
ECE 264: Advanced C Programming
Programming Assignment 2 - Program Stack, Due 6/23/19

Many students think programs are correct if they can produce expected outputs. This is far from the truth.
Programs may have hidden mistakes that can cause serious problems when certain conditions are met. One
common mistake is accessing (reading or writing) invalid memory locations.

When the C language was invented, computers were very expensive and few people were able to use com-
puters. Those people had to take multiple courses before they could use computers. At that time, one of
the highest priorities was to make computer programs run fast. As a result, there were many security holes
in early computers. One of the most exploited holes is called “buffer overflow”.

1 Learning Goals

You will learn

• Restrictions of Array Indexes

• Use gdb to understand the callstack

• Structure of the call stack (also called stack memory)

• Express values in hexidecimal system

• Calculate the distance between an array’s starting address to the place where a return location is stored

• Simulate buffer overflow attack by modifying an array’s elements using invalid indexes

2 Background

2.1 Array Indexes

If a C array has n elements, valid indexes are 0 to n - 1 (including 0 and n - 1). The first element has
index 0, not 0. This is always true and never changes.

This assignment includes several examples showing how invalid indexes could affect programs. In this first
example, wrongindex1.c, wrong indexes 5, 6, 7, -1, and -2 were used. The value of y was changed
by index -1; the value of x was changed by index 7. If the program never checks the value of x or y, the
program may appear correct.

In the second example, wrongindex2.c, even though x was not passed to the function f1, the value of x is
changed.

2.2 GDB

gdb is a debugger that allows you to interactively check the flow of a program as well as the values of
variables. gdb allows you to single step a program or set conditional breakpoints. You can think of gdb as
X-ray + CT + ultrasonic for inspecting a program.

1

2.3 Stack Memory

A computer’s memory is organized as address-value pairs. A computer’s memory is divided into two parts:
user and kernel. The user memory is used by application programs. The kernel memory is used by the
operating system. The user memory is further divided into three parts: program memory, stack memory,
and heap memory.

The program memory stores the running program. The stack memory stores the data used for function calls.
Neither the program memory nor the stack memory can be directly controlled by a user program. The heap
memory, in contrast, is under direct control of user programs. A user program may allocate (malloc in C)
or release (free in C) memory.

The stack memory follow a strict rule of “last in, first out”. What is added (called “push”) to the stack last
is removed (called “pop”) from the stack first. This rule is always followed and there is no exception in any
circumstance. By convention, the place where new information is pushed or popped is called the “top” (in
contrast to the bottom) of stack.

Whenever a function is called, a (one, only one, exactly one) “frame” belonging to the called function is
pushed to the top of the stack memory. When the function finishes, the top (one, only one, exactly one)
frame is popped from the stack memory. This rule is always followed and there is no exception in any
circumstance.

A frame stores at least one piece of information: the location where the program continues after the called
function finishes. This is called the “return location” and it refers to an address in the program memory. A
frame may store additional information for the value address, argument(s), and local variable(s).

2.4 Hexidecimal Number System

Decimal numbers (0, 1, 2, ..., 9), which are base 10, are widely used in daily life but computers understand
only binary numbers (i.e., 0 or 1). Binary numbers can be quite long, so another common representation is
hexadecimal numbers (0, 1, 2, ..., 9, A, B, C, D, E, F), which are base 16. A hexadecimal number starts
with 0x to indicate that it is hexadecimal. “Hexadecimal” is often called “hex” for short.

Hexadecimal numbers are a convenient representation because a group of four binary digits can be represented
by one hex digit. Some examples are:

• 0000 = 0 in hex (0 in decimal)

• 1010 = A in hex (10 in decimal)

• 1111 = F in hex (15 in decimal)

• 1010 0111 = A7 in hex (= 10 * 16 + 7 = 167 in decimal)

2.5 Find Return Location

To correctly determine the return location in a frame, you need to understand the structure of the stack
memory. This assignment uses a simpler method: by matching a function’s addresses with the values stored
in the stack memory.

