
ECE 264: Advanced C Programming
Programming Assignments - Setup and Submission instructions

This document is basically modifies Sections 3.1 and 3.5 of the readme file of PA01. It uses PA02 as an
example. However, the instructions are the same for all assignments.

1 Setup

Create a Github account (if you do not already have one). This is the account you should use to create and
submit all of your assignments this semester.

Fill the Google form sent earlier and inform the TA and Instructors with your GitHub username by Thursday,
6/13.

Your github account should be your name (or something very close to your name, if someone else has taken
the account of your name). Do not use any funny account name.

Please understand why most companies assign fistname.lastname for their employees’ accounts. Nobody has
time to remember the relationships between account names and real names. The easiest solution is to use
real names for account names.

The teaching staff reserves the right to reject your assignments if your github account does not reflect your
name.

1. Create a git repository for the assignment.

Log in to your Github account. Then Then log in to ECE 264’s Blackboard account, and find the
announcement for PA02 and click the link. This will create a repository on Github for the assignment
(you will follow a similar procedure for all future assignments). Make sure that the repository is called
‘PurdueECE264/PA02-<your username here>’.

2. Clone the repository to develop your assignment

Cloning a repository creates a local copy. Change your directory to whichever directory you want to
create your local copy in, and type:

> git clone git@github.com:PurdueECE264/pa02-<your username here>.git PA02

This will create a subdirectory called PA02, where you will work on your code.

In this command: git clone copies a repository. git@github.com:PurdueECE264/pa02-<your username
here>.git tells git where the server (remote copy) of your code is. PA02 tells git to place the code
in a local directory named PA02

If you change to directory PA02 and list the contents, you should see the files you will need for this
assignment:

> cd PA02

> ls

And you should see all of the files, including the file you will need to edit, pa02.c

3. As you develop your code, you can commit a local version of your changes (just to make sure that you
can back up if you break something) by typing:

> git add <file name that you want to commit>

> git commit -m “< describe your changes>”

1

https://hegden.github.io/ece264/homeworks/PA01.pdf


git add <filename> tells git to “stage” a file for committing. Staging files is useful if you want to
make changes to several files at once and treat them as one logical change to your code. You need to
call git add every time you want to commit a file that you have changed.

git commit tells git to commit a new version of your code including all the changes you staged with
git add. Note that until you execute git commit, none of your changes will have a version associated
with them. You can commit the changes many times. It is a good habit committing often. It is very
reasonable if you commit every ten minutes (or more often).

Do not type git add * because you will likely add unnecessary files to the repository. When your
repository has many unnecessary files, committing becomes slower. If the unnecessary files are large
(such as executables or core files), committing can take several minutes and your assignments may be
considered late.

4. To copy your changes back to Github (to make sure they are saved if your computer crashes, or if you
want to continue developing your code from another machine), type

> git push

If you do not push, the teaching staff cannot see your solutions.

2 Submitting your code

You will use git’s “tagging” functionality to submit assignments. Rather than using any submission system,
you will use git to tag which version of the code you want to grade. To tag the latest version of the code,
type:

> git tag -a <tagname> -m “<describe the tag>”

This will attach a tag with name <tagname> to your latest commit. Once you have a version of your
program that you want to submit, run the following commands:

> g i t tag −a submiss ion −m "Submission f o r PA02"
> g i t push −−tags

This will create a tag named “submission” and push it to the remote server. The grading system will check
out whichever version you have tagged “submission” and grade that. If you want to update your submission
(and tell the grading system to ignore any previous submissions) type:

> g i t tag −a −f submiss ion −m "Submission f o r PA02"
> g i t push −f −−tags

> git tag -a -f submission -m "Submission for PA02" overwrites the tag on the local repository.

git push -f –tags, overwrites the tag on the local repository.

These commands will overwrite any other tag named submission with one for the current commit. Please
be careful about the following rules:

1. For each assignment, you should tag only one version with “submission”. It is your responsibility to
tag the correct one. You CANNOT request regrading if the grading program retrieves the version that
you do not want to submit.

2. After tagging a version “submission”, any modifications you make to your program WILL NOT BE
GRADED (unless you update the tag, as described above).

3. The grading program starts retrieving soon after the submission deadline of each assignment. If your
repository has no version tagged “submission”, it is considered that you are late.

4. The grading program checks every student’s repository 120 hours after the submission deadline. If a
version tagged “submission” is found, the grading program retrieves and grades that version.

2



5. The grading program uses only the version tagged “submission”. It does NOT choose the higher score
before and after the submission deadline. If a later version has the “submission” tag, this later version
will be graded with the late discount. Thus, you should tag a late version with “submission” only if
you are confident that the new score, with the late discount, is higher.

6. The time of submission is the time when you push the code to the repository, not the time when the
grading program retrieves your code. If you push the code after the deadline, it is late. Even though
you push before the grading program starts retrieving your program, it is still considered late.

7. You should push at least fifteen minutes before the deadline. Give yourself some time to accommodate
unexpected situations (such as slow networks).

8. You are encouraged to tag partially working programs for submission early. In case anything occurs (for
example, your computer is broken), you may receive some points. Please remember to tag improved
version as you make progress.

Do not send your code for grading. The only acceptable way for grading is to tag your
repository.

Under absolutely no circumstance will the teaching staff (instructors and teaching assistants) debug your
programs without your presence. Such email is ALWAYS ignored. If you need help, go to office hours, or
post on Piazza.

3


