
ECE264: Advanced C Programming
Summer 2019

Week 1: Tools, Program Layout, Data Types and Structs

Git

• Version Control System
• Manage versions of your code – access to different

versions when needed

• Lets you collaborate

• ‘Repository’ – virtual storage
• Local and Remote Repository

• Local is working copy

2

Presenter
Presentation Notes
Why Git? Most popular.

Git – Initializing Repositories

• Getting started with local working copies:
• git init

• git clone (when a remote repository on github.com exists)

3

Presenter
Presentation Notes
After adding content to local repository, you can add it to remote as follows:Git remote add origin https://github.com/ece264summer2019/dem0.gitGit push –u origin master

Git – Adding Content

• Staging

• Commit (save changes in local repository)

• Save changes in remote repository (guard against accidental deletes)

4

Git – Releasing Code

• Tagging
• make sure there are no unsaved changes in local repository

• Save tags in remote repository

5

Presenter
Presentation Notes
There’s also the ‘git pull’ command, which is not shown here. ‘git pull’ synchronzes local repository with the remote repository. i.e. if you are developing from multiple places (office and home) and want to synchronize your local working copies at these places, you would execute ‘git pull’.

• Please read https://git-scm.com/book/en/v2 for
details

Git – Recap..

1. git clone (creating a local working copy)
2. git add (staging the modified local copy)
3. git commit (saving local working copy)
4. git push (saving to remote repository)
5. git tag (Naming the release with a label)
6. git push --tags (saving the label to remote)

6

https://git-scm.com/book/en/v2

Makefile

• Is a file, contains instructions for the ‘make’ program to
generate a target (executable).

• Generating a target involves:
1. Preprocessing (e.g. strips comments, conditional compilation etc.)

2. Compiling (.c -> .s files, .s -> .o files)
3. Linking (e.g. making printf available)

• A Makefile typically contains directives on how to do steps
1, 2, and 3.

7

Makefile - Format

• Contains series of ‘rules’-

Example,

• And Macro/Variable definitions -

target: dependencies
[TAB] system command(s)
Note that it is important that there be a TAB character before the command
(not spaces).

CFLAGS = -std=c99 -g -Wall -Wshadow --pedantic -Wvla –Werror

GCC = gcc

testgen: testgen.c
gcc testgen.c –o testgen

8

Presenter
Presentation Notes
This means the program testgen depends on testgen.c. If testgen.c is changed, gcc will be called to compile testgen.c and generate testgen.

Makefile - Usage

• The ‘make’ command (Assumes that a file by name ‘makefile’ or
‘Makefile’. exists)

• To know more, please read:
https://www.gnu.org/software/make/manual/html_node/index.html#Top

9

https://www.gnu.org/software/make/manual/html_node/index.html#Top

Sorting

• Arranging the elements of a list in a particular
order.

• E.g. sorting list of names in lexicographical order,
sorting numerical input in ascending order, etc.

• Used often as a pre-processing step in optimizing
computation.

• Easier and faster to locate items

10

Sorting - Selection sort

• Repeatedly find the minimum element in the
unsorted array and put it at the beginning.

• Divides the input array into 2 pieces - sorted and rest.

• All elements in sorted are smaller than any element in
the rest – invariant

• Works by growing sorted and shrinking rest

11

Selection sort - example

• A cursor dividing sorted and rest

4 -1 3 9 2 0

rest

12

Selection sort - example

-1 4 3 9 2 0

restsorted

13

Selection sort - example

-1 0 3 9 2 4

restsorted

14

Selection sort - example

-1 0 2 9 3 4

restsorted

15

Selection sort - example

-1 0 2 3 4 9

sorted

16

Sorting algorithms - Evaluation

• Many metrics used for evaluating sorting
algorithms.

• Two most common metrics are:

• How many comparisons are involved?

• How much data movement is involved?

