
ECE 264: Advanced C Programming
Lecture Notes 6/11/19

1 Topics

1. Recap of sorting and selection sort in action.

(a) Wrote the selection sort pseudocode

(b) Analyzed how long selection sort takes.

2. Representing numbers in different base formats (Number base).

(a) popular formats

(b) how to write decimal numbers in hexadecimal notation.

3. Endianness

(a) popular formats: Big- and Little-endian

(b) Example of how an integer is represented in these formats.

4. Program layout in memory

(a) Segments of memory, Stack, Stack-Frame

5. GDB -brief introduction followed by short demo

2 Selection sort wrapup

Readings: Forouzan and Gilberg, pp 370-371, p 534 [Note that their analysis of selection sort is a little
different than ours]

Selection sort takes a very long time to run on large inputs. How long, exactly?

Let’s count iterations: how many times does the inner loop (which searches for the minimum value in the
rest of the array) run?

i n t input [N] = // input
cur so r = 0 // i n i t i a l p o s i t i o n o f the cur so r
for (cursor = 0; cursor < N; cursor++)

// so r t ed l i s t from [ 0 , cur so r )
// r e s t o f the l i s t from [ cursor , N)

for (i = cursor; i < N; i++)
// search the r e s t o f the l i s t to f i nd the sma l l e s t va lue

//swap the sma l l e s t va lue with the value at input [ cu r so r ]

The inner loop runs N times, and each time it runs, it runs for (N - cursor) iterations. Cursor takes on
every value from 0 to N - 1 :

N−1∑
i=0

N − i

1



That summation is the same as:

N∑
i=1

i =
N(N + 1)

2

Note, also, that most of the work happens in the inner loop, so how long selection sort takes is dominated
by how long that inner loop takes. Trying to be precise about just how long the inner loop takes is tricky:
depending on how you wrote it, it may take more or fewer instructions to execute. But what matters is, no
matter how you wrote that inner loop, if we make N twice as big, the inner loop will run about four times
as many times! That’s the dominating factor here: double the input, take four times as long. So all that
really matters is the quadratic term. The next +N or /2 doesn’t really matter.

Thinking about run time this way is called asymptotic analysis, and we’ll come back to it later in class

3 Hexadecimal and Endianness

Readings: Forouzan and Gilberg, Appendix D (especially pp 1033?1037)

Computers don’t store numbers in decimal (base 10). Instead, they store data in binary (base 2):

5 = 101

21 = 1 0101

1547 = 110 0000 1011

And so on. Because it?s difficult to read base 2, we often instead write numbers in base 16, or hexadecimal.
We use the letters A through F to represent 10 through 15. That lets us write groups of four binary digits
as a single hexadecimal digit:

5 = 101 = 0x5

21 = 1 0101 = 0x15

1547 = 110 0000 1011 = 0x60B

Exercise: what are the following numbers in binary and in hexadecimal?

73

2918

206

One very confusing thing about the way data is stored in memory is endianness. When we write a single
number:

1257

We put the most significant digit (the ‘1’) at the left, and the least significant digit (the ‘7’) on the right.
When a program wants to store a number, it thinks of it as a series of bytes. In C, integers take up four bytes.
So, the number 1257, when thought of as an integer, takes up four bytes. One byte in a computer is eight
binary bits (digits), so each byte can be represented by two hexadecimal digits. Written in hexadecimal,
1257 is:

0x00 00 04 E9

( 256 * 4 + 16 * 14 + 9)

2



What order should those bytes be stored in memory? In big endian systems, we store the most significant
byte (0x00) at the lowest address, and the least significant byte (0xE9) at the highest address. If the addresses
are written left to right, from low to high, we get:

0x00 00 04 E9

Which matches the way we “normally” write numbers. In little endian systems, we store the most significant
byte (0x00) at the highest address, and the least significant byte (0xE9) at the lowest address. If the addresses
are written left to right, from low to high, we get: 0xE9 04 00 00 Which looks “backwards”. “Luckily” for
us, x86 systems (like all the ones we use in this course) are little endian. When you?re reading data from
memory, things will look backwards to you. Luckily, we usually don’t have to worry about endianness. The
compiler and processor know about it, so when you read an integer from memory, you get the value you
expect, and you don’t have to reverse any bytes.

The only time that endianness really matters is when you try to look at the contents of memory yourself.
Like with GDB.

4 Program stack

When a program runs, your computer’s memory is divided up into four segments:

1. The stack—this is where local variables for functions, function arguments, return values, and return
addresses go. Every function has a stack frame that stores this information. When a function gets
called, its stack frame is “pushed” onto the stack, and when it returns, the frame is “popped” off the
stack.

2. The heap—this is where memory you allocate using malloc goes

3. The “text”—this is where the code of the program is stored

4. The “data”—this is where global variables of various sorts are stored. This space is broken up into
smaller chunks:

(a) “data” holds global or static variables in the program that are initialized (e.g., if you declare a
global variable int x = 7;)

(b) “bss” holds global or static variables that are uninitialized (e.g., if you declare a global variable int
y;) This whole segment is initialized to zero when the program starts (Why distinguish bss from
data? Initialized variables need to have the correct values initialized for them, so they need to
be stored in your program?s binary. Uninitialized values don?t need values stored, so the binary
just tracks how much space the uninitialized variables take up.)

How are these segments placed in memory? One thing to note is that the text segment and the data
segment(s) have fixed size, but the stack and the heap do not?as the program runs, you may call additional
functions (requiring space on the stack) or allocate more memory using malloc (requiring space on the
heap). To make room, the stack is organized as follows (higher addresses on top, lower addresses on the
bottom):

3



Text

Stack

Data bss/uninitialized
Heap

Program Layout in Memory

initialized

high address (0x1234ABCD)

low address (0x12340000)

$rbp
$rsp

33

(initialized to zero)

When the program starts (i.e., we call main()), all of the local variables for main() are placed on the stack
in a stack frame. We use the register $rbp (the base pointer) to mark the “bottom” of the stack frame, and
the register $rsp (the stack pointer) to mark the “top” of the stack. (Note that when we draw the stack
this way, the “top” of the stack has a lower address, and looks like it’s lower than the base of the stack.
Confusing, I know.)

If main calls foo, a bunch of things happen: the arguments to foo, and space for its return value, are
“pushed” onto the stack (this automatically decrements $rsp to move the top of the stack). The address of
the next instruction in main is pushed onto the stack (this is where execution will go to when foo returns).
The current value of $rbp is pushed onto the stack, and then $rbp is moved to $rsp. $rsp is then moved
down. This new space between $rbp and $rsp is foo’s stack frame: it’s where any local variables for foo can
get stored. When foo returns, the process is rewound, “popping” the frame off the stack, and the program
resumes from the return address saved on the stack.

Essentially, as functions are called, we push stack frames for them onto the stack, so the stack keeps growing
as long as we call more functions. Whatever function is currently executing has its frame at the top of the
stack. When a function returns, its frame is popped off the stack.

5 GDB

We did a brief demo of GDB showing some of the following:

1. Compiling with -g

2. Starting gdb

3. Adding breakpoints, running, continuing, stepping

4. Printing values, registers, addresses

5. Printing contents of memory

4


	Topics
	Selection sort wrapup
	Hexadecimal and Endianness
	Program stack
	GDB

