
1

CS601: Software Development for

Scientific Computing
Autumn 2023

Week15 : Particle Methods (N-Body

Problems), Misc Topics

Nikhil Hegde

Particle (Simulation) Methods

• N-Body Simulation – Problem

System of N-bodies (e.g. galaxies, stars, atoms, light rays

etc.) interacting with each other continuously

– Problem:

• Compute force acting on a body due to all other bodies in the

system

• Determine position, velocity, at various times for each body

– Objective:

• Determine the (approximate) evolution of a system of bodies

interacting with each other simultaneously

Nikhil Hegde 2

Particle (Simulation) Methods

• N-Body Simulation - Examples

– Astrophysical simulation: E.g. each body is a

star/galaxy

https://commons.wikimedia.org/w/index.php?title=File

%3AGalaxy_collision.ogv

– Graphics: E.g. each body is a ray of light emanating

from the light source.

https://www.fxguide.com/fxfeatured/brave-new-hair/

• Here each body is a point on a strand of hair

Nikhil Hegde 3

https://commons.wikimedia.org/w/index.php?title=File%3AGalaxy_collision.ogv
https://commons.wikimedia.org/w/index.php?title=File%3AGalaxy_collision.ogv
https://www.fxguide.com/fxfeatured/brave-new-hair/

N-Body Simulation

• All-pairs Method

– Naïve approach. Compute all pair-wise interactions

• Hierarchical Methods

– Optimize. Reduce the number of pair-wise force

calculations. How? dependence on ‘distant’ particle(s)

can be compressed

– Examples:

• Barnes-Hut

• Fast Multipole Method

Nikhil Hegde 4

N-Body Simulation

• Three fundamental simulation approaches
– Particle-Particle (PP)

– Particle-Mesh (PM)

– Particle-Particle-Particle-Mesh (P3M)

• Hybrid approaches
– Nested Grid Particle Scheme

– Tree Codes

– Tree Code Particle Mesh (TPM)

• Self Consistent Field (SCF), Smoothed-Particle

Hydrodynamics (SPH), Symplectic etc.
Nikhil Hegde 5

Particle-Particle method

• Simplest. Adopts an all-pairs approach.

• State of the system at time t given by particle

positions xi(t) and velocity vi(t) for i=1 to N

{𝑥𝑖 𝑡 , 𝑣𝑖 𝑡 ; 𝑖 = 1, 𝑁}

– Steps:

1. Compute forces

2. Integrate equations of motion

3. Update time counter

Each iteration updates xi(t) and vi(t) to compute

xi(t + Δt) and vi(t + Δt)

Nikhil Hegde 6

Particle-Particle Method

1. Compute forces

Typically: Fi = Fexternal + Fnearest_neighbor+ FN-Body

Nikhil Hegde 7

//initialize forces
for i=1 to N
 Fi = 0

//Accumulate forces
for i=1 to N-1
 for j=i+1 to N
 Fi = Fi + Fij
 Fj = Fj - Fij

Fij is the force on particle i due to particle j

Particle-Particle Method

2. Integrate equations of motion

3. Update time counter

Nikhil Hegde 8

for i=1 to N

 𝑣𝑖
𝑛𝑒𝑤 = 𝑣𝑖

𝑜𝑙𝑑 +
𝐹𝑖

𝑚𝑖
 Δ𝑡 //using a=F/m and v=u+at

 𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖

𝑜𝑙𝑑 + 𝑣𝑖 Δ𝑡

𝑡𝑛𝑒𝑤 = 𝑡𝑜𝑙𝑑 + Δ𝑡

Particle-Particle Method

Nikhil Hegde 9

t=0
while(t<tfinal) {
//initialize forces
 for i=1 to N
 Fi = 0
//Accumulate forces
 for i=1 to N-1
 for j=i+1 to N
 F[i] = F[i] + Fij
 F[j] = F[j] - Fij
//Integrate equations of motion
 for i=1 to N

 𝑣𝑖
𝑛𝑒𝑤 = 𝑣𝑖

𝑜𝑙𝑑 +
𝐹𝑖

𝑚𝑖
 Δ𝑡 //using a=F/m and v=u+at

 𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖

𝑜𝑙𝑑 + 𝑣𝑖 Δ𝑡
// Update time counter

 t = t + Δ𝑡
}

Particle-Particle Method

• Costs (CPU operations)?