Consider the program wrongindex3.c. Use gcc to create the executable. In PA01, we told you to always
run gcc as follows:

gcc -std=c99 -g -Wall -Wshadow –pedantic -Wvla -Werror

However, if you try to compile wrongindex3.c:

bash-4.1$ gcc -std=c99 -g -Wall -Wshadow –pedantic -Wvla -Werror wrongindex3.c -o wrongindex3

2

https://hegden.github.io/ece264/homeworks/PA01.pdf

You will get an error. This is because -Werror forces gcc to treat all warnings as errors. In this assignment,
we don’t want that. If your gcc is aliased, for this assignment only unalias it:

bash-4.1$ unalias gcc

Now when you compile wrongindex3.c:

bash-4.1$ gcc wrongindex3.c -o wrongindex3 -g

you will see several warning messages that you can ignore.

This is the only assignment which allows warning messages.

Start gdb:

bash-4.1$ gdb wrongindex3

Please notice that the input to gdb is the executable, not a source file (i.e., no .c)

You can see the prompt is changed to (gdb)

Type

(gdb) disassemble/m main

You can see the following output

29 {
0x0000000000400577 <+0>: push %rbp
0x0000000000400578 <+1>: mov %rsp ,%rbp
0x000000000040057b <+4>: sub $0x20 ,%rsp
0x000000000040057f <+8>: mov %edi ,−0x14(%rbp)
0x0000000000400582 <+11>: mov %r s i ,−0x20(%rbp)

30 int main_top = 0xEEEEEEEE; // used as r e f e r en c e s
0x0000000000400586 <+15>: movl $0xeeeeeeee ,−0x8(%rbp)

31 f1 () ;
0x000000000040058d <+22>: c a l l q 0x4004cb <f1>

32 int main_btm = 0xFFFFFFFF; // used as r e f e r en c e s
0x0000000000400592 <+27>: movl $ 0 x f f f f f f f f ,−0x4(%rbp)

33 return EXIT_SUCCESS;
0x0000000000400599 <+34>: mov $0x0 ,%eax

34 }
0x000000000040059e <+39>: l eaveq
0x000000000040059f <+40>: re tq

The hexadecimal numbers on the left (e.g., 0x0000000000400689) represent the addresses in memory where
the assembly instructions on the right (push, sub, etc.) Please be aware that the specific addresses may be
different in your program.

Next, type

(gdb) disass/m f1

This is the first several lines of the output

11 {
0x00000000004004cb <+0>: push %rbp
0x00000000004004cc <+1>: mov %rsp ,%rbp
0x00000000004004cf <+4>: sub $0x20 ,%rsp

3

12 int f1_top = 0xAAAAAAAA; // used as r e f e r en c e s
0x00000000004004d3 <+8>: movl $0xaaaaaaaa ,−0x8(%rbp)

Do you notice that “0x4004cb” appears again? It appears earlier in main:

31 f1 () ;
0x000000000040058d <+22>: c a l l q 0x4004cb <f1>

It appears again as the very beginning of f1

0x00000000004004cb <+0>: push %rbp

What does this mean? This is the address of the function f1. The line in main is calling f1, and it uses the
address to tell where to jump to.

Similarly, it is possible to find the beginning of f2:

Type

(gdb) disass/m f2

This is the first few lines of the output

21 {
0x000000000040051d <+0>: push %rbp
0x000000000040051e <+1>: mov %rsp ,%rbp
0x0000000000400521 <+4>: sub $0x30 ,%rsp

22 int f2_top = 0xCCCCCCCC; // used as r e f e r en c e s
0x0000000000400525 <+8>: movl $0xcccccccc ,−0x8(%rbp)

The address of f2 is 0x000000000040051d.

Set a breakpoint at f1:

(gdb) b f1

Start the program:

(gdb) r

The program stops at the beginning of f1.

The command x in gdb displays the memory content. It can be followed by the amount of memory to be
shown. For example,

x/80bx shows 80 bytes of memory in hexadecimal. In x86 (i.e., Intel) processors,$rsp is the stack pointer.
The stack pointer is the very top of the stack memory.

