
ECE 264: Advanced C Programming
Lecture Notes 6/12/19

1 Topics

1. GDB basic usage using gdbdemo.c with demo

2. Why we need to look at assembly code? - Buffer Overflow Attack with demo

3. Data types and Strings - defining them, memory representation, initializing, literals, identifying their
segment location.

2 GDB basic usage

We saw with the help of the file gdbdemo.c, how a program’s execution can be controlled. In particular, we
saw:

• how to enable a program for debugging

• how to set and manage breakpoints

• how to start, pause and resume a debug session.

• how to step through each statement, step-in and step-out of a function.

• how to print variable values, memory contents, and register contents.

• how to modify variables, memory contents.

Below is the source code of gdbdemo.c

1 #include<s td i o . h>
2 int f oo (int a , int b)
3 {
4 int x = a + 1 ;
5 int y = b + 2 ;
6 int sum = x + y ;
7
8 return x ∗ y + sum ;
9 }

10 int main (int argc , char∗argv [])
11 {
12 int r e t = foo (10 , 20) ;
13 p r i n t f (" value returned from foo : %d\n" , r e t) ;
14 return 0 ;
15 }

3 GDB Advanced Usage

Below is the source code of wrongindex1.c:

1

1 // wrongindex1 . c
2 #include <s td i o . h>
3 #include <s t d l i b . h>
4 #include <s t r i n g . h>
5 int main (int argc , char ∗ ∗ argv)
6 {
7 int x = −2;
8 int ar r [] = {0 , 1 , 2 , 3 , 4} ;
9 int y = 15 ;

10 p r i n t f ("Before : x = %d , y = %d\n" , x , y) ;
11 ar r [7] = −353;
12 p r i n t f (" After : x = %d , y = %d\n" , x , y) ;
13 return EXIT_SUCCESS;
14 }

We tried to answer why we need to look at assembly code sometimes with the help of wrongindex1.c.
wrongindex1.c accessed invalid array indices and this lead to modification of some local variables.

As the demo showed, without explicitly modifying the variable y, y’s value was changed. We did this through
accessing y’s memory location indirectly and then overwriting the contents of that memory location. The
integer array arr provided a convenient handle to access the memory location of y.

Essentially, we accessed contents beyond the space reserved for a fixed-length buffer. Buffer overflow attacks
are fancier versions of this idea:

3.1 Buffer overflow attack

In simple terms, an attacker gives input too big for a fixed-length buffer. When this has the effect of over-
writing the return address, normal program execution is highjacked. When the return address overwritten
leads to a block of malicious code that encrypts or deletes files on a local file system, victim suffers.

We saw Buffer overflow attack in action with a demo using wrongindex3.c. Below is the source code of
wrongindex.c

1 #include <s td i o . h>
2 #include <s t d l i b . h>
3
4 void dummy()
5 {
6 int x ;
7 p r i n t f (" Pr in t ing i n s i d e the dummy func t i on \n") ;
8 return ;
9 }

10
11 void f 1 (void)
12 {
13 int f1_top = 0xAAAAAAAA; // used as r e f e r en c e s
14 char name [1 0] = {9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0} ;
15 int f1_bottom = 0xBBBBBBBB; // used as r e f e r en c e s
16 name [4 0] = 0x6b ; //These va l u e s may have to change
17 //name [4 1] = 0x05 ; //These va l u e s may have to change
18 dummy() ;
19 }
20
21 void f 2 (void)
22 {
23 int f2_top = 0xCCCCCCCC; // used as r e f e r en c e s
24 char message [] = "REALLY BAD IF YOU SEE THIS\n" ;

2

25 p r i n t f (message) ;
26 int f2_btm = 0xDDDDDDDD; // used as r e f e r en c e s
27 }
28
29 int main (int argc , char ∗ ∗ argv)
30 {
31 int main_top = 0xEEEEEEEE; // used as r e f e r en c e s
32 int main_top2 = 0xEEEEEEEE; // used as r e f e r en c e s
33 f1 () ;
34 int main_btm = 0xFFFFFFFF; // used as r e f e r en c e s
35 return EXIT_SUCCESS;
36 }

Executing this program caused function f2 getting executed even though the function was not called any-
where in the program. We saw using GDB how we could hijack function f1’s execution to execute function
f2 before function f1 called function dummy.

The gdb demo followed similar steps as mentioned here:

https://engineering.purdue.edu/ milind/ece264/2017spring/assignments/pa02/

4 Data types and Strings

We looked at basic data types, compound types, and type modifiers in C. We also looked at the storage
space requirements of those types and the values that a variable of a given type in C could take. We then
looked at the string type in C, how a string is represented in memory, and how strings are initialized in C.
We saw that strings could be initialized using literals or constants that are stored in the read-only area of
data segment. We concluded the lecture with an exercise. This exercise identifed the segment where different
strings appearing in a partial code would be stored.

Data types What is a data type? It is a way of indicating what a variable is. When you declare a variable
and give it a type:

int x;

You are saying several things:

1. What is the set of values this variable can take on? An int in C can take on integer values from -231
to (231 - 1)

2. How much space does this variable take up? An int in C occupies 32 bits (indeed, there is a relationship
(for integer types) between the answer to this question and the answer to question 1.

3. How should operations on this variable be handled? The interpretation of various arithmetic opera-
tions can change depending on the type of the variable. Performing division on ints is different than
performing division on floats:

3 / 2 = 1 //integer division

3.0 / 2.0 = 1.5 //floating point division

Data types also help programmers understand what their code is doing.

3

https://engineering.purdue.edu/~milind/ece264/2017spring/assignments/pa02/

	Topics
	GDB basic usage
	GDB Advanced Usage
	Buffer overflow attack

	Data types and Strings