Nikhil Hegde 10

t=0
while(t<tfinal) {
//initialize forces
 for i=1 to N
 Fi = 0
//Accumulate forces
 for i=1 to N-1
 for j=i+1 to N
 F[i] = F[i] + Fij
 F[j] = F[j] - Fij
//Integrate equations of motion
 for i=1 to N

 𝑣𝑖
𝑛𝑒𝑤 = 𝑣𝑖

𝑜𝑙𝑑 +
𝐹𝑖

𝑚𝑖
 Δ𝑡 //using a=F/m and v=u+at

 𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖

𝑜𝑙𝑑 + 𝑣𝑖 Δ𝑡
// Update time counter

 t = t + Δ𝑡
}

Particle-Particle Method

• Experimental results (then):

– Intel Delta = 1992 supercomputer, 512 Intel i860s

– 17 million particles, 600 time steps, 24 hours elapsed time

M. Warren and J. Salmon

Gordon Bell Prize at Supercomputing 1992

– Sustained 5.2 Gigaflops = 44K Flops/particle/time step

– 1% accuracy

– Direct method (17 Flops/particle/time step) at 5.2 Gflops would have

taken 18 years, 6570 times longer

11
Courtesy: CS267 Lecture 24 https://sites.google.com/lbl.gov/cs267-spr2019/

Nikhil Hegde

https://sites.google.com/lbl.gov/cs267-spr2019/

Particle-Particle Method

• Experimental results (now):

 Vortex particle simulation of turbulence

– Cluster of 256 NVIDIA GeForce 8800 GPUs

– 16.8 million particles

• T. Hamada, R. Yokota, K. Nitadori. T. Narumi, K. Yasoki et al

• Gordon Bell Prize for Price/Performance at Supercomputing

2009

– Sustained 20 Teraflops, or $8/Gigaflop

Nikhil Hegde 12
Courtesy: CS267 Lecture 24 https://sites.google.com/lbl.gov/cs267-spr2019/

https://sites.google.com/lbl.gov/cs267-spr2019/

Particle-Particle (PP) Method

• Discussion

– Simple/trivial to program

– High computational cost

• Useful when number of particles are small (few thousands) and

• We are interested in close-range dynamics when the particles in

the range contribute significantly to forces

• Constant time step must be replaced with variable time steps

and numerical integration schemes for close-range interactions

Nikhil Hegde 13

N-Body Simulation

• All-pairs Method

– Naïve approach. Compute all pair-wise interactions

• Hierarchical Methods

– Optimize. Reduce the number of pair-wise force

calculations. How? dependence on ‘distant’ particle(s)

can be compressed

– Examples:

• Barnes-Hut

• Fast Multipole Method

Nikhil Hegde 14

Tree Codes

Fi = Fexternal + Fnearest_neighbor+ FN-Body
• Fexternal can be computed for each body independently. O(N)

• Fnearest_neighbor involve computations corresponding to few

nearest neighbors. O(N)

• FN-Body require all-to-all computations. Most expensive. O(N2)

if computed using all-pairs approach.

for(i = 1 to N)

 𝐹𝑖 = σ𝑖≠𝑗 𝐹𝑖𝑗 Fij= force on i from j

Nikhil Hegde 15We can do better.