Note that by convention, the “top” of the stack has the lowest address. When we add data to the stack, the
stack pointer moves to a lower address. That is why f2 has the instruction sub $0x30,%rsp: it’s adding 48
bytes to the stack by subtracting 48 from the address stored in $rsp. (Don’t forget your hex numbers! 0x30
in hex is 48)

If you type

(gdb) x/80bx $rsp

You will see:

0 x 7 f f f f f f f e 3 b 0 : 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0 x 7 f f f f f f f e 3 b 8 : 0xa3 0x03 0x40 0x00 0x00 0x00 0x00 0x00
0 x 7 f f f f f f f e 3 c 0 : 0 xf8 0xe4 0 x f f 0 x f f 0 x f f 0 x7f 0x00 0x00
0 x 7 f f f f f f f e 3 c 8 : 0 xf5 0x05 0x40 0x00 0x00 0x00 0x00 0x00
0 x 7 f f f f f f f e 3 d 0 : 0x00 0xe4 0 x f f 0 x f f 0 x f f 0 x7f 0x00 0x00

4

0 x 7 f f f f f f f e 3 d 8 : 0x92 0x05 0x40 0x00 0x00 0x00 0x00 0x00
0 x 7 f f f f f f f e 3 e 0 : 0xe8 0xe4 0 x f f 0 x f f 0 x f f 0 x7f 0x00 0x00
0 x 7 f f f f f f f e 3 e 8 : 0xe0 0x03 0x40 0x00 0x01 0x00 0x00 0x00
0 x 7 f f f f f f f e 3 f 0 : 0xe0 0xe4 0 x f f 0 x f f 0 x f f 0 x7f 0x00 0x00
0 x 7 f f f f f f f e 3 f 8 : 0 xee 0xee 0xee 0xee 0x00 0x00 0x00 0x00

This shows 80 bytes of memory, starting from the stack pointer. Because the stack grows “down,” this shows
the last 80 bytes of data that have been added to the stack. The hexadecimal numbers on the left represent
memory addresses (note that they are much larger numbers than the addresses of the program! This is
because the addresses of the program are in program memory, which is a different portion of memory than
the stack memory, which uses much higher addresses.)

If you pay careful attention, you may have noticed the value 0x0000000000400592 appears starting at
address 0x7fffffffe3d8:

0x7fffffffe3d8: 0x92 0x05 0x40 0x00 0x00 0x00 0x00 0x00

0x0000000000400592 is the return location for function call f1.

32 int main_btm = 0xFFFFFFFF; // used as r e f e r en c e s
0x0000000000400592 <+27>: movl \ $ 0 x f f f f f f f f ,−0x4(%rbp)

The byte order appears reversed because Intel processors store numbers in “Little Endian” format. Rather
than the least significant byte (0x92) being stored in the largest address (which is called “Big Endian”), the
least significant byte is stored in the smallest address. So when you write out the bytes the “normal” way
(starting at the smallest address), the bytes look backwards. The return location has 8 bytes because this
example is created on a machine with 64-bit addresses.

Use the next (or n) command to go to the next line in f1:

(gdb) n

3 times. Now, type

(gdb) x/80bx $rsp

again and the output is

0 x 7 f f f f f f f e 3 b 0 : 0x09 0x08 0x07 0x06 0x05 0x04 0x03 0x02
0 x 7 f f f f f f f e 3 b 8 : 0x01 0x00 0x40 0x00 0x00 0x00 0x00 0x00
0 x 7 f f f f f f f e 3 c 0 : 0 xf8 0xe4 0 x f f 0 x f f 0 x f f 0 x7f 0x00 0x00
0 x 7 f f f f f f f e 3 c 8 : 0xaa 0xaa 0xaa 0xaa 0xbb 0xbb 0xbb 0xbb
0 x 7 f f f f f f f e 3 d 0 : 0x00 0xe4 0 x f f 0 x f f 0 x f f 0 x7f 0x00 0x00
0 x 7 f f f f f f f e 3 d 8 : 0x92 0x05 0x40 0x00 0x00 0x00 0x00 0x00
0 x 7 f f f f f f f e 3 e 0 : 0xe8 0xe4 0 x f f 0 x f f 0 x f f 0 x7f 0x00 0x00
0 x 7 f f f f f f f e 3 e 8 : 0xe0 0x03 0x40 0x00 0x01 0x00 0x00 0x00
0 x 7 f f f f f f f e 3 f 0 : 0xe0 0xe4 0 x f f 0 x f f 0 x f f 0 x7f 0x00 0x00
0 x 7 f f f f f f f e 3 f 8 : 0 xee 0xee 0xee 0xee 0x00 0x00 0x00 0x00

