CS601: Software Development for Scientific Computing

Autumn 2023
Week2: Real Numbers, Programming Environment, ..

Recap: Toward Scientific Software

Physical process
Mathematical model

Algorithm
$\stackrel{\downarrow}{\text { Software program }}$

Simulation results

Real Numbers \mathbb{R}

- Most scientific software deal with Real numbers. Our toy code dealt with Reals
- Numerical software is scientific software dealing with Real numbers
- Real numbers include rational numbers (integers and fractions), irrational numbers (pi etc.)
- Used to represent values of continuous quantity such as time, mass, velocity, height, density etc.
- Infinitely many values possible
- But computers have limited memory. So, have to use approximations.

Representing Real Numbers

- Real numbers are stored as floating point numbers (floating point system is a scheme to represent real numbers)
- E.g. floating point numbers:
$-\pi=3.14159$,
- 6.03*1023
$-1.60217733^{*} 10^{-19}$

3-digit Calculator

- Suppose base, $b=10$ and
- $x= \pm d_{0} \cdot d_{1} d_{2} \times 10^{e}$ where $\left\{\begin{array}{c}1 \leq d_{0} \leq 9, \\ 0 \leq d_{1} \leq 9, \\ 0 \leq d_{2} \leq 9 \\ -9 \leq e \leq 9\end{array}\right.$,
- precision = length of mantissa
- What is the precision here?
- Exercise: What is the smallest positive number?
- Exercise: What is the largest positive number?
- Exercise: How many numbers can be represented in this format?
- Exercise: When is this representation not enough?

Floating Point System - Fundamentals

- Precision (p) - Length of mantissa
- E.g. $\mathrm{p}=3$ in 1.00×10^{-1}
- Unit roundoff (u) - smallest positive number where the computed value of $1+\mathrm{u}$ is different from 1
- E.g. suppose $\mathrm{p}=4$ and we wish to compute $1.0000+0.0001=1.0001$
- But we can't store the exact result (since $p=4$). We end up storing 1.000.
- So, computed result of $1+\mathrm{u}$ is same as 1
- Suppose we tried adding 0.0005 instead. $1.0000+0.0005=1.0005$ Now, round this: 1.001
$\Rightarrow \mathbf{u}=0.0005$
- Machine epsilon ($\epsilon_{\text {mach }}$) - smallest a-1, where a is the smallest representable number greater than 1
- E.g. consider $1.001-1.000=0.001$.
\Rightarrow usually $\quad \epsilon_{\text {mach }}=2$ * \mathbf{u}

Floating Point System - Fundamentals

- Forward error and backward error
$\operatorname{Comp}(f(x))=\left(1+\epsilon_{1}\right) f\left(\left(1+\epsilon_{2}\right) x\right)$,
where $\epsilon_{i}<=u$ (u is unit roundoff)
$\operatorname{Comp}(f(x))$ is the computed value i.e. machine representable value of $f(x)$.

Suppose ϵ_{2} is zero. Then $\frac{\operatorname{Comp}(f(x))-f(x)}{f(x)}=\epsilon_{1}$

Floating Point System - Fundamentals

- Forward error example

Let $y=\sqrt{2}, z=y^{2}$ and
$y=\sqrt{2}$ implemented as: $y=\operatorname{sqrt}(2)$;
$z=y^{2}$ implemented as: $z=y * y$;
with double precision floating point system
Then forward error, $\frac{\{\operatorname{Comp}(f(x))-f(x)\}}{f(x)}$, can be calculated (note: $f(x)=z=2$, and $\operatorname{Comp}(f(x))=y^{*} y$) $v: 1.41421356237$
z:2
res1=z-2:4.4408920985e-16
res2=res1/z:2.22044604925e-16
Absolute error / relative error

Forward error (also happens to be u, unit rouondoff, for double)

Floating Point System - Fundamentals

- Backward error example

Let $\mathrm{z}=\sin (2 \pi)$. Then forward error is infinity!

Subtract x with a multiple of 2π to make $0 \leq x<2 \pi$ And then compute $\sin (\mathrm{x})$ to get the absolute error for $x \geq 2 \pi$ at most $\mathrm{u}|x|$ (u is unit roundoff)

This is perturbing the argument x (argument reduction). Instead of computing $\sin (x)$ we are computing $\sin ((1+$ $\left.\epsilon_{2}\right) x$). This is example of backward error.

IEEE 754 Floating Point System

- Prescribes single, double, and extended precision formats

Precision	\mathbf{u}	Total bits used (sign, exponent, mantissa)
Single	6×10^{-8}	$32(1,8,23)$
Double	2×10^{-16}	$64(1,11,52)$
Extended	5×10^{-20}	$80(1,15,64)$

single precision binary IEEE 754 floating point format
\square

IEEE 754 Floating Point System

double precision binary IEEE 754 floating point format

- if exponent bits $\mathrm{e}_{1}-\mathrm{e}_{11}$ are not all 1 s or 0 s , then the normalized number

$$
\mathrm{n}= \pm\left(1 . m_{1} m_{2} . . m_{52}\right)_{2} \times 2^{\left(e_{1} e_{2} . . e_{11}\right)_{2}-1023}
$$

- Machine epsilon is the gap between 1 and the next largest floating point number. $2^{-52} \approx 10^{-16}$ for double.
- Exercise: What is minimum positive normalized double number?
- Exercise: What is maximum positive normalized double number?