𝐹𝑖𝑗 =c*v/||v||3 in 3D, 𝐹𝑖𝑗 = c*v/||v||2 in 2D

v = vector from particle i to particle j , ||v|| = length

of v, c = product of masses or charges

Tree Codes: Divide-Conquer Approach

• Consider computing force on earth due to all celestial bodies

➢ Look at the night sky. Number of terms in σ𝑖≠𝑗 𝐹𝑖𝑗 is greater than the

number of visible stars

➢ One “star” could really be the Andromeda galaxy, which contains

billions of real stars. Seems like a lot more work than we thought …

– Idea: Ok to approximate all stars in Andromeda by a single point at its

center of mass (CM) with same total mass (TM)

– Require that D/r be “small enough” (D = size of box containing Andromeda , r

= distance of CM to Earth).
16

Slide contents based on: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Nikhil HegdeIdea is not new. Newton approximated earth and falling apple by CM

https://sites.google.com/lbl.gov/cs267-spr2019/

Tree Codes: Divide-Conquer Approach

– If you are in Andromeda, Milky Way

(the galaxy we are part of) could

appear like a white dot. So, can be

approximated by a point mass.

– Within Andromeda, picture repeats

itself
• As long as D1/r1 is small enough,

stars inside smaller box can be

replaced by their CM to compute

the force on Vulcan

• If you are on Vulcan, another solar

system in Andromeda can be a

white dot.

• Boxes nest in boxes recursively

17

Slide contents based on: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Nikhil Hegde

• New idea: recursively divide the box.

https://sites.google.com/lbl.gov/cs267-spr2019/

Tree Codes: Divide-Conquer Approach

18Nikhil Hegde

• Data structures needed:

– Quad-trees

– Octrees

Background – metric trees

A

B

C

D

E
F

G

2-dimensional space of points

G

FEA C

B D

Binary kd-tree, 1 point /leaf cell

e.g. K-dimensional (kd-), Vantage Point (vp-), quad-trees, octrees, ball-

trees

X

Y

19Nikhil Hegde

G

20

Background - metric trees

Typical use: traverse the tree (often repeatedly), truncate

the traversal at some intermediate node if a domain-

specific criteria is not met.

Cost ???

N21

E.g. Does the distance

from CM to me < D/r?
Input points = {1, 2, … , N} ℝK

Kd-tree

FEA C

B D

Nikhil Hegde

• Data structure to subdivide the plane

– Nodes can contain coordinates of center of box, side

length.

– Eventually also coordinates of CM, total mass, etc.

• In a complete quad tree, each non-leaf node has 4 children

21

Quad Tree

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Nikhil Hegde

https://sites.google.com/lbl.gov/cs267-spr2019/

• Similar data structure for subdividing 3D space

22

Octree or Oct Tree

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Nikhil Hegde

https://sites.google.com/lbl.gov/cs267-spr2019/

• Begin by constructing a tree to hold all the

particles

– Interesting cases have nonuniformly distributed particles

– In a complete tree most nodes would be empty, a waste

of space and time

– Adaptive Quad (Oct) Tree only subdivides space where

particles are located

• For each particle, traverse the tree to compute

force on it

23

Using Quad Tree and Octree

Slide contents based on: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Nikhil Hegde

https://sites.google.com/lbl.gov/cs267-spr2019/

• In practice, have q>1 particles/square; tuning

parameter (code to build data structure on hidden slide)
24

Using Quad Tree and Octree

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Child nodes enumerated counterclockwise

from SW corner, empty ones excluded

Nikhil Hegde

https://sites.google.com/lbl.gov/cs267-spr2019/

Adaptive Quad Tree

X

Y

25Nikhil Hegde

• In practice, #particles/square > 1. tuning

parameter

• Child nodes numbered as per Z-order

numbering

26

Adaptive Quad Tree Construction

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Procedure Quad_Tree_Build

 Quad_Tree = {emtpy}

 for j = 1 to N … loop over all N particles

 Quad_Tree_Insert(j, root) … insert particle j in QuadTree

 endfor

 … At this point, each leaf of Quad_Tree will have 0 or 1 particles

 … There will be 0 particles when some sibling has 1

 Traverse the Quad_Tree eliminating empty leaves … via, say Breadth First Search

Procedure Quad_Tree_Insert(j, n) … Try to insert particle j at node n in Quad_Tree

