
ECE 264: Advanced C Programming
Week5 Lecture Notes 7/8/19 - 7/12/19

1 Topics

This week we discussed more examples of recursive algorithms, enums, unions, complex structures, and
dnamic data structures.

• 7/8 and 7/9: Mergesort, analysis of mergesort

• 7/9 and 7/10: Unions, Enums, Brief introduction to shallow copying, Complex structures, 2D Arrays
(on heap).

• 7/11 and 7/12: Dynamic data structures: linked lists, stacks, application of stacks (arithmetic expres-
sion parsing), queues.

2 Mergesort

Merge sort is an application of divide and conquer recursion to sort an array. The heart of merge sort is
the merge operation, which combines two already sorted arrays to produce a new sorted array. To merge
two sorted arrays, imagine you have two cursors, which start at the beginnings of the two arrays. Look at
the two elements pointed to by the cursor: add whichever element is smaller to the output array, then move
that cursor forward by 1 element. (If one of the cursors is already at the end of its array, the other cursor
always "wins.")

This merge operation gives us a way of combining the solutions of two smaller problems to solve the larger
problem of sorting an array:

1. Divide the array into two pieces

2. Sort the two pieces by recursively calling the same function

3. Use merge to merge the two resulting sorted pieces

So what should the base case be? How do we make sure we don’t keep sorting smaller and smaller arrays?
Note something simple: an array with only one element is already sorted!

Below is the recursive code skeleton

void Mergesort ( int∗ arr , int l e f t , int r i g h t ) {
// base case
i f ( l e f t >= r i gh t )

return ;
//compute middle index . Lef t−subarray always >= r i g h t sub−array
int ne l s = ( r i g h t ? l e f t + 1) / 2 ;
int n e l sL e f t = ( n e l s + 1) / 2 ;
int mid = l e f t + ne l sL e f t − 1 ;
//Recurs ive case : s o r t the sma l l e r sub−arrays
Mergesort ( arr , l e f t , mid )
Mergesort ( arr , mid+1, r i g h t ) ;
//merge the so r t ed sub arrays
Merge ( arr , l e f t , mid , r i g h t ) ;

}
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2.1 Analysis

Now, we try to find the approximate time it takes for the mergesort to complete for an input size of n
elements. A call to Mergesort in the recursive case always sorts a subarray roughly equal to half the
size of the parent array. As recursion proceeds, the recursive case creates 2 halves in every level of the
recursion.

If we assume that n is a perfect power of two, we will have log2n levels of recursion. Every level creates twice
the number of sub arrays as seen in previous level. So starting from level 0, we will have a total of log2n +1
levels.

If we assume that the merge operation takes cn time for n inputs, then at the first level, there are two calls
to merge. Each of these calls are operating on arrays of size n/2. Adding up, we see that the total time
consumed by merge is cn. We observe that at every level, merge consumes cn time all calls combined.

So, we get an approximate time of cnlog n+cn.

2.2 More examples of recursion: depth first search

TBD
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