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make — Recap and Demo

* Minimal build
— What if only scprod.cpp changes?

« Special targets (.phony)
— E.g. explicit request to clean executes the associated
recipe. What if there is a file named clean?

* Organizing into folders
— Use of variables (built-in (CXX, CFLAGS) and automatic

(5@, $~, $<))

refer to week3 codesamples



Recall Motifs from Week1
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Scientific Software - Motifs

=

noun

1. a decorative image or design, especially a repeated one forming a pattern.
"the colourful hand-painted motifs which adsrnaicwboars”

Similar:  design pattern decoration figure shape logo monogram W

2. a dommant or recurring idea in an artistic work.
"SUBCiSUGan is a recurring motif in the book”

Finite State Machines 8. Dynamic Programming
Combinatorial 9. N-Body (/ particle)
Graph Traversal 10. MapReduce
Structured Grid
_ 11. Backtrack / B&B
Dense Matrix _
12. Graphical Models

Sparse Matrix
EET 13. Unstructured Grid




Matrix Algebra and Efficient
Computation

 Pic source: the Parallel Computing Laboratory at U.C. Berkeley: A
Research Agenda Based on the Berkeley View (2008)
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Figure 4. Temperature Chart of the 13 Motifs. It shows their importance to each of the original
six application areas and then how important each one 1s to the five compelling applications of
Section 3.1. More details on the motifs can be found i (Asanovic, Bodik et al. 2006).
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Matrix Multiplication

* Why study?
— An important “kernel” in many linear algebra algorithms
— Most studied kernel in high performance computing
— Simple. Optimization ideas can be applied to other kernels

« Matrix representation

— Matrix is a 2D array of elements. Computer memory is inherently
linear

— C++ and Fortran allow for definition of 2D arrays. 2D arrays stored
row-wise in C++. Stored column-wise in Fortran. E.g.
// stores 10 arrays of 20 doubles each in C++

double** mat = new double[10][20];




Storage Layout - Example

A(0,0) A(0,1) A(0,2)]
« Matrix (2D):A = |A(1,0) A(1,1) A(1,2)
A(2,0) A(21) A(2,2)]
A(i,j) = A(row, column) refers to the matrix element in the it" row and the
jth column

* Row-wise (/Row-major) storage in memory:

A(0,0)| A(0,1)| A(0,2)[ A(1,0)] A(1,1)| A(1,2)| A(2,0)| A(2,1)| A(2,2)
« Column-wise (/Column-major) storage in memory:
A(0,0)| A(1,0)| A(2,0)[ A(0,1)] A(1,1)| A(2,1)| A(0,2)| A(1,2)| A(2,2)

« Generalizing data storage order for ND: last index changes
fastest in row-major. Last index changes slowest in col-major.



Storage Layout - Exercise

« For a 3D array (tensor) assume A(, j, k) = A(row, column, depth)

A(0,0,0) ... . . A(2,2,2)
Offset; 0O 1 2 . 26

« What is the offset of A(1,2,1) ? as per row-major storage?
« What is the offset of A(1,2,1) ? as per col-major storage?



Matrix Multiplication

« Three fundamental ways to think of the computation

Method 1. Dot product

[1 2 . [5 6] _ [1.5 +2.7 16+28
7 8 35+47 3.6+4.8

Method 2. Linear combination of the columns of the left matrix

R e R AR W REET il

Method 3. Sum of outer products

53X gl=[ls e+ [ sl



Common Computational Patterns

Some patterns that we see while doing Matrix-Matrix product:

1. Dot Product or Inner Product: x7y < Method 1
2. Scalar atimes x plusy: y=y+ax OR saxpy
— Scalar times X: ax " Method 2
3. Matrix times x plus y: y=y+Ax « Method 1
— generalized axpy OR gaxpy
4. Outer product: C=C+xy" «<—— Method 3

5. Matrix times Matrix plus Matrix
- GEMM or generalized matrix multiplication

10



Dot Product

(X1 ] (V1]

Vector x = x_z , Vectory = ylz X;, Vi € R
_x.n_ _y.n_

xT' =[x X2 - xy]

Dot Product or Inner Product: ¢ = xTy xTe R,y €

R™1 cis scalar
V1

X1 X2 - Xp] lyz] = [x1y1 + X272+ +x, V0]

4
E.g.[1 2 3] [5]:[1x4+2x5+3x6]=32
6
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AXPY

« Computing the more common (atimes x plusy): y =y + ax

(V1] (V] [ X1 ]
. )’.2 _ }’.2 ra xlz
| Vn | | Vn | | Xn

%ér i=1 to n
y[i] = y[1i] + a*x[1i]

e Cost? n multiplications and n additions = 2n or 0(n)

12



Matrix Vector Product

« Computing Matrix-Vector product: ¢ =c + Ax, A € R™",x € R™!

