
1

CS601: Software Development for

Scientific Computing
Autumn 2023

Week3: Programming Environment (contd),

Makefile

• Integer types: char, short int, int, long
int, long long int, bool

• Float: float, double, long double

• Pointers: handle to addresses

• References: safer than pointers but less
powerful

• void: nothing

C++ standard types

2

C++ standard types

• Compound types

– pointers, structs, enums, arrays, etc.

• Modifiers

– short, long, signed, unsigned.

3

E.g. int x;

1. What is the set of values this variable can take on in C?

-231 to (231 – 1)

2. How should operations on this variable be handled?

integer division is different from floating point divisions
3 / 2 = 1 //integer division

3.0 / 2.0 = 1.5 //floating-point division

3. How much space does this variable take up?

32 bits

4

types / representation

• All built-in types are represented in memory as a
contiguous set of bytes

• Use sizeof() operator to check the size of a type

• e.g. sizeof(int)

C++ standard types – storage space

Data type Number of bytes

char 1

short int 2

int / long int 4

long long int 8

float 4

double 8

long double 12

5

Typedef

– Lets you give alternative names to C data types

– Example:

typedef unsigned char BYTE;

This gives the name BYTE to an unsigned char type.

Now,

BYTE a;
BYTE b;

Are valid statements.

6

Typedef Syntax

typedef <existing_type> <new_type>;

– Resembles a definition/declaration without

initializer;

 E.g. int x;

– Mostly used with user-defined types

7

User-defined Types

– Structures in C/C++ are one way of defining
your own type.

– Arrays are compound types but have the
same type within.

• E.g. A string is an array of char

• int arr[]={1,2,3}; arr is an array of integer
types

– Structures let you compose types with
different basic types within.

8

Structures - Declaration

– Variable definition:
• struct Point p1;

• struct Point{
 float xCoordinate;
 float yCoordinate;
 }p1;

 p1 is a variable (an object) of type struct Point9

struct Point{

float xCoordinate;

float yCoordinate;

};

Type name

Declarations of fields

Structures - Definition

10

typedef struct _Point{

float xCoordinate;

float yCoordinate;

}Point;

Canonical

type name

(long form)

Declarations of fields

New Type name

• Variable definition:

• Point p1;

Structures - Usage

– Structure fields are accessed using dot (.)

operator

– Example:

Point p;

p.xCoordinate = 10.1;

p.yCoordinate = 22.8;

printf(“(x,y)=(%f,%f)\n”,p.xCoordinate,
p.yCoordinate);

11

Structures - Initialization

– Error to initialize fields in declaration;

12

typedef struct{

float xCoordinate = 10.1;

float yCoordinate = 22.8;

}Point;

Data types - quirks

– if no type is given compiler automatically

converts it to int data type.

• signed x;

– long is the only modifier allowed with double

• long double y;

– signed is the default modifier for char and int

– Can’t use any modifiers with float

13

char s[3] = “Hi”;

char *t = “Si”;

int u[3] = {5, 6, 7};

int n=8;

Expression Type Comments

Exercise

s

t

u

&u[0]

char[3] array of 3 chars

char* address of a char

int[3] array of 3 ints

int* address of an int

14

char s[3] = “Hi”;

char *t = “Si”;

int u[3] = {5, 6, 7};

int n=8;

Expression Type Comments

Exercise

*&n

*t

int value at n

char data at address
Held by t

15

• Array initializers:

1. int u[3] = {5, 6};
Is this valid?
If yes, what is the value held in the third element u[2]?

2. int u[3] = {5, 6, 7, 8};
Is this valid?

3. char s1[]=“Hi”;
What is the size of s1? (how many bytes are reserved
for s1)

4. char s2[3]=“Si”;
Is this valid?

Exercise

16

int u[3] = {5, 6, 7};
int* p=u;
p[0]=7;
p[1]=6;
p[2]=5;

//Now, u would contain the numbers in reverse order.
u[0] = 7, u[1]=6, u[2]=5.

char *str = “Hello”;
char* p=str;
p[0]=‘Y’;
//Now, what would str contain?

Exercise

17

Program layout in memory

• How is a program laid out in memory?

