREEN”);

OR
char strArray2[3][10]={“RED”, ”BLUE”, “GREEN”};
OR
char strArray2[][10]={“RED”, ”BLUE”, “GREEN”};
BUT NOT
char strArray2[][]={“RED”, ”BLUE”, “GREEN”};
• Second and subsequent dimensions must be given.

Array of Strings

• Modifying (method 2)
char strArray2[3][10]; //declares a two
dimensional array.
strcpy(strArray2[0],“RED”);
strcpy(strArray2[1],“BLUE”);
strcpy(strArray2[2],“GREEN”);
strcpy(strArray2[1],“CLUE”);
OR
strArray2[1][0]=‘C’;
BUT NOT
strArray2[1]=“CLUE”;
Array name strArray2 does not convert (decay) into a pointer
(exception 1)

Array of Strings

1. char* strArray1[3];

What is the type of strArray1?

2. char strArray2[3][10];

What is the type of strArray2?

3. Give an example of string array that you saw in
PA01main.c?

Array of Strings - Exercise

char* [3]

char [3][10]

bash-4.1$./pa01 input1
//this is how we ran pa01 (the Makefile did it for us)

• The main function is defined as:
int main(int argc, char* argv[])
{

//some code here.
}

Command Line Arguments

bash-4.1$./pa01 input1
int main(int argc, char* argv[])
{

//some code here.
}

Command Line Arguments

Identifier Comments Value
argc Number of command-line

arguments (including the
executable)

2

argv each command-line argument
stored as a string

argv[0]=“./pa01”
argv[1]=“input1”

char* argv[]

1. is method1 of declaring string arrays.

2. In method1, we can only assign string literals
(constants) to array elements. (“./pa01” and
“input1” are string literals here)

3. string literals reside on read-only data segment.

4. In an earlier lecture we learnt that command-line
arguments passed to main reside on stack segment.

is there a contradiction?

Command Line Arguments -
Exercise

• Method 2 (strArray2)
• Wastes space (how?)
• Modification is easy

• Method 1 (strArray1)
• Does not waste space
• Modification is not possible

• How to get the best of both worlds?
• Dynamic memory allocation

Array of Strings - Comparison

• Returns the size of a type or variable in bytes.

• The return value is of type size_t.
• unsigned integer of at least 16 bits.

• Unary operator
• Takes a single operand

• Computes results at compile time

sizeof operator

• Example:
1.printf(“sizeof(int)=%zu\n”,sizeof(int));
2.printf(“sizeof(double)=%zu\n”,sizeof(double));
3.printf(“sizeof(char*)=%zu\n”,sizeof(char*));
4.printf(“sizeof(int[10])=%zu\n”,sizeof(int[10]));

int x=2064;
double y=3.142832;
char cArr[10];
5.printf(“sizeof(x)=%zu\n”,sizeof(x));
6.printf(“sizeof(y)=%zu\n”,sizeof(y));
7.printf(“sizeof(cArr[10])=%zu\n”,sizeof(cArr));

• What is %z?
• Introduced in C99 for portability of code

sizeof operator

Presenter
Presentation Notes
7 p

• Example:
char cArr[10]=“Hi”;

char* cPtr = cArr; //array name converted to pointer

printf(“sizeof(cPtr)=%zu\n”,sizeof(cPtr));

printf(“sizeof(cArr)=%zu\n”,sizeof(cArr)); //array
name NOT converted to pointer

The array name cArr does not convert (decay) into a
pointer when used as an operand of sizeof operator
(exception 2).

sizeof operator

• Computing array length:
int iArr[]={1,3,5,9,6,8,4,3,2,1};

int numElements = sizeof(iArr) / sizeof(iArr[0]);

• In dynamic memory allocation

sizeof operator - uses

What does sizeof(1000000) return?

• Statically allocated arrays:

int arr[3]={1, 2, 3};

• Can’t expand arr once defined

• Memory for arr is invalid when the function
returns

Dynamic Memory Allocation

Must be known at
compile time

• What if we don’t know the array length?
• Option 1: Variable length arrays.
Not an option with -Wvla, -Wall, and -Werror flags

• Option 2: use heap.
Preferred option

Dynamic Memory Allocation

• We interact with heap using
• malloc
“Give us X bytes of storage space (memory) from the
heap so that we can use it to store data”

• free
“take back this memory so that it can be used for
something else”

Dynamic Memory Allocation

void * malloc(size_t X)
//Gives us access to X bytes of memory from the heap.
Returns the address of the first byte of the memory
location”

• What is void*
• A generic pointer that can hold the address of a

variable of any type

• cannot dereference (*) or do pointer arithmetic.

• Must convert to appropriate type before use.

malloc

• Way to convert from one type to another.
• We saw an example of implicit conversion:
array names to pointers (int* p=arr;)

• type enclosed in brackets is a typecast operator:
(type) expression
E.g. (int) (2.3+1.5)

• Use case: e.g. force floating point division.
int numMiles=41;
int numGallons = 2;
double mpg = (double) numMiles/numGallons;

Detour - type casting

int N=10;
int * arr=malloc(N * sizeof(int))

• Find 40 bytes of heap and reserve it for program’s use.
• Return the address of the beginning of the chunk.
• arr is guaranteed to be 40 bytes of contiguous

memory.
• We can now treat arr just like an array:
arr[0] accesses the first integer element
arr[1] accesses the second integer element
….

malloc

Suggestions:
1. malloc returns void *. So, to convert the return

address to int * in the above example, you need not
typecast the return value to an int *

int *arr = (int *)malloc(N * sizeof(int))

2. Use sizeof(expression) instead of sizeof(int)

int *arr = malloc(N * sizeof(*arr))
Later when you change int to long long, you just need to
change at one place.