C1
Co
Cm

* Rewriting Matrix-Vector product usin

C1
Co
Cm

« Cost? m rows involving dot products and having the form c;

}z
]z

C1
Co

Cm

C1
Co

Cm

_I_

_|_

Ao

aip

a1y
Aoy
=, Amr]
} r
m

C; + xTy (Per row cost = 2r

or O(mr))

X1
X2
xT’

X1
X2

Xr

|

C1
Co

Cm

C1
Co

Cm

_|_

_|_

[ ai1X4 +
ar1X1 +

|Am1Xq T+

A12X7 + +a,x, ]
Az2Xp + +ay,x,
Am2X2 + + A Xy

m’l

g dot products:

alx

T

L Am X ]

(because a;,x € R"), Total cost = 2mr
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Matrix-Matrix Product

« Computing Matrix-Matrix product ¢ = C + AB,A € R™*",B € R™*",

C € RMx1
C11 C12 Cin C11 C12 Cin a1 ai2 A1y bll blZ bln
Crq1 €22 Con | _ | €21 €22 Con 4 az; @22 Azr |[b21 D22 ban
Cm1 ©mz2 Cmn Cm1 ©Pm2 Cmn Am1  4m2 Amr ] Lbyq by, brn
—> — -
! n v T ! n
m m r
« Consider the AB part first.
[ a;; Q12 air |[b11 D1z bin
a1 @22 azr [[b21 D22 byn
Am1  4m2 Amr] Lbry by brn

14



Matrix-Matrix Product

A B
[ a;; M2 - aqe |[bir b1z - by
arq Az -+ Aoy b21 bzz - b2n
Am2 v amr_ -bT1 bT‘Z . an-
ay1b11 + Ai2by+..+agbyey o . aqibyy + agbopt. +ag by
amlbll + am2b21+- . +amrbr1 o amlbln + am2b2n+- . +amrbrn
Notice that:

« subscript on a varies from 1 to m in a column (i.e. m rows exist)
« subscript on a varies from 1 to r in a row (i.e. r columns exist)

Suppose that we treat a; as a vector of size r and there exist m vectors

T T
a;b;y . . aib
! L al € R, b; € R™!

alb; .. abb, i ranges from 1 tom
j ranges from 1 to n 15



Matrix-Matrix Product using Dot
Product Formulation

* Pseudocode - Matrix-Matrix product: ¢ =C + AB, A€ R™",B €

RT'XTL C € Rmxn

for i=1 to m
for j=1 to n
//compute updates involving dot products
Cij - Cij + (,l’lrb]

16



Matrix-Matrix Product using Dot
Product Formulation — Data Access

 Pseudocode - Matrix-Matrix product: ¢ =C + AB, A€ R™",B €
RT'XTL, C € Rmxn

for i=1 to m
for j=1 to n
//compute updates involving dot products
Cij - Cij + (,l’lrb]
 Expanded: .. A B C
for i=1 to m -* pidl
for j=1 to n I _T “-
for k=1 to r —
Cij = Cij + Ay by;

1
vV vVVYV

Elements of C matrix are computed from top to bottom, left to right. Per
element computation, you need a row of A and a column of B.
17



Matrix-Matrix Product using Dot
Product Formulation - Cost

 Pseudocode - Matrix-Matrix product: ¢ =C + AB, A€ R™",B €

RT'XTL, C € Rmxn

for i=1 to m
for j=1 to n
//compute updates involving dot products
— T

« Cost? Cij = Cij +aib;
— Per dot-product cost = 2r (a;,b; € R") Total cost = 2mnr or

o(mnr)

18



Matrix Multiplication Performance

« Experimental Setup
— Xeon Gold 6240C processor
— 2.6GHz clock frequency
— 2 processor chips
— 18 cores per chip

— 2 fused multiply-add units per core & ‘

(can do two double-precision floating point
ops of multiplication and addition

combined per cycle)

— cache subsystem?

19



Matrix Multiplication Performance

C=C+A*B, Square matrices, Dimensions = 2048x2048 (INPUT_SIZE = 2048)

Execution Time Speedup (w.r.t. Python)
Python 2088.75s 1.0
C++ 92.7s 22.53
+-03 41.67s 50.13
+ ik] loop ordering 4.71s 443.47
+ utilizing all cores 0.147s 14209.18

(parallel)