17

Selection sort - pseudocode

1 int input[N] = //input
2 int cursor = 0 //initial position of the cursor
3 for(cursor = 0; cursor < N; cursor++)
4 //sorted list from [0,cursor)
5 //rest of the list from [cursor, N)
6 for(i = cursor; i < N; i++)
7 //search the rest of the list to find the smallest value
8 //swap the smallest value with the value at input[cursor]

18

Selection sort - Analysis

1 int input[N] = //input
2 int cursor = 0 //initial position of the cursor
3 for(cursor = 0; cursor < N; cursor++)
4 //sorted list from [0,cursor)
5 //rest of the list from [cursor, N)
6 for(i = cursor; i < N; i++)
7 //search the rest of the list to find the smallest value
8 //swap the smallest value with the value at input[cursor]

• Outer loop (line 3) is moving the cursor, inner loop
(line 6) is finding minimum.

How many times does inner loop execute?

19

Selection sort - Analysis

1 int input[N] = //input
2 int cursor = 0 //initial position of the cursor
3 for(cursor = 0; cursor < N; cursor++)
4 //sorted list from [0,cursor)
5 //rest of the list from [cursor, N)
6 for(i = cursor; i < N; i++)
7 //search the rest of the list to find the smallest value
8 //swap the smallest value with the value at input[cursor]

• inner loop runs N times, (N - cursor) iterations every
time. = ∑𝑖𝑖=0𝑁𝑁−1𝑁𝑁 − 𝑖𝑖

= ∑𝑖𝑖=1𝑁𝑁 𝑖𝑖 =
)𝑁𝑁 (𝑁𝑁 + 1

2 20

Selection sort - Analysis

• outer loop runs for N iterations
• inner loop runs for ~ N(N+1)/2 iterations

• inner loop dominates

1. Approximately how many array write operations occur?

2. Double the input, how long does Selection sort take?

21

Presenter
Presentation Notes
We will revisit a recursive sorting algorithm in a later class.

Number Bases

• We use decimal (base-10), Computers use binary
(base-2).

• Binary is difficult to read. So, we use Hexadecimal
(base-16).

• Octal (base-8) is the other popular number format.

22

Number Bases - Hexadecimal

• Hexadecimal uses 16 digits: 0 to 9 and A to F. A to F
represent decimal numbers 10 to 15.

• A digit in hexadecimal needs 4 bits. Therefore, a
byte of information (8 bits) represents two digits.

• Example:

23

Decimal Binary Hexadecimal

10 1010 0xA

16 1 0000 0x10

43981 1010 1011 1100 1101 0xABCD

How are Numbers Stored in
Memory? - Endianness

• Assume an integer needs 4 bytes of storage

• E.g. 1193 in Hexadecimal = 0x4A9 = 0x 00 00 04 A9 when
stored in 4 bytes of memory.

• How are those 4 bytes ordered in memory? – Endianness

• Two popular formats: Big-Endian and Little-Endian

24

Presenter
Presentation Notes
There are mixed-endian (use both little- and big-endian e.g. VAX floating point arch) and bi-endian (use either little- or big-endian as a switch) formats. Arm-V3 and above is a notable example of bi-endian.

Big-Endian

• Most-significant-byte (MSB) at low-address and
least-significant-byte (LSB) at high-address

• E.g. 1193 = 0x00 00 04 A9 (= 4 * 162 + A * 16 + 9)

• MSB (0x00) is written at lower address, LSB (0xA9) is
written at higher address.

• Motorola 68000 Series, IBM-Z Mainframes.

25

0000 0000 (00) 0000 0000 (00) 0000 0100 (04) 1010 1001 (A9)
Address: 0x00000001 0x00000002 0x00000003 0x00000004

Little-Endian

• Most-significant-byte (MSB) at high-address and
least-significant-byte (LSB) at low-address

• E.g. 1193 = 0x00 00 04 A9 (= 4 * 162 + A * 16 + 9)

• MSB (0x00) is written at higher address, LSB (0xA9) is
written at lower address.

• Intel x86 Architecture

26

1010 1001 (A9) 0000 0100 (04) 0000 0000 (00) 0000 0000 (00)
Address: 0x00000001 0x00000002 0x00000003 0x00000004

Little-Endian

• What gets flipped in Little-endian?

27

Flipped Not-Flipped
• Bytes

• Multi-byte numbers (e.g.
int, long, float) and
addresses

• Bits within a byte,
Hex-digits within a byte

• Array elements and Struct
fields

Endianness

• Fortunately, we don’t have to worry about
endianness.