 if n an internal node … n has 4 children

 - determine which child c of node n contains particle j

 - Quad_Tree_Insert(j, c)

 else if n contains 1 particle … n is a leaf

 - add n’s 4 children to the Quad_Tree

 - move the particle already in n into the child containing it

 - let c be the child of n containing j

 - Quad_Tree_Insert(j, c)

 else … n empty

 - store particle j in node n

 endNikhil Hegde

https://sites.google.com/lbl.gov/cs267-spr2019/

27

Adaptive Quad Tree Construction –

Cost?

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Procedure Quad_Tree_Build

 Quad_Tree = {emtpy}

 for j = 1 to N … loop over all N particles

 Quad_Tree_Insert(j, root) … insert particle j in QuadTree

 endfor

 … At this point, each leaf of Quad_Tree will have 0 or 1 particles

 … There will be 0 particles when some sibling has 1

 Traverse the Quad_Tree eliminating empty leaves … via, say Breadth First Search

Procedure Quad_Tree_Insert(j, n) … Try to insert particle j at node n in Quad_Tree

 if n an internal node … n has 4 children

 - determine which child c of node n contains particle j

 - Quad_Tree_Insert(j, c)

 else if n contains 1 particle … n is a leaf

 - add n’s 4 children to the Quad_Tree

 - move the particle already in n into the child containing it

 - let c be the child of n containing j

 - Quad_Tree_Insert(j, c)

 else … n empty

 - store particle j in node n

 end

≤ N *max cost of Quad_Tree_Insert

≤ max depth of Quad Tree

https://sites.google.com/lbl.gov/cs267-spr2019/

Adaptive Quad Tree Construction –

Cost?

• Max Depth of Tree:

– For uniformly distributed points?

– For arbitrarily distributed points?

• Total Cost = ?

Nikhil Hegde 28

Adaptive Quad Tree Construction –

Cost?

• Max Depth of Tree:

– For uniformly distributed points? = O(log N)

– For arbitrarily distributed points? = O(bN)

• b is number bits used to represent the coordinates

• Total Cost = Ο(b N) or Ο(N ∗ log N)

Nikhil Hegde 29

Barnes-Hut

• Simplest hierarchical method for N-Body

simulation
– "A Hierarchical O(n log n) force calculation algorithm" by J. Barnes and P. Hut,

Nature, v. 324, December 1986

• Widely used in astrophysics

• Accuracy ≥ 1% (good when low accuracy is

desired/acceptable. Often the case in astrophysics simulations.)

Nikhil Hegde 30

Barnes-Hut: Algorithm

(2D for simplicity)

31

1) Build the QuadTree using QuadTreeBuild

 … already described, cost = O(N log N) or O(b N)

2) For each node/subsquare in the QuadTree, compute the

 Center of Mass (CM) and total mass (TM) of all the particles it contains.

3) For each particle, traverse the QuadTree to compute the force on it,

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

https://sites.google.com/lbl.gov/cs267-spr2019/

Barnes-Hut: Algorithm (step 2)

32

Slide based on : CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Goal: Compute the Center of Mass (CM) and Total Mass (TM) of all the
particles in each node of the QuadTree. (TM, CM) = Compute_Mass(root)

(TM, CM) = Compute_Mass(n) //compute the CM and TM of node n
 if n contains 1 particle

