
1

CS601: Software Development for

Scientific Computing
Autumn 2023

Week2: Real Numbers, Programming

Environment, ..

2

Recap: Toward Scientific Software

 Physical process

 Mathematical model

 Algorithm

 Software program

 Simulation results

3

Real Numbers ℝ

• Most scientific software deal with Real numbers.

Our toy code dealt with Reals

– Numerical software is scientific software dealing with

Real numbers

• Real numbers include rational numbers (integers

and fractions), irrational numbers (pi etc.)

• Used to represent values of continuous quantity

such as time, mass, velocity, height, density etc.

– Infinitely many values possible

– But computers have limited memory. So, have to use

approximations.

4

Representing Real Numbers

• Real numbers are stored as floating point numbers
(floating point system is a scheme to represent real numbers)

• E.g. floating point numbers:
– 𝜋 = 3.14159,

– 6.03*1023

– 1.60217733*10-19

mantissa

(number ranges from:

1 to b OR 1/b to 1)

base

(e.g. base 10, 8, 2, 16)

exponent

General format: ±x × be

3-digit Calculator

• Suppose base, b=10 and

• 𝑥 = ±𝑑0. 𝑑1𝑑2 × 10𝑒 where ൞

1 ≤ 𝑑0 ≤ 9,
0 ≤ 𝑑1 ≤ 9,

0≤𝑑2≤9
−9≤𝑒≤9

• precision = length of mantissa

– What is the precision here?

• Exercise: What is the smallest positive number?

• Exercise: What is the largest positive number?

• Exercise: How many numbers can be represented in this

format?

• Exercise: When is this representation not enough? 5

6

Floating Point System - Fundamentals

• Precision (p) - Length of mantissa
– E.g. p=3 in 1.00 x 10-1

• Unit roundoff (u) – smallest positive number where the

computed value of 1+u is different from 1
– E.g. suppose p=4 and we wish to compute 1.0000+ 0.0001=1.0001

– But we can’t store the exact result (since p=4). We end up storing

1.000.

– So, computed result of 1+u is same as 1

– Suppose we tried adding 0.0005 instead. 1.0000+0.0005=1.0005

Now, round this: 1.001

u =0.0005

• Machine epsilon (ϵmach) – smallest a-1, where a is the

smallest representable number greater than 1
– E.g. consider 1.001 – 1.000 = 0.001.

usually ϵmach = 2 * u

Floating Point System - Fundamentals

• Forward error and backward error

Comp(f(x)) = (1+ϵ1)f((1+ ϵ2)x),

 where ϵi <= u (u is unit roundoff)

Comp(f(x)) is the computed value i.e. machine

representable value of f(x).

Suppose ϵ2 is zero. Then Comp(f(x)) – f(x)

 f(x)

7

= ϵ1

Absolute error /

relative error

Forward error

(also happens to be u,
unit rouondoff, for

double)

Floating Point System - Fundamentals

• Forward error example

Let 𝑦 = 2, 𝑧 = 𝑦2 and

 𝑦 = 2 implemented as: y = sqrt(2);

 𝑧 = 𝑦2 implemented as: z = y * y;

with double precision floating point system

Then forward error,
𝐶𝑜𝑚𝑝 𝑓 𝑥 – 𝑓 𝑥

𝑓(𝑥)
, can be calculated

(note: f(x) = z = 2, and Comp(f(x)) = y*y)

8

{

Floating Point System - Fundamentals

• Backward error example

Let z = sin(2𝜋). Then forward error is infinity!

Subtract x with a multiple of 2𝜋 to make 0 ≤ 𝑥 < 2𝜋

And then compute sin(x) to get the absolute error for

𝑥 ≥ 2𝜋 at most u 𝑥 (u is unit roundoff)

This is perturbing the argument x (argument reduction).
Instead of computing sin(x) we are computing sin((1+
ϵ2)x). This is example of backward error.

9

IEEE 754 Floating Point System

• Prescribes single, double, and extended

precision formats

10

Precision u Total bits used (sign, exponent, mantissa)

Single 6x10-8 32 (1, 8, 23)

Double 2x10-16 64 (1, 11, 52)

Extended 5x10-20 80 (1, 15, 64)

0 1 …………………8 9……………………………………………… 31

Sign Exponent Mantissa

single precision binary IEEE 754 floating point format

IEEE 754 Floating Point System

• if exponent bits e1-e11 are not all 1s or 0s, then the

normalized number

 n = ± 1. 𝑚1𝑚2. . 𝑚52 2 × 2 𝑒1𝑒2..𝑒11 2 −1023

• Machine epsilon is the gap between 1 and the next

largest floating point number. 2−52 ≈ 10−16 for double.