– Helpful to debug

– Helpful to create robust software

– Helpful to customize program for embedded systems

18

Program Layout in Memory

• A program’s memory space is divided into
four segments:

1. Text
• source code of the program

2. Data
• Broken into uninitialized and initialized segments; contains space for

global and static variables. E.g. int x = 7; int y;

3. Heap
• Memory allocated using malloc/calloc/realloc/new

4. Stack
• Function arguments, return values, local variables, special registers.

19

Text

Stack

Data
bss/uninitialized

Heap

Program Layout in Memory

initialized

20

(initialized to zero)

Text

Stack

Data
bss/uninitialized

Heap

Program Layout in Memory

initialized

21

0x1234AA00

0x1234AA04

0x1234AA08

0x1234AA0B

• Every memory location is a box

holding data

• Each box has an address

Text

Stack

Data
bss/uninitialized

Heap

Program Layout in Memory

initialized

high address (0x1234ABCD)

low address (0x12340000)

22

(initialized to zero)

Exercise

• Write a C++ program with the following

requirements:

– User should be able to provide the dimension of two

vectors (do not use C++ vectors from STL)

– The program should allocate two vectors of the

required size and initialize them with meaningful data

– The program should compute the scalar product of

the two vectors and print the result

23Nikhil Hegde

CS601

Discussion

Refer to:

• vectorprod_v1.cpp
– What if atoi doesn’t provide accurate status about the value

returned?

• vectorprod_v2.cpp
– C++ stringstreams are an option. Is this code

modular?

• vectorprod_v3.cpp scprod.cpp
– What if there is already built-in function by the

same name?

• vectorprod_v4.cpp scprod_v4.cpp
– Namespaces

Nikhil Hegde

CS601

24

Makefile or makefile

• Is a file, contains instructions for the make program

to generate a target (executable).

• Generating a target involves:
1. Preprocessing (e.g. strips comments, conditional

compilation etc.)

2. Compiling (.c -> .s files, .s -> .o files)

3. Linking (e.g. making printf available)

• A Makefile typically contains directives/instructions

on how to do steps 1, 2, and 3.

25Nikhil Hegde

Makefile - Format

1. Contains series of ‘rules’-

 Example:

2. And Macro/Variable definitions -

target: dependencies
[TAB] system command(s)
Note that it is important that there be a TAB character before the system

command (not spaces).

CFLAGS = -std=c++11 -g -Wall -Wshadow --pedantic -Wvla –Werror

GCC = g++

testgen: testgen.cpp
 g++ testgen.cpp –o testgen

26Nikhil Hegde

“Recipe”“Dependencies or Prerequisite files”

“target file name”

Makefile - Usage

– The ‘make’ command (Assumes that a file by name

‘makefile’ or ‘Makefile’. exists)

• Run the ‘make’ command

27Nikhil Hegde

Makefile - Benefits

• Systematic dependency tracking and building for

projects
– Minimal rebuilding of project

– Rule adding is ‘declarative’ in nature (i.e. more intuitive

to read caveat: make also lets you write equivalent rules that are very

concise and non-intuitive.)

• To know more, please read:
https://www.gnu.org/software/make/manual/html_node/index.ht

ml#Top

28Nikhil Hegde

https://www.gnu.org/software/make/manual/html_node/index.html#Top
https://www.gnu.org/software/make/manual/html_node/index.html#Top

	Slide 1: CS601: Software Development for Scientific Computing Autumn 2023
	Slide 2: C++ standard types
	Slide 3: C++ standard types
	Slide 4: types / representation
	Slide 5: C++ standard types – storage space
	Slide 6: Typedef
	Slide 7: Typedef Syntax
	Slide 8: User-defined Types
	Slide 9: Structures - Declaration
	Slide 10: Structures - Definition
	Slide 11: Structures - Usage
	Slide 12: Structures - Initialization
	Slide 13: Data types - quirks
	Slide 14: Exercise
	Slide 15: Exercise
	Slide 16: Exercise
	Slide 17: Exercise
	Slide 18: Program layout in memory
	Slide 19: Program Layout in Memory
	Slide 20: Program Layout in Memory
	Slide 21: Program Layout in Memory
	Slide 22: Program Layout in Memory
	Slide 23: Exercise
	Slide 24: Discussion
	Slide 25: Makefile or makefile
	Slide 26: Makefile - Format
	Slide 27: Makefile - Usage
	Slide 28: Makefile - Benefits