IEEE 754 Floating Point System

double precision binary IEEE 754 floating point format

Sign Exponent Mantissa

- if exponent bits $\mathrm{e}_{1}-\mathrm{e}_{11}$ are all 0 s , then: the subnormal number

$$
\mathrm{n}= \pm\left(0 . m_{1} m_{2} . . m_{52}\right)_{2} \times 2^{\left(e_{1} e_{2} . . e_{11}\right)_{2}-1022}
$$

- if exponent bits $\mathrm{e}_{1}-\mathrm{e}_{11}$ are all 1 s , then: we can get -inf, NaN , or +inf based on value of $m_{1} m_{2} . . m_{52}$
- If any m is non-zero, the number is NaN (not a number)

IEEE 754 Floating Point - Misc..

- +0, -0, Inf, and NaN -
- Stop your program when you see a NaN (indicative of a bug)
- How to check if a number is NaN ?

$$
\text { if }(x==x) \text { is false }
$$

Exercise: Give an example when you get a NaN ?

- Rounding modes - Round up, Round down, Round to nearest, Round towards zero
- Default is round to nearest. Can be set using compiler options and library methods. Avoid changing rounding modes.
- Can use this to flush out bugs! (change round modes and results shouldn't change drastically).

IEEE 754 Floating Point Arithmetic

- Be wary of comparison
- The special case of $x=y$; if $(y==x)$
- Order is important
- Floating point arithmetic is not associative
- ($x+y$)+z not the same as $x+(y+z)$
- Explicit coding of textbook formula may not be the best option to solve
- $x^{2}-2 p x-q=0 p$ and q are positive: $\mathrm{p}=12345678, \mathrm{q}=1$
- Exercise: find the minimum of the roots.
- Subtracting approximations of two nearby numbers results in a bad approximation of the actual difference catastrophic cancellation

Creating a Program (Program Development Environment)

Implementation

- Tools involved: editors, IDEs, documentation tools ${ }^{\bullet}$ Tools that are involved: preprocessor, compiler, assembler, loader, linker coverage tools, testing harnesses etc.
- How to create a program and execute?
- What is the entry point of execution?
- How to pass arguments from command line?
- How is the program laid out in memory?

Creating a Program

- Create your c++ program file
$\left.\begin{array}{c}\text { Editor } \\ \text { (e.g. Vim) }\end{array}\right]$
.cpp /
.cc $/$
.C
files

Creating a Program

- Preprocess your c++ program file

- removes comments from your program,
- expands \#include statements

Detour - Conditional Compilation

- Set of 6 preprocessor directives and an operator.
- \#if
- \#ifdef
- \#ifndef
- \#elif

- \#else
- \#endif
- Operator 'defined'

\#if

```
#if <constant-expression>
cout<<"CS601"; \longleftarrow_//This line is compiled only if
#endif
<constant-expression> evaluates to a value >0 while preprocessing
```

\#define COMP 0
\#if COMP
cout<<"CS601"
\#endif
No compiler error

\#define COMP 2

\#if COMP
cout<<'cS601"
\#endif
Compiler throws error about missing semicolon

\#ifdef

\#ifdef identifier
 cout<<"CS601"; //This line is compiled only if identifier \#endif is defined before the previous line is seen while preprocessing.

identifier does not require a value to be set. Even if set, does not care about 0 or >0.

\#define COMP	\#define COMP 0	\#define COMP 2
\#ifdef COMP	\#ifdef COMP	\#ifdef COMP
cout<<"CS601"	cout<<"CS601"	cout<<"CS601"
\#endif	\#endif	\#endif

All three snippets throw compiler error about missing semicolon

\#else and \#elif

```
1. #ifdef identifier1
2. cout<<"Summer"
3. #elif identifier2
4. cout<<"Fall";
5. #else
6. cout<<"Spring";
7. #endif
```

//preprocessor checks if identifier1 is defined. if so, line 2 is compiled. If not, checks if identifier2 is defined. If identifier2 is defined, line 4 is compiled. Otherwise, line 6 is compiled.

defined operator

Example:

\#if defined(COMP)
cout<<'spring";
\#endif
//same as if \#ifdef COMP
\#if defined(COMP1) || defined(COMP2) cout<<"Spring"; \#endif
//if either COMP1 or COMP2 is defined, the printf statement is compiled. As with \#ifdef, COMP1 or COMP2 values are irrelevant.