 //TM and CM are identical to the particle’s mass and location
 store (TM, CM) at n
 return (TM, CM)
else
 for each child c(j) of n //j = 1,2,3,4
 (TM(j), CM(j)) = Compute_Mass(c(j))
 endfor
 TM = TM(1) + TM(2) + TM(3) + TM(4)
 //the total mass is the sum of the children’s masses
 CM = (TM(1)*CM(1) + TM(2)*CM(2) + TM(3)*CM(3) + TM(4)*CM(4)) / TM
 //the CM is the mass-weighted sum of the children’s centers of mass
 store (TM, CM) at n
 return (TM, CM)
end if

https://sites.google.com/lbl.gov/cs267-spr2019/

Barnes-Hut: Algorithm (step 2 cost)

(2D for simplicity)

33

1) Build the QuadTree using QuadTreeBuild

 … already described, cost = O(N log N) or O(b N)

2) For each node/subsquare in the QuadTree, compute the

 Center of Mass (CM) and total mass (TM) of all the particles it contains.

 … cost = O(number of nodes in the tree) = O(N log N) or O(b N)

3) For each particle, traverse the QuadTree to compute the force on it,

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

https://sites.google.com/lbl.gov/cs267-spr2019/

Barnes-Hut: Algorithm (step 3)

34

Slide based on : CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Goal: Compute the force on each particle by traversing the tree. For each

particle, use as few nodes as possible to compute force, subject to accuracy constraint.

• For each node = square, can approximate force on particles outside the

node due to particles inside node by using the node’s CM and TM

• This will be accurate enough if the node is “far away enough” from the

particle

• Need criterion to decide if a node is far enough from a particle

– D = side length of node

– r = distance from particle to CM of node

• q = user supplied error tolerance < 1

– Use CM and TM to approximate force of node on box if D/r < q

https://sites.google.com/lbl.gov/cs267-spr2019/

Barnes-Hut: Algorithm (step 3)

35

Slide based on : CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

function f = TreeForce(k, n)
 //compute force on particle k due to all particles inside node n (except k)
 f = 0
 if n contains one particle (not k) //evaluate directly
 return f = force computed using direct formula
 else
 r = distance from particle k to CM of particles in n
 D = size of n
 if D/r < q //ok to approximate by CM and TM
 return f = computed approximately using CM and TM
 else //need to look inside node
 for each child c(j) of n //j=1,2,3,4
 f = f + TreeForce (k, c(j))
 end for
 return f
 end if
 end if

//for each particle, traverse the QuadTree to compute the force on it
for k = 1 to N
 f(k) = TreeForce(k, root)
 //compute force on particle k due to all particles inside root (except k)
endfor

https://sites.google.com/lbl.gov/cs267-spr2019/

Barnes-Hut: step 3 example

X

Y

36Nikhil Hegde

• Example: Assume 𝜃 ≥ 1. In practice 𝜃 < 1.

Point 1

Point 1: is 𝐷/𝑟 < 𝜃 ?

𝐷

𝐷
assume: (TM, CM)

𝑟
No. Compute force due to each
child of the root node (i.e.
particles in each quadrant of
the square). Start with child
1: c(1).

What is the force on Point 1 due to all
other points in the box with black-boundary?

Barnes-Hut: step 3 example

X

Y

37Nikhil Hegde

• Example: Assume 𝜃 ≥ 1. In practice 𝜃 < 1.

Point 1

Point 1: is 𝐷/𝑟 < 𝜃 ?

𝐷

𝐷

assume: (TM, CM)

𝑟
Yes. Approximate force due to
each particle contained in the
black-boundary box by the TM
and CM of the box.

What is the force on Point 1 due to all
other points in the box with black-boundary?

Barnes-Hut: step 3 example

X

Y

38Nikhil Hegde

• Example: Assume 𝜃 ≥ 1. In practice 𝜃 < 1.

Point 1

Point 1: is 𝐷/𝑟 < 𝜃 ?

𝐷

𝐷

assume: (TM, CM)

𝑟 Yes. Approximate force due to
each particle contained in the
black-boundary box by the TM
and CM of the box.

What is the force on Point 1 due to all
other points in the box with black-boundary?

Barnes-Hut