
Exam 3 Review

Literals

• Identify literals in the below code:
1. char *arr="Yellow";
2. char str[]="Yellow";//str[]={‘Y’,’e’,’l’….}

3. int x=100;
4. int y=0x1234;

5. int z=0xDeadbeef;
6. int a=0xafee;

7. int b=0xlol;

Types

• What are the types of the following?
1. int x, *y; //type of x, &x, *&y, *&x
2. day[1]=“Monday” //type of day, day[1], &day,

&day[1]?

3. int foo(double, char* c) //type of foo
4. char* (*)[7] //what does this type mean?

When does array name not
behave like a pointer?

1. In multi-dimensional array scenario
2. With sizeof
3. With & (Address-of) operator

char* curday[1]={"Tuesday"};
char day[7][15]={"Mon","Tue","Wed","Thu","Fri", "Sat", "Sun"};
int intarr[2]={0,1};

//day[0]="Friday"; //exception 1
printf("%zu -- %zu\n",sizeof(curday), sizeof(day)); //exception
2
printf("&intarr:%p intarr:%p &intarr[0]:%p\n",&intarr, intarr,
&intarr[0]); //exception 3

Const

• Read from right to left
int x=10;
const int *p=&x;//p is a pointer to constant integer

int const *p=&x;//p is a pointer to integer constant
int *const p=&x;//p is a constant pointer to an integer

Remember it doesn’t matter where you place the * in between
a blankspace.

Const – compile-time and runtime
errors

• Compile-time errors – assigning values to some variable
whose type is known to be a const (by the compiler)

• Runtime error – assigning values to a variable which is
in RO memory (e.g. literals)

int x=10;
const int *p=&x;
*p=20; //compile time error
p[0]=20; //compile time error

char* str=“Hello”;
str[0]=‘Y’; //runtime error.

Concluding Remarks

• Understand the requirements/spec
• Look for minute details
• Practice reading the spec/requirements doc

• Think of all possible error scenarios
• Do not make assumptions

• Ask if the spec does not state something about the
assumption

Thank you

	Exam 3 Review
	Literals
	Types
	When does array name not behave like a pointer?
	Const
	Const – compile-time and runtime errors
	Concluding Remarks
	Thank you