• You don’t have to reverse bytes when you read an integer.

• Compiler and the processor do the job for you.

• However, you need to be aware of endianness when
inspecting memory contents.

• E.g. when using GDB while debugging.

28

Program Layout in Memory

• Why know it?

• Debug programs

• Design software for constrained devices (e.g. embedded
systems)

• Design robust (secure) software

29

Program Layout in Memory

• A program’s memory space is divided into four
segments:

1. Text
• source code of the program

2. Data
• Broken into uninitialized and initialized segments; contains space for

global and static variables. E.g. int x = 7; int y;

3. Heap
• Memory allocated using malloc/calloc/realloc

4. Stack
• Function arguments, return values, local variables, special registers.

30

Detour - Stacks

Real Stack Hardware Stack

31

Image source: https://eli.thegreenplace.net/2011/02/04/where-the-top-of-the-stack-is-on-x86/

https://eli.thegreenplace.net/2011/02/04/where-the-top-of-the-stack-is-on-x86/

Stack Frame

• A sub-segment of memory on the stack space
• Special registers $rbp and $rsp track the bottom and top of

the stack frame.

• Example: when main calls function foo
1. The following are pushed on to stack:

• foo’s arguments
• Space for foo’s return value
• Address of the next instruction executed (in main) when foo returns
• Current value of $rbp

2. $rsp is automatically updated (decremented) to point to current
top of the stack.

3. $rbp is assigned the value of $rsp

32

Presenter
Presentation Notes
https://softwareengineering.stackexchange.com/questions/195385/understanding-stack-frame-of-function-call-in-c-c

Text

Stack

Data bss/uninitialized
Heap

Program Layout in Memory

initialized

high address (0x1234ABCD)

low address (0x12340000)

$rbp
$rsp

33

(initialized to zero)

Question ?

Where are the command-line arguments stored?

34

Presenter
Presentation Notes
How about environment variables such as LD_LIBRARY_PATH and PATH?

GDB

• GNU Debugger – A tool for inspecting your C
programs

• How to begin inspecting a program using gdb?

• How to control the execution?

• Misc – displaying stack frames, visualizing assembler
code.

• How to display, interpret, and alter memory contents
of a program using gdb?

35

GDB

• Compile your programs with –g option

36

GDB – Start Debug

• Start debug mode (gdb gdbdemo)
• Note the executable (not .c files passed)

• Note the last line before (gdb) prompt:

• if –g option is not used while compiling, you will see
“(no debugging symbols found)”

37

GDB – Set breakpoints

• Set breakpoints (b)
• At line 14

• Beginning of foo

38

GDB – Manage breakpoints

• Display all breakpoints set (info b)

• Delete a breakpoint (d <breakpoint num>)

• Disable a breakpoint (disable <breakpoint num>)

• Enable breakpoint (enable <breakpoint_num>)

39

GDB – Start execution

• Start execution (r <command-line arguments>)
• Execution stops at the first breakpoint encountered

• Continue execution (c)

40

GDB – Step in

• Steps inside a function call (s)

41

GDB – Step out

• Jump to return address (finish)

42

GDB – Printing

• Printing variable values (p <variable_name>)

• Printing addresses (p &<variable_name>)

43

GDB – Memory dump

• Printing memory content (x/nfu <address>)

• n = repetition (number of bytes to display)

• f = format (‘x’ – hexadecimal, ‘d’-decimal, etc.)

• u = unit (‘b’ – byte, ‘h’ – halfword/2 bytes, ‘w’ – word/4
bytes, ‘g’ – giga word/8 bytes)

• E.g. x/16xb 0x7fffffffc500 (display the values of 16 bytes
stored from starting address 0x7..c500 and show them in hexa-
decimal)

44

GDB – Printing addresses

• Registers ($rsp, $rbp)
• Note that we use the ‘x’ command and not the ‘p’

command.

45

GDB – Altering memory content

• Set command (set variable <name> = value)

• Set command (set *(<type *>addr) = value)

46

Buffer Overflow Attack

• Attacker gives input too big for a fixed-length buffer.