• Exercise: What is minimum positive normalized double

number?

• Exercise: What is maximum positive normalized double

number? 11

0 1…………………..11 1………………………………………………52

Sign Exponent Mantissa

double precision binary IEEE 754 floating point format

IEEE 754 Floating Point System

• if exponent bits e1-e11 are all 0s, then:

 the subnormal number

 n = ± 𝟎. 𝑚1𝑚2. . 𝑚52 2 × 2 𝑒1𝑒2..𝑒11 2 −102𝟐

• if exponent bits e1-e11 are all 1s, then:

 we can get –inf, NaN, or +inf based on value of 𝑚1𝑚2. . 𝑚52

– If any m is non-zero, the number is NaN (not a number)

12

0 1…………………..11 1………………………………………………52

Sign Exponent Mantissa

double precision binary IEEE 754 floating point format

IEEE 754 Floating Point – Misc..

• +0, -0, Inf, and NaN –

– Stop your program when you see a NaN (indicative of a bug)

– How to check if a number is NaN?

if (x == x) is false

Exercise: Give an example when you get a NaN?

• Rounding modes – Round up, Round down, Round to

nearest, Round towards zero

– Default is round to nearest. Can be set using compiler options

and library methods. Avoid changing rounding modes.

– Can use this to flush out bugs! (change round modes and

results shouldn’t change drastically).

13

IEEE 754 Floating Point Arithmetic

• Be wary of comparison

– The special case of x=y; if(y == x)

• Order is important

– Floating point arithmetic is not associative

• (x+y)+z not the same as x+(y+z)

• Explicit coding of textbook formula may not be the best

option to solve

– 𝑥2 − 2𝑝𝑥 − 𝑞 = 0 p and q are positive: p=12345678, q=1

– Exercise: find the minimum of the roots.

• Subtracting approximations of two nearby numbers

results in a bad approximation of the actual difference –

catastrophic cancellation 14

Creating a Program (Program

Development Environment)

15

Implementation Toolchain Executable

• Tools that are involved:

preprocessor, compiler,

assembler, loader, linker

Tools that are involved:

Profilers, debuggers, code

coverage tools, testing

harnesses etc.

• Tools involved: editors,

IDEs, documentation tools

• How to create a program and execute?

• What is the entry point of execution?

• How to pass arguments from

command line?

• How is the program laid out in memory?

Creating a Program

• Create your c++ program file

16

.cpp files.cpp /

.cc /

.C

files

Creating a Program

• Preprocess your c++ program file

17

.cpp /

.cc /

.C

files

 .cpp /

 .cc /

 .C

 files

• removes comments from your program,

• expands #include statements

• Set of 6 preprocessor directives and an operator.

• #if

• #ifdef

• #ifndef

• #elif

• #else

• #endif

• Operator ‘defined’

Detour - Conditional Compilation

18Nikhil Hegde

#if <constant-expression>
cout<<“CS601”;
#endif

#define COMP 0
#if COMP
cout<<“CS601”
#endif

#if

19

#define COMP 2
#if COMP
cout<<“CS601”
#endif

No compiler error Compiler throws error about

missing semicolon

//This line is compiled only if

<constant-expression> evaluates

to a value > 0 while preprocessing

Nikhil Hegde

#ifdef identifier
cout<<“CS601”;
#endif

identifier does not require a value to be set. Even if set,
does not care about 0 or > 0.

#ifdef

20

#define COMP 2
#ifdef COMP
cout<<“CS601”
#endif

All three snippets throw compiler error about missing semicolon

#define COMP
#ifdef COMP
cout<<“CS601”
#endif

#define COMP 0
#ifdef COMP
cout<<“CS601”
#endif

//This line is compiled only if identifier

is defined before the previous line is

seen while preprocessing.

Nikhil Hegde

1. #ifdef identifier1
2. cout<<“Summer”
3. #elif identifier2
4. cout<<“Fall”;
5. #else
6. cout<<“Spring”;
7. #endif

//preprocessor checks if identifier1 is defined. if so,
line 2 is compiled. If not, checks if identifier2 is
defined. If identifier2 is defined, line 4 is compiled.
Otherwise, line 6 is compiled.