20



Matrix Multiplication Performance

1. Why Ikj loop ordering is fast(er)?

2. Are we utilizing the capabilities of the machine
efficiently?

22



Matrix Multiplication — 1kj loop ordering

for i=0 to 2

for

When
i,k=0:

i=0,k=1:

i=0,k=2:
i=1,k=0:
i=1,k=1:
i=1,k=2:

i=2,k=0:
i=2,k=1:
i=2,k=2:

k=0 to 2
for j=0 to 2

.
Cij = Cij + Qixby;j
€(0,0) += A(0,0) = B(0,0) €(0,1) += A(0,0) * B(0,1) €(0,2) += A(0,0) * B(0,2)
€(0,0) += 4(0,1) * B(1,0) €(0,1) += A(0,1) * B(1,1) €(0,2) += A(0,1) * B(1,2)
€(0,0) += A(0,2) = B(2,0) C(0,1) += A(0,2) x B(2,1) €(0,2) += A(0,2) * B(2,2)
C(1,0) += A(1,0) = B(0,0) €(1,1) += A(1,0) * B(0,1) €(1,2) += A(1,0) = B(0,2)
C(1,0) += A(1,1) * B(1,0) ¢(1,1) += A(1,1) * B(1,1) €(1,2) += A(1,1) = B(1,2)
C(1,0) += A(1,2) * B(2,0) €(1,1) += A(1,2) * B(2,1) C(1,2) += A(1,2) = B(2,2)
C(2,0) += A(2,0) * B(0,0) €(2,1) += A(2,0) * B(0,1) €(2,2) += A(2,0) = B(0,2)
C(2,0) += A(2,1) * B(1,0) €(2,1) += A(2,1) *B(1,1) C(2,2) += A(2,1) * B(1,2)
C(2,0) += A(2,2) * B(2,0) C(2,1) += A(2,2) * B(2,1) C(2,2) += A(2,2) * B(2,2)

23



Matrix Multiplication — 1jk loop ordering

for 1i=0 to 2
for j=0 to 2
for k=0 to 2
Cij = Cij + aikbkj

When
i,j=0: €(0,0) += A(0,0) = B(0,0) €(0,0) += A(0,1) * B(1,0) €(0,0) += A(0,2) = B(2,0)

i=0,5j=1: €(0,1) += A(0,0) * B(0,1) €(0,1) += A(0,1) * B(1,1) €(0,1) += A(0,2) * B(2,1)
i=0,9§=2:C(0,2) += A(0,0) * B(0,2) €(0,2) += A(0,1) * B(1,2) €(0,2) += A(0,2) * B(2,2)
i=1,j=0:C(1,0) += A(1,0) * B(0,0) €(1,0) += A(1,1) * B(1,0) C(1,0) += A(1,2) * B(2,0)
i=1,5§=1:C(1,0) += A(1,0) * B(0,1) ¢(1,1) += A(1,1) * B(1,1) C(1,1) += A(1,2) » B(2,1)
i=1,9=2:C(1,0) += A(1,0) * B(0,2) €(1,2) += A(1,1) * B(1,2) C(1,2) += A(1,2) * B(2,2)
i=2,§=0:C€(2,0) += A(2,0) » B(0,0) €(2,0) += A(2,1) * B(1,0) C(2,0) += A(2,2) = B(2,0)
i=2,5=1:C(2,0) += A(2,0) * B(0,1) €(2,1) += A(2,1) * B(1,1) C(2,1) +=A(2,2) = B(2,1)
i=2,§=2:C(2,0) += A(2,0) * B(0,2) C(2,2) += A(2,1) * B(1,2) C(2,2) += A(2,2) * B(2,2)

24



Matrix Multiplication — Data Reuse

* Are we accessing memory location that was read/written
recently?

« Are we accessing memory location that is close to one
that has been accessed?

Detour — Memory Hierarchy

25



The von Neumann Architecture

* Proposed by Jon Von Neumann in 1945

Central Processing Unit

Contral Unit

Impast —> Arithmetic/Logic Unit 1 3
Devica s g

It

Memory Unit

eeeeee

source: wikipedia

« The memory unit stores both instruction and
data

— consequence: cannot fetch instruction and data
simultaneously - von Neumann bottleneck

26



Harvard Architecture

* Origin: Harvard Mark-I machines
« Separate memory for instruction and data

o

£

Instruction (/l—n\ Control /‘—\) Data
memory N—V unit N memory

.
s =

/(o]

— advantage: speed of execution
— disadvantage: complexity

27



Memory Hierarchy

* Most computers today have layers of cache In

between processor and memory SR
processor
4 )
COre | Core | core
Second-level Main Secondary Tape /
shared cache] [ cache }{ memory } Storage / Disk| | Tertiary
Storage
core | core | core \_ -
Latency: 1ns ~5-10ns ~10% ns ~107ns ~10%% ns
Size: few KBs ~106 (MBSs) ~10° (GBs) ~10'? (TBs) [~10%°> (PBs)
N

— Closer to cores exist separate D and | caches

» Where are registers?

