
1

CS601: Software Development for

Scientific Computing
Autumn 2024

Week2: Real numbers and their program

representation

2

Recap: Scientific Computing

 Physical process

 Mathematical model

 Algorithm

 Software program

 Simulation results

3

Recap: Toward Scientific Software

• Necessary Skills:

1. Understanding the mathematical problem

2. Understanding numerics

3. Designing algorithms and data structures

4. Selecting language and using libraries and tools

5. Verify the correctness of the results

6. Quick learning of new programming languages

4

Recap: Computational Thinking

• Abstractions

– Our “mental” tools

– Includes: choosing right abstractions, operating at

multiple layers of abstractions, and defining relationships

among layers

• Automation

– Our “metal” tools that amplify the power of “mental” tools

– Is mechanizing our abstractions, layers, and relationships

• Need precise and exact notations / models for the “computer”

below (“computer” can be human or machine)

• Computing is the automation of our abstractions

5

Scientific Software - Motifs

1. Finite State Machines

2. Combinatorial

3. Graph Traversal

4. Structured Grid

5. Dense Matrix

6. Sparse Matrix

7. FFT

8. Dynamic Programming

9. N-Body (/ particle)

10. MapReduce

11. Backtrack / B&B

12. Graphical Models

13. Unstructured Grid

6

Real Numbers ℝ

• Most scientific software deal with Real numbers.

Our toy code dealt with Reals

– Numerical software is scientific software dealing with

Real numbers

• Real numbers include rational numbers (integers

and fractions), irrational numbers (pi etc.)

• Used to represent values of continuous quantity

such as time, mass, velocity, height, density etc.

– Infinitely many values possible

– But computers have limited memory. So, have to use

approximations.

7

Representing Real Numbers

• Real numbers are stored as floating point numbers
(floating point system is a scheme to represent real numbers)

• E.g. floating point numbers:
– 𝜋 = 3.14159,

– 6.03*1023

– 1.60217733*10-19

mantissa

(number ranges from:

1 to b OR 1/b to 1

If 1 to b then

𝑥0. 𝑥1𝑥2𝑥3 … 𝑥𝑚−1)

base

(e.g. base 10, 8, 2, 16)

exponent

General format: ±x × be

3-Digit Decimal Representation

• Suppose base, b=10 and

• 𝑥 = ±𝑑0. 𝑑1𝑑2 × 10𝑒 where ൞

1 ≤ 𝑑0 ≤ 9,
0 ≤ 𝑑1, 𝑑2 ≤ 9,

−9≤𝑒≤9

• precision = length of mantissa

– What is the precision here?

• Exercise: What is the smallest positive number?

• Exercise: What is the largest positive number?

• Exercise: How many numbers can be represented in this

format?

• Exercise: When is this representation not enough? 8

9

Floating Point System - Terminology

• Precision (p) - Length of mantissa
– E.g. p=3 in 1.00 x 10-1

• Unit roundoff (u) – smallest positive number where the

computed value of 1+u is different from 1
– E.g. suppose p=4 and we wish to compute 1.0000+ 0.0001=1.0001

– But we can’t store the exact result (since p=4). We end up storing

1.000.

– So, computed result of 1+u is same as 1

– Suppose we tried adding 0.0005 instead. 1.0000+0.0005=1.0005

Now, round this: 1.001

u =0.0005

• Machine epsilon (ϵmach) – smallest a-1, where a is the

smallest representable number greater than 1
– E.g. consider 1.001 – 1.000 = 0.001.

usually ϵmach = 2 * u

Exercise: 3-Digit Binary

Representation

• Suppose base, b=2 and

• 𝑥 = ±𝑏0. 𝑏1𝑏2 × 2𝐸 ,where ቐ
1 ≤ 𝑏0 ≤ 1, 0 𝑖𝑓𝑓 𝑏1, 𝑏2 = 0

0 ≤ 𝑏1, 𝑏2 ≤ 1,
−1 ≤ 𝐸 ≤ 1

• What is the precision?

• What is the unit roundoff?

• What is the machine epsilon?

• What are the range of numbers that can be represented?

10

IEEE 754 Floating Point System

• Prescribes single, double, and extended

precision formats

11

Precision u Total bits used (sign, exponent, mantissa)

Single 6x10-8 32 (1, 8, 23)

Double 2x10-16 64 (1, 11, 52)

Extended 5x10-20 80 (1, 15, 64)

0 1 …………………8 9……………………………………………… 31

Sign Exponent Mantissa

single precision binary IEEE 754 floating point format

IEEE 754 Floating Point Arithmetic

• if exponent bits e1-e11 are not all 1s or 0s, then the

normalized number

 n = ± 1. 𝑚1𝑚2. . 𝑚52 2 × 2 𝑒1𝑒2..𝑒11 2 −1023

• Machine epsilon is the gap between 1 and the next

largest floating point number. 2−52 ≈ 10−16 for double.