• When this has the effect of overwriting the return
address, normal program execution is hijacked.

• When the return address is overwritten with
starting address of a malicious code block (e.g.
deleting all files), victim suffers.

• Example:
• Ransomware WannaCry (2017/18) exploited buffer

overflow vulnerability.

47

Buffer Overflow Attack

• To hijack the control:
1. First we need to identify the return address from a

function.
2. Next, we need to identify the location (starting address)

where the return address is stored.

3. Finally, we need to overwrite the contents at that location.
a. Look for the location (address) where fixed-length buffers are

stored.

b. Compute offsets from that address that point to address
identified in Step 2.

c. Alter contents of the memory at those offsets.

48

Demo

49

Data Types

• What is a data type?
• Way of indicating what a variable is.

• Example:

int x;
1. What is the set of values this variable can take on?

2. How much space does this variable take up?

3. How should operations on this variable be handled?

50

int x;

1. What is the set of values this variable can take on in C?
-231 to (231 – 1)

2. How much space does this variable take up?
32 bits

3. How should operations on this variable be handled?
integer division is different from floating point divisions
3 / 2 = 1 //integer division

3.0 / 2.0 = 1.5 //floating-point division

51

Data Types in C

• Basic
• int, char, float, double.

• Modifiers
• short, long, signed, unsigned.

• Compound types
• pointers, structs, enums, arrays, etc.

52

Presenter
Presentation Notes
Long int, Boolean, and Complex types were added as built-in types to C99. https://en.wikipedia.org/wiki/C99

• Use sizeof() operator to check the size of a type
• e.g. sizeof(int)

Data Types in C – storage space

Data type Number of bytes
char 1

short int 2
int / long int 4
long long int 8

float 4
double 8

long double 12

53

Presenter
Presentation Notes
Long int, Boolean, and Complex types were added as built-in types to C99. https://en.wikipedia.org/wiki/C99

Data types - quirks

• if no type is given compiler automatically converts it
to int data type.

• signed x;

• long is the only modifier allowed with double
• long double y;

• signed is the default modifier for char and int

• Can’t use any modifiers with float

54

Presenter
Presentation Notes
With C99 compiler gives a warning if no type is given.

Strings

• Array of char

• Terminated by the null character‘\0’ as per
convention

• Example:

char s[]=“ECE”;

55

‘E’ ‘C’ ‘E’ ‘\0’

Address 0x7fffc510 0x7fffc511 0x7fffc512 0x7fffc513
Value 69 67 69 0

s

Strings - Initializing

• char s1[3];
• s1[0]=‘H’; //ASCII 72
• s1[1]=‘i’; //ASCII 105
• s1[2]=‘\0’; //ASCII 0
• char s2[]=“Hi”;
• char s3[]={‘H’,’i’,’\0’};
• char* s4=“Hi”;
• char s5[]= {72, 105,0};
• char s6[]= {0x48, 0x69, 0}
• char s7[]=“\x48\x69”;

56

String Literals

• String Literals
• Example:

• printf(“Hello World\n”);

• char *s =“Hi”;

• On data segment (initialized)
• Cannot modify them

is “Hi” a string literal here? char s2[]=“Hi”;

57

Exercise – Identifying memory
segments (strings)

58

void oat(char pie)
{

char ham;
char bun[4];
char* ice = “pop”;
static char egg = 1;
static char nut;

}

char jam = 2;
char tea;

Stack segment
Stack segment
Stack segment
Data segment
(read-only)

parameter
Local variable

Statically allocated array / local variable
String literal

Stack segment
Data segment (read-write)
Data segment (uninitialized/ bss)

Data segment (read-write)
Data segment (uninitialized/bss)

String on stack and data segments

char s[]=“Aye”; char* s=“Aye”;
can modify s: s[0]=‘B’; “Aye” is read-only. s[0]=‘B’ is

undefined behavior.
“Aye” is on stack segment “Aye” is on data segment

(initialized/read-only part)
Difficult to reassign s Easy to reassign s:

s = “Why”

59

• Print the length of a string using strlen
#include<string.h>
…
char s[]=“Hello”;
printf(“%d\n”,strlen(s));

• Use format specifier %s to print string values
printf(“%s\n”,s);

60

Arrays in C

Declaring arrays:
type <array_name>[<array_size>];
int num[5];

Initializing arrays:
int num[3]={2,6,4};
int num[]={2,6,4};//array_size is not required.