Creating a Program

- Translate your source code to assembly language

Creating a Program

- Translate your assembly code to machine code

Creating a Program

- Get machine code that is part of libraries*

* Depending upon how you get the library code, linker or loader may be involved.

Creating a Program

- Create executable

1. Either copy the corresponding machine code OR
2. Insert a 'stub' code to execute the machine code directly from within the library module

Creating a Program

- g++ 4_8_1.cpp -lm

- g++ is a command to translate your source code (by invoking a collection of tools)
- Above command produces a.out from .cpp file
- -l option tells the linker to 'link' the math library

Creating a Program

- g++: other options
-Wall - Show all warnings
-o myexe - create the output machine code in a file called myexe
-g - Add debug symbols to enable debugging
-c - Just compile the file (don't link) i.e. produce a .o file
-I/home/mydir -Include directory called /home/mydir
-O1, -O2, -O3 - request to optimize code according to various levels

Always check for program correctness when using optimizations

Creating a Program

- The steps just discussed are 'compiled' way of creating a program. E.g. C++
- Interpreted way: alternative scheme where source code is 'interpreted' / translated to machine code piece by piece e.g. MATLAB
- Pros and Cons.
- Compiled code runs faster, takes longer to develop
- Interpreted code runs normally slower, often faster to develop

Creating a Program

- For different parts of the program different strategies may be applicable.
- Mix of compilation and interpreted - interoperability
- In the context of scientific software, the following are of concern:
- Computational efficiency
- Cost of development cycle and maintainability
- Availability of high-performant tools / utilities
- Support for user-defined data types

Creating a Program - Executable

- a. out is a pattern of 0s and 1s laid out in memory - sequence of machine instructions
- How do we execute the program?
-./a.out <optional command line arguments>

Command Line Arguments

bash-4.1\$./a.out
//this is how we ran 4_8_1.cpp (refer: week1_codesample)

- Suppose the initial guess was provided to the program as a command-line argument (instead of accepting user-input from the keyboard):
bash-4.1\$./a.out 999

Command Line Arguments

- bash-4.1\$./a.out 999
- Who is the receiver of those arguments and how? int main(int argc, char* argv[]) \{ //some code here. \}

Identifier	Comments	Value
argc	Number of command-line arguments (including the executable)	2
argv	each command-line argument stored as a string	$\operatorname{argv}[0]=$ "./a.out"" argv[1]="999"

The main Function

- Has the following common appearance (signatures) int main() int main(int argc, char* argv[])
- Every program must have exactly one main function. Program execution begins with this function.
- Return 0 usually means success and failure otherwise
- EXIT_SUCCESS and EXIT_FAILURE are useful definitions provided in the library cstdlib

Functions

- Definition return_type function_name(parameters) \{

```
                                    //statements
    return <optional_value>
```

\}

- Function name and parameters form the signature of the function
- In a program, you can have multiple functions with same name but with differing signatures - function overloading
- Example:

```
double product(double a, double b) {
    double result = a*b;
    return result;
}
```


Functions - Declaration and Definition

- Declaration: return_type function_name(parameters);
- Function definition provided the complete details of the internals of the function. Declaration just indicates the signature.
- Declaration exposes the interface to the function

$$
\begin{aligned}
& \text { double product(double a, double b); //OK } \\
& \text { double product(double, double); //OK }
\end{aligned}
$$

Functions - usage

- Calling: function_name(parameters);
- Example:

```
double product(double a, double b) {
    double result = a*b;
    return result;
}
int main() {
    double retVal, pi=3.14, ran=1.2;
    retVal = product(pi,ran);
    cout<<retVal;
}
```


Functions - usage

- Calling: function_name(parameters);
- Example:

```
double product(double a, double b) {
    double result = a*b;
    return result;
    }
```

 int main() \{
 At least the signature of function must be visible at this line
\longrightarrow retVal = product(pi,ran); cout<<retVal;
\}

Functions - usage

- Calling: function_name(parameters);
- Example: double product(double a, double b) \{ double result = a*b; return result;
\}
int main() \{
double retVal, pi=3.14, ran=1.2;
\longrightarrow retVal = product(pi,ran);
cout<<retVal;
\}

Functions - usage

- Calling: function_name(parameters);
- Example: double product(double a, double b) \{ double result = a*b; return result;
\}
int main() \{
double retVal, pi=3.14, ran=1.2;
\longrightarrow retVal = product(pi,ran);
cout<<retVal;
\}

Functions - usage

- Calling: function_name(parameters);
- Example: double product(double\& a, double\& b) \{ double result = a*b; return result;
\}
int main() \{
double retVal, pi=3.14, ran=1.2;
pi and ran are NOT copied to a and b Pass-by-reference \longrightarrow retVal $=$ product(pi,ran); cout<<retVal;
\}

Reference Variables

- Example: int $n=10$;
int \&re=n;
- Like pointer variables. re is constant pointer to n (re cannot change its value). Another name for n.
- Can change the value of n through re though

Exercise: give an example of a variable that is declared but not defined