• Exercise: What is minimum positive normalized double

number?

• Exercise: What is maximum positive normalized double

number? 12

0 1…………………..11 1………………………………………………52

Sign Exponent Mantissa

double precision binary IEEE 754 floating point format

IEEE 754 Floating Point Arithmetic

• if exponent bits e1-e11 are all 0s, then:

 the subnormal number

 n = ± 𝟎. 𝑚1𝑚2. . 𝑚52 2 × 2 𝑒1𝑒2..𝑒11 2 −102𝟐

• if exponent bits e1-e11 are all 1s, then:

 we can get –inf, NaN, or +inf based on value of 𝑚1𝑚2. . 𝑚52

– If any m is non-zero, the number is NaN (not a number)

13

0 1…………………..11 1………………………………………………52

Sign Exponent Mantissa

double precision binary IEEE 754 floating point format

IEEE 754 Floating Point Arithmetic

• Don’t test for equality

– The special case of x=y; if(y == x)

• Order is important

– Floating point arithmetic is not associative

• (x+y)+z not the same as x+(y+z)

• Explicit coding of textbook formula may not be the best option to

solve

– 𝑥2 − 2𝑝𝑥 − 𝑞 = 0 p and q are positive: p=12345678, q=1

– Exercise: find the minimum of the roots.

• Do intermediate calculations in higher precision than needed for end

result.

• Subtracting approximations of two nearby numbers results in a bad

approximation of the actual difference – catastrophic cancellation

14

Floating Point System - Fundamentals

• Forward error and backward error

Comp(f(x)) = (1+ϵ1)f((1+ ϵ2)x),

 where ϵi <= u (u is unit roundoff)

Comp(f(x)) is the computed value i.e. machine

representable value of f(x).

Suppose ϵ2 is zero. Then Comp(f(x)) – f(x)

 f(x)

15

= ϵ1

Absolute error /

relative error

Forward error

(also happens to be u,
unit roundoff, for

double)

Floating Point System - Fundamentals

• Forward error example

Let 𝑦 = 2, 𝑧 = 𝑦2 and

 𝑦 = 2 implemented as: y = sqrt(2);

 𝑧 = 𝑦2 implemented as: z = y * y;

with double precision floating point system

Then forward error,
𝐶𝑜𝑚𝑝 𝑓 𝑥 – 𝑓 𝑥

𝑓(𝑥)
, can be calculated

(note: f(x) = z = 2, and Comp(f(x)) = y*y)

16

{

Floating Point System - Fundamentals

• Backward error example

Let z = sin(2𝜋). Then forward error is infinity!

Subtract x with a multiple of 2𝜋 to make 0 ≤ 𝑥 < 2𝜋

And then compute sin(x) to get the absolute error for

𝑥 ≥ 2𝜋 at most u 𝑥 (u is unit roundoff)

This is perturbing the argument x (argument reduction).
Instead of computing sin(x) we are computing sin((1+
ϵ2)x). This is example of backward error.

17

IEEE 754 Floating Point – Misc..

• +0, -0, Inf, and NaN –

– Stop your program when you see a NaN (indicative of a bug)

– How to check if a number is NaN?

if (x == x) is false

Exercise: Give an example when you get a NaN?

• Rounding modes – Round up, Round down, Round to

nearest, Round towards zero

– Default is round to nearest. Can be set using compiler options

and library methods. Avoid changing rounding modes.

– Can use this to flush out bugs! (change round modes and

results shouldn’t change drastically).

18

	Slide 1: CS601: Software Development for Scientific Computing Autumn 2024
	Slide 2: Recap: Scientific Computing
	Slide 3: Recap: Toward Scientific Software
	Slide 4: Recap: Computational Thinking
	Slide 5: Scientific Software - Motifs
	Slide 6: Real Numbers double-struck cap R
	Slide 7: Representing Real Numbers
	Slide 8: 3-Digit Decimal Representation
	Slide 9: Floating Point System - Terminology
	Slide 10: Exercise: 3-Digit Binary Representation
	Slide 11: IEEE 754 Floating Point System
	Slide 12: IEEE 754 Floating Point Arithmetic
	Slide 13: IEEE 754 Floating Point Arithmetic
	Slide 14: IEEE 754 Floating Point Arithmetic
	Slide 15: Floating Point System - Fundamentals
	Slide 16: Floating Point System - Fundamentals
	Slide 17: Floating Point System - Fundamentals
	Slide 18: IEEE 754 Floating Point – Misc..