Accessing arrays:
num[0] accesses the first integer
num[1] accesses the second integer and so on..

61

Literals in C

• We saw string literals: “ECE”

• char literal: ‘E’, ‘C’

• int literal: 264
• is 018 an int literal?

• What about 0xFee?

• float literal: 3.142

62

Presenter
Presentation Notes
018 is not a valid literal. According to Octal (base-8) notation, we write an octal number starting with a zero. However, in Octal system, digits 0 to 7 are valid. Hence, 078 would represent an invalid octal literal.0xFee is a valid hexadecimal number. In Hexadecimal system we can combine both capital and small letters (A to F / a to f) to represent numbers.

Typedef

• Lets you give alternative names to C data types

• Example:
typedef unsigned char BYTE;

This gives the name BYTE to an unsigned char type.
Now,

BYTE a;
BYTE b;

Are valid statements.

63

Typedef Syntax

typedef <existing_type> <new_type>;

• Resembles a declaration without initializer;

E.g. int x;

• Mostly used with user-defined types

64

User-defined Types

• Structures in C are one way of defining your own
type.

• Arrays are compound types but have the same
type within.

• E.g. A string is an array of char

• int arr[]={1,2,3}; arr is an array of integer
types

• Structures let you compose types with different
basic types within.

65

Structures

• Objectives:
• How do we declare them?

• How do we use them?

• How do we initialize them?

66

Structures - Declaration

• Variable definition:
• struct Point p1;

• struct Point{
float xCoordinate;
float yCoordinate;
}p1;

p1 is a variable (an object) of type struct Point 67

struct Point{

float xCoordinate;

float yCoordinate;

};

Type name

Declarations of fields

Structures - Definition

68

typedef struct _Point{

float xCoordinate;

float yCoordinate;

}Point;

Canonical type
name
(long form)

Declarations of fields

New Type name

• Variable definition:

• Point p1;

Structures - Usage

• Structure fields are accessed using dot (.)
operator

• Example:
Point p;

p.xCoordinate = 10.1;

p.yCoordinate = 22.8;

printf(“(x,y)=(%f,%f)\n”,p.xCoordinate,
p.yCoordinate);

69

Structures - Initialization

• Error to initialize fields in declaration;

70

typedef struct{

float xCoordinate = 10.1;

float yCoordinate = 22.8;

}Point;

• Point p1={10.1,22.8};

• Point p2={.x=10.1,.y=22.8};
//Introduced in C99.

//Designated initializers

//Best-way

Structures - Initialization

71

Structures - Exercise

72

typedef struct{
float x; //x Coordinate
float y; //y Coordinate
char name[4];
}Address;

int main()
{
Address p={.x=10.1, .y=20.2, .name=“WLPD”};
...
}

Is the structure object initialization okay?

• Can we have a structure as a field within a
structure?
typedef struct{
char street[128]; //street address
int zipCode;
}StreetNZip;

typedef struct{
float x; //x Coordinate
float y; //y Coordinate
char name[4];
StreetNZip detail;
}PointOnMap;

Structures – Exercise 2

73

Homework1 Review

74

• alias for short forms of commands that are
often used and are long to type

• Example
• alias gcc=‘gcc -std=c99 -g -Wall -Wvla
–Werror --pedantic’

• Not preserved across sessions
• To preserve the command across terminal sessions,

add the alias command to a file named
.bash_profile located in the home directory
(create the file if it does not exist).

alias

75

• Set of 6 preprocessor directives and an
operator.

• #if

• #ifdef

• #ifndef

• #elif

• #else

• #endif

• Operator ‘defined’

Conditional Compilation

76

• Preprocessor – 1st step in transforming source
code to an executable

• Any line in source code that begins with ‘#’ is a
preprocessor directive.