3. Always check if the return value is NULL:

if(arr == NULL) {}

malloc

• When we no longer need the heap memory chunk
reserved for us:
free(arr);

• free(void *ptr) //take back the chunk of
memory, where ptr points to the beginning of that
chunk

• Next time you call malloc you may get the same address
as earlier or an entirely new address

free

• Forget to call free

• Use the memory after calling free

• Call free twice (or multiple times)

• Call free on a different address

free – Don’ts

• IMPORTANT:
malloc’ed memory remains with the program until we

free it;

What happens if we don’t call free?

• What happens when you call malloc inside a
function foo
void foo(int N) {

//allocate an array of N integers
int * p = malloc(N * sizeof(int));

//code to do something with the array

return;
}

Memory Leaks

• When foo returns, local variable p goes away.
void foo(int N) {

//allocate an array of N integers
int * p = malloc(N * sizeof(int));

//code to do something with the array

return;
}

• We can no longer reach the block of memory
allocated inside foo!

• We have no way of getting the address of that block.
(can’t free it).

Memory Leaks

void foo(int N) {
//allocate an array of N integers
int * p = malloc(N * sizeof(int));

//code to do something with the array

free(p); //avoid memory leak

return;
}

Memory Leaks

• Memory leaks are bugs

• Eat up memory space as long as program is
running

• When program terminates (that memory space is
made available to other programs by most
operating systems (OS))

Memory Leaks

int* foo(int N) {
//allocate an array of N integers
int * p = malloc(N * sizeof(int));
//code to do something with the array
free(p); //THIS IS TOO EARLY!
return p;

}

Calling free Early

int ** bar(int N) {
//allocate an array of N integers
int * p = malloc(N * sizeof(int));
//allocate space for an int*
int ** q = malloc(sizeof(int *));
//the box q now holds the address of the array
* q = p;
//return the address of the box q points to.
return q;
}

int** i = bar(10); //i points to a box which points
to the array
(* i)[5] = 12; //this sets the 6th element of the
array.
(* i) = NULL; //now i points to a box which contains
NULL

Calling free – is it safe?

int ** bar(int N) {
//allocate an array of N integers
int * p = malloc(N * sizeof(int));
//allocate space for an int*
int ** q = malloc(sizeof(int *));
//the box q now holds the address of the array
* q = p;
//return the address of the box q points to.
return q;
}

int** i = bar(10); //i points to a box which points
to the array
(* i)[5] = 12; //this sets the 6th element of the
array.
free(*i); //free the array.
(* i) = NULL; //now i points to a box which contains
NULL

Calling free – is it safe?

int* foo(int N) {
int * f_p = malloc(N * sizeof(int));
//..some code here
free(f_p);
return f_p;

}
void bar(int* x) {

int * b_p = malloc(N * sizeof(int));
if(x != NULL)

free(x) //freeing twice. Frees b_p as well if
b_p == x

return;
}
main(){

int* f_x=foo(10);
bar(f_x);

}

Calling free twice

Detecting Memory Leaks

• Detecting memory leaks can be tricky
• Not free the memory early

• Free the memory late enough

• Be absolutely sure that you are done with it

(is it safe)?

• Use valgrind

valgrind

• Does more than just memory leak detection.
• profiling, memory analysis

• Options that we use to detect memory leaks:
--tool=memcheck --leak-check=full

Presenter
Presentation Notes
Understanding valgrind output: https://aleksander.es/data/valgrind-memcheck.pdf

	ECE264: Advanced C Programming
	Addresses
	Slide Number 3
	Program Memory Layout - Revisited
	Addresses Contd..
	Handles to Addresses
	Visualizing Addresses
	Pointers
	Slide Number 9
	Slide Number 10
	Initializing Pointers
	Slide Number 12
	The NULL address
	Using Pointers
	Slide Number 15
	Slide Number 16
	The swap function
	Pass by value
	The swap function
	Pointers to Different Types
	Pointer Chains
	Pointers to Structures
	Slide Number 23
	Address of (&) operator and Type
	Dereference (*) operator and Type
	Pointers to Functions�(Function Pointers)
	Function Pointers - Example
	Function Pointers - Example
	Function Pointers
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Pointer Arithmetic
	Detour - #pragma pack
	#pragma pack
	Arrays
	Arrays
	Arrays
	Arrays
	Arrays
	Arrays
	Exercise
	Exercise
	Exercise
	Exercise
	Array of Strings
	Array of Strings
	Array of Strings
	Array of Strings
	Array of Strings
	Array of Strings - Exercise
	Command Line Arguments
	Command Line Arguments
	Command Line Arguments - Exercise
	Array of Strings - Comparison
	sizeof operator
	sizeof operator
	sizeof operator
	sizeof operator - uses
	Dynamic Memory Allocation
	Dynamic Memory Allocation
	Dynamic Memory Allocation
	malloc
	Detour - type casting
	malloc
	malloc
	free
	free – Don’ts
	Slide Number 77
	Memory Leaks
	Memory Leaks
	Memory Leaks
	Memory Leaks
	Calling free Early
	Calling free – is it safe?
	Calling free – is it safe?
	Calling free twice
	Detecting Memory Leaks
	valgrind