Did you notice that the values starting from 0x7fffffffe3b0 appear to be the values of the name ele-
ments?

0 x 7 f f f f f f f e 3 b 0 : 0x09 0x08 0x07 0x06 0x05 0x04 0x03 0x02
0 x 7 f f f f f f f e 3 b 8 : 0x01 0x00 0x40 0x00 0x00 0x00 0x00 0x00

You can verify that by typing

(gdb) print &name

Which will print the address where the variable name is stored in memory:

$1 = (char (*)[10]) 0x7fffffffe3b0

5

2.6 Buffer Overflow Attack

This program modifies the values of name[40] and name[41]. The indexes are invalid and they happen to
be the memory where the return location is stored. If you count up 40 bytes (5 rows of 8 bytes) from the
location where name starts (0x7fffffffe3b0) you get to 0x7fffffffe3d8 which is the location of the return
address we found from above.

name[40], in C, just means "40 chars from the beginning of name. (It’s 40 chars because name is an array
of chars. If name were an array of ints, name[40] would mean "40 ints from the beginning of name.) A
char takes up 1 byte, so name[40] means 40 bytes from the beginning of name. If we write to those bytes,
we will overwrite whatever data is stored in location 0x7fffffffe3d8! We will change the return address,
and when we get to the end of f1, we will use the wrong address to return to!

What values should the program modify to? The value should be the beginning of f2 (from disass/m
f2).

name[40] = 0x1d;
name[41] = 0x05;

(The exact location of f2 may be different for you, so the values of name[40] and name[41] might need to
be changed to make this example work.)

If we change those locations, that will change this portion of memory:

0x7fffffffe3d8: 0x92 0x05 0x40 0x00 0x00 0x00 0x00 0x00

to:

0x7fffffffe3d8: 0x1d 0x05 0x40 0x00 0x00 0x00 0x00 0x00

Now, if you continue the program:

(gdb) c

The program outputs

REALLY BAD IF YOU SEE THIS

Where does this message come from? It is from f2. However, the program never calls f2! How can it be
possible to execute code in f2? Because your program uses bad indexes (40 and 41) to modify the return
location.

This program will then cause a “segmentation fault” because the operating system detects something wrong
and stops the program. Nevertheless, you can say the damage has been done.

This is the only assignment where “segmentation fault” is tolerated for the purpose of explaining the potential
damage of buffer overflow.

If you change the indexes to something else (still invalid, for example, 20 and 21), it appears that nothing
bad happens. However, this is not true. The wrong indexes are still wrong.

Many students believe that if nothing bad appears, their programs are correct. This is far from the truth.
This example shows that when mistakes happen to be at specific places, something really bad can hap-
pen.

3 What do you need to submit?

You need to modify pa02.c so that the program prints

REALLY BAD IF YOU SEE THIS

but the program must not call f2 directly.

6

What you need to do is to determine the indexes in name and the values so that the program modifies
the return location to the beginning of f2. Use gdb to do this using a similar technique as we saw in the
background section.

4 Acknowledgments

Some materials in this assignment came from an assignment https://engineering.purdue.edu/ece264/16au/hw/HW15
used in Fall 2016 created by Professor Alex Quinn

7

https://engineering.purdue.edu/ece264/16au/hw/HW15

	Learning Goals
	Background
	Array Indexes
	GDB
	Stack Memory
	Hexidecimal Number System
	Find Return Location
	Buffer Overflow Attack

	What do you need to submit?
	Acknowledgments