• #include, #pragma, #define, #ifdef

Preprocessor - Detour

77

Editor
(e.g. Vim) Preprocessor Compiler Assembler Linker a.out

.c files .c files
(with expanded #include,
stripped of comments, etc.)

.s files .o files (executable
file)

gcc -std=c99 -g -Wvla -Werror -Wla --pedantic -Wall testgen.c

#if <constant-expression>
printf(“ECE264\n”)
#endif

//The line containing printf is compiled only if
<constant-expression> evaluates to a value > 0
while preprocessing
Example:
#define COMP 0
#if COMP
printf(“ECE264\n”)
#endif

#if

78

#define COMP 2
#if COMP
printf(“ECE264\n”)
#endif

No compiler error Compiler throws error about
missing semicolon

#ifdef identifier
printf(“ECE264\n”)
#endif

//The line containing printf is compiled only if
identifier is defined by the time the line with #ifdef is
seen while preprocessing. Does not require a value to be
set. Even if set, does not care about 0 or > 0.
Example:

#ifdef

79

#define COMP 2
#ifdef COMP
printf(“ECE264\n”)
#endif

All three snippets throw compiler error about missing semicolon

#define COMP
#ifdef COMP
printf(“ECE264\n”)
#endif

#define COMP 0
#ifdef COMP
printf(“ECE264\n”)
#endif

Presenter
Presentation Notes
Another way to set COMP is to pass it as a flag to the gcc command: e.g. gcc –DCOMP testgen.c assuming that the above block of code exists in testgen.c

1. #ifdef identifier1
2. printf(“summer\n”);
3. #elif identifier2
4. printf(“fall\n”);
5. #else
6. printf(“spring\n”);
7. #endif

//preprocessor checks if identifier1 is defined. if so, line 2
is compiled. If not, checks if identifier2 is defined. If
identifier2 is defined, line 4 is compiled. Otherwise, line 6
is compiled.

#else and #elif

80

Example:

#if defined(COMP)
printf(“spring\n”);
#endif
//same as if #ifdef COMP

#if defined(COMP1) || defined(COMP2)
printf(“spring\n”);
#endif
//if either COMP1 or COMP2 is defined, the printf statement is
compiled. As with #ifdef, COMP1 or COMP2 values are irrelevant.

defined operator

81

	ECE264: Advanced C Programming
	Git
	Git – Initializing Repositories
	Git – Adding Content
	Git – Releasing Code
	Git – Recap..
	Makefile
	Makefile - Format
	Makefile - Usage
	Sorting
	Sorting - Selection sort
	Selection sort - example
	Selection sort - example
	Selection sort - example
	Selection sort - example
	Selection sort - example
	Sorting algorithms - Evaluation
	Selection sort - pseudocode
	Selection sort - Analysis
	Selection sort - Analysis
	Selection sort - Analysis
	Number Bases
	Number Bases - Hexadecimal
	How are Numbers Stored in Memory? - Endianness
	Big-Endian
	Little-Endian
	Little-Endian
	Endianness
	Program Layout in Memory
	Program Layout in Memory
	Detour - Stacks
	Stack Frame
	Program Layout in Memory
	Question ?
	GDB
	GDB
	GDB – Start Debug
	GDB – Set breakpoints
	GDB – Manage breakpoints
	GDB – Start execution
	GDB – Step in
	GDB – Step out
	GDB – Printing
	GDB – Memory dump
	GDB – Printing addresses
	GDB – Altering memory content
	Buffer Overflow Attack
	Buffer Overflow Attack
	Demo
	Data Types
	Slide Number 51
	Data Types in C
	Data Types in C – storage space
	Data types - quirks
	Strings
	Strings - Initializing
	String Literals
	Exercise – Identifying memory segments (strings)
	String on stack and data segments
	Slide Number 60
	Arrays in C
	Literals in C
	Typedef
	Typedef Syntax
	User-defined Types
	Structures
	Structures - Declaration
	Structures - Definition
	Structures - Usage
	Structures - Initialization
	Structures - Initialization
	Structures - Exercise
	Structures – Exercise 2
	Homework1 Review
	alias
	Conditional Compilation
	Preprocessor - Detour
	#if
	#ifdef
	#else and #elif
	defined operator