28



Memory Hierarchy

« Consequences on programming?
— Data access pattern influences the performance
— Be aware of the principle of locality

pProcessor

core |

core

core

(shared cache]

core

core

core

[S

econd-level
cache

|

Main
memory

|

4 N

Secondary
Storage / Disk|

N /

O )

Tape /
Tertiary
Storage

29



Memory Hierarchy - Terminology

« Hit: data found in a lower-level memory module
— Hit rate: fraction of memory accesses found in lower-level

« Miss: data to be fetched from the next-level (higher)
memory module
— Miss rate: 1 — Hit rate
— Miss penalty: time to replace the data item at the lower-level

O )
processor

4 N

core | core | core

(shared cache]

cache memory Storage / Disk

[Second_|eve|1 { Main } Secondary

core | core | core \_ -

30
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1.

2.

Principle of Locality

If a data item Is accessed, it will tend to be
accessed soon (temporal locality)

— SO0, keep a copy in cache

— E.g. loops

If a data item Is accessed, items in nearby
addresses in memory tend to be accessed
soon (spatial locality)

— Guess the next data item (based on access history)
and fetch it

— E.g. array access, code without any branching

31



Demo — Understanding Cache
Hierarchy

* How to find the details of cache subsystem on a machine?
>cat /sys/devices/system/cpu/cpu@/cache/index@/type
tells whether it is either Data / Instruction cache

— Explore each of the files within to know more.

32



Matrix Multiplication - Throughput

C=C+A*B, Square matrices, Dimensions = 2048x2048 (INPUT_SIZE = 2048)

Peak throughput: 2.6 x 10° x 2 x 18 x 2 = 187.2 Giga floating point operations per
second (FLOPS)

Execution Time

Python 2088.75s
C++ 92.7s
+-03 41.67s

+ ikj loop ordering 4.71s

+ utilizing all cores 0.147s
(parallel)

Speedup (w.r.t. Throughput

Python)
1.0

22.53
50.13
443.47
14209.18

(approximate in
FLOPS)

(2 x 233) / 2088.75
= 8.23 M

185.33 M
412.28 M
3.65 G

116.87 G

®

34
62.3 % of the peak



Costs Involved

Algorithms have two costs:

1. Arithmetic (FLOPS)

2. Communication: moving data between
— levels of a memory hierarchy (sequential case)
— processors over a network (parallel case).

i 10T



Computational Intensity

« Connection between computation and communication cost

« Average number of operations performed per data element
(word) read/written from slow memory

— E.g. Read/written m words from memory. Perform f operations on m
words.

— Computational Intensity q = f/m (flops per word).

« (Goal: we want to maximize the computational intensity
— We want to minimize words moved (read/written)
— We want to minimize messages sent

What is the computational intensity, g, for:
axpy?
Matrix-Vector product?

Matrix-Matrix product? 36



Computational Intensity - axpy

Note: a slightly changed variant of axpy. There are n scalars (x;) here.

1
Cy .
Cn

Read(x) //read x from slow memory
Read(y) //read y from slow memory
Read(c) //read c from slow memory

for i=1 to n
c[i] = c[i] + x[i]*y[i] //do arithmetic on data read

Write(c) //write c back to slow memory

 Number of memory operations = 4n (assuming one word of storage for
each component (x;, y;, c;) of vectors X, y, c resp.)

* Number of arithmetic operations = 2n (one addition and one
multiplication per row.)

e g=2n/4n =1/2

C1
Co

Cn n . ;
* indicates component-
wise multiplication

37



Computational Intensity — matrix-

e ASSUMEe M=r=n =n

Cl C1 [ all a12 . alr | x1 Cl [ allxl + alzxz + "t +a11‘x1‘ ]
C2[_|C2| 4| G A22 -+ Qg |[X2]|_ [C2| | Q21X+ G22%2 T . Fayx
Cm Cm Am1  Am2 Amr | Xr Cm Am1X1 +  Gm2X2 + .. T A Xy

- Number of memory operations = n? + 3n =n? + 0(n)
« Number of arithmetic operations = 2n?
e q=~2n%/n* =2

38



Communication Cost — Matrix-Matrix
Product

//Assume A, B, C are all nxn

e . n2 words read: each row of A read

for i=1 to n

/ .
once for each |.

for j=1 to n

« Assume that row i of A stays in fast

for k=1 to n

/

* loop k=1 to n: read C(i,j) into fast

memory and update in fast memory

« End of loop k=1 to n: write C(i,j)
back to slow memory

* Reading column j of B

memory during j=2, .. J=n

C(i,3)=C(i,3)| + |A(i, k)*B(k,3)

« Reading arow i of A

n? words read and n?words written (each
— entry of C read/written to memory once).
= 2 n?words read/written

total cost = 3 n? +n3 (if the cache size is
n+n+1)

« Suppose there is space in fast memory to hold only one
column of B (in addition to one row of A and 1 element
of C), then every column of B is read in inner two

loops.

39

« Each column of B read ntimes including outer i loop = n®words read
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