#else and #elif

21Nikhil Hegde

Example:

#if defined(COMP)
cout<<“Spring”;
#endif

//same as if #ifdef COMP

#if defined(COMP1) || defined(COMP2)
cout<<“Spring”;
#endif

//if either COMP1 or COMP2 is defined, the printf statement is
compiled. As with #ifdef, COMP1 or COMP2 values are
irrelevant.

defined operator

22Nikhil Hegde

Creating a Program

• Translate your source code to assembly language

23

.cpp /

.cc /

.C

files

 .cpp /

 .cc /

 .C

 files

.s

files

Creating a Program

• Translate your assembly code to machine code

24

.cpp /

.cc /

.C

files

 .cpp /

 .cc /

 .C

 files

.s

files

.o

files

Creating a Program

• Get machine code that is part of libraries*

25

.cpp /

.cc /

.C

files

 .cpp /

 .cc /

 .C

 files

.s

files

.o

files

* Depending upon how you get the library code, linker or loader may be involved.

Creating a Program

• Create executable

1. Either copy the corresponding machine code OR

2. Insert a ‘stub’ code to execute the machine code

directly from within the library module
26

.cpp /

.cc /

.C

files

 .cpp /

 .cc /

 .C

 files

.s

files

.o

files

Creating a Program

• g++ 4_8_1.cpp -lm

– g++ is a command to translate your source code (by

invoking a collection of tools)

• Above command produces a.out from .cpp file

– -l option tells the linker to ‘link’ the math library 27

.cpp /

.cc /

.C

files

 .cpp /

 .cc /

 .C

 files

.s

files

.o

files

Creating a Program

• g++: other options

-Wall - Show all warnings

-o myexe - create the output machine code in a file called myexe

-g - Add debug symbols to enable debugging

-c - Just compile the file (don’t link) i.e. produce a .o file

-I/home/mydir -Include directory called /home/mydir

-O1, -O2, -O3 – request to optimize code according to various levels

Always check for program correctness when using

optimizations

28

Creating a Program

• The steps just discussed are ‘compiled’ way of

creating a program. E.g. C++

• Interpreted way: alternative scheme where

source code is ‘interpreted’ / translated to

machine code piece by piece e.g. MATLAB

• Pros and Cons.

– Compiled code runs faster, takes longer to develop

– Interpreted code runs normally slower, often faster to

develop

29

Creating a Program

• For different parts of the program different

strategies may be applicable.

– Mix of compilation and interpreted – interoperability

• In the context of scientific software, the following

are of concern:

– Computational efficiency

– Cost of development cycle and maintainability

– Availability of high-performant tools / utilities

– Support for user-defined data types

30

Creating a Program - Executable

• a.out is a pattern of 0s and 1s laid out in memory

– sequence of machine instructions

• How do we execute the program?

– ./a.out <optional command line arguments>

31

bash-4.1$./a.out

//this is how we ran 4_8_1.cpp (refer: week1_codesample)

• Suppose the initial guess was provided to the
program as a command-line argument (instead of
accepting user-input from the keyboard):

bash-4.1$./a.out 999

Command Line Arguments

32

• bash-4.1$./a.out 999

• Who is the receiver of those arguments and how?

Command Line Arguments

Identifier Comments Value

argc Number of command-line

arguments (including the

executable)

2

argv each command-line argument

stored as a string

argv[0]=“./a.out”
argv[1]=“999”

33

int main(int argc, char* argv[]) {
 //some code here.
}

The main Function

• Has the following common appearance (signatures)

• Every program must have exactly one main
function. Program execution begins with this

function.

• Return 0 usually means success and failure

otherwise

– EXIT_SUCCESS and EXIT_FAILURE are useful

definitions provided in the library cstdlib
34

int main()

int main(int argc, char* argv[])

Functions

• Definition

• Function name and parameters form the signature of the

function

• In a program, you can have multiple functions with same

name but with differing signatures - function overloading

• Example:

35

return_type function_name(parameters) {

 //statements

 return <optional_value>

}

double product(double a, double b) {

 double result = a*b;

 return result;

}

Functions – Declaration and

Definition

• Declaration:

• Function definition provided the complete details of the

internals of the function. Declaration just indicates the

signature.

– Declaration exposes the interface to the function

36

return_type function_name(parameters);

double product(double a, double b); //OK

double product(double, double); //OK

Functions - usage

• Calling:

• Example:

37

function_name(parameters);

double product(double a, double b) {

 double result = a*b;

 return result;

}

int main() {

 double retVal, pi=3.14, ran=1.2;

 retVal = product(pi,ran);

 cout<<retVal;

}

Functions - usage

• Calling:

• Example:

38

function_name(parameters);

double product(double a, double b) {

 double result = a*b;

 return result;

}

int main() {

 double retVal, pi=3.14, ran=1.2;

 retVal = product(pi,ran);

 cout<<retVal;

}

At least the signature of

function must be visible

at this line

Functions - usage

• Calling:

• Example:

39

function_name(parameters);

double product(double a, double b) {

 double result = a*b;

 return result;

}

int main() {

 double retVal, pi=3.14, ran=1.2;

 retVal = product(pi,ran);

 cout<<retVal;

}

pi and ran are copied to

a and b

Functions - usage

• Calling:

• Example:

40

function_name(parameters);

double product(double a, double b) {

 double result = a*b;

 return result;

}

int main() {

 double retVal, pi=3.14, ran=1.2;

 retVal = product(pi,ran);

 cout<<retVal;

}

pi and ran are copied to

a and b

Pass-by-value

Functions - usage

• Calling:

• Example:

41

function_name(parameters);

double product(double& a, double& b) {

 double result = a*b;

 return result;

}

int main() {

 double retVal, pi=3.14, ran=1.2;

 retVal = product(pi,ran);

 cout<<retVal;

}

pi and ran are NOT

copied to a and b

Pass-by-reference

Reference Variables

• Example:

• Like pointer variables. re is constant pointer to n (re

cannot change its value). Another name for n.

– Can change the value of n through re though

42

int n=10;

int &re=n;

Exercise: give an example of a variable that is declared but not defined

	Slide 1: CS601: Software Development for Scientific Computing Autumn 2023
	Slide 2: Recap: Toward Scientific Software
	Slide 3: Real Numbers double-struck cap R
	Slide 4: Representing Real Numbers
	Slide 5: 3-digit Calculator
	Slide 6: Floating Point System - Fundamentals
	Slide 7: Floating Point System - Fundamentals
	Slide 8: Floating Point System - Fundamentals
	Slide 9: Floating Point System - Fundamentals
	Slide 10: IEEE 754 Floating Point System
	Slide 11: IEEE 754 Floating Point System
	Slide 12: IEEE 754 Floating Point System
	Slide 13: IEEE 754 Floating Point – Misc..
	Slide 14: IEEE 754 Floating Point Arithmetic
	Slide 15: Creating a Program (Program Development Environment)
	Slide 16: Creating a Program
	Slide 17: Creating a Program
	Slide 18: Detour - Conditional Compilation
	Slide 19: #if
	Slide 20: #ifdef
	Slide 21: #else and #elif
	Slide 22: defined operator
	Slide 23: Creating a Program
	Slide 24: Creating a Program
	Slide 25: Creating a Program
	Slide 26: Creating a Program
	Slide 27: Creating a Program
	Slide 28: Creating a Program
	Slide 29: Creating a Program
	Slide 30: Creating a Program
	Slide 31: Creating a Program - Executable
	Slide 32: Command Line Arguments
	Slide 33: Command Line Arguments
	Slide 34: The main Function
	Slide 35: Functions
	Slide 36: Functions – Declaration and Definition
	Slide 37: Functions - usage
	Slide 38: Functions - usage
	Slide 39: Functions - usage
	Slide 40: Functions - usage
	Slide 41: Functions - usage
	Slide 42: Reference Variables
	Slide 43: C++ standard types
	Slide 44: C++ standard types
	Slide 45: types / representation
	Slide 46: C++ standard types – storage space
	Slide 47: Typedef
	Slide 48: Typedef Syntax
	Slide 49: User-defined Types
	Slide 50: Structures - Declaration
	Slide 51: Structures - Definition
	Slide 52: Structures - Usage
	Slide 53: Structures - Initialization
	Slide 54: Data types - quirks
	Slide 55: Exercise
	Slide 56: Exercise
	Slide 57: Exercise
	Slide 58: Exercise
	Slide 59: Program layout in memory
	Slide 60: Program Layout in Memory
	Slide 61: Program Layout in Memory
	Slide 62: Program Layout in Memory
	Slide 63: Program Layout in Memory
	Slide 64: Addresses
	Slide 65: Addresses
	Slide 66: Handles to Addresses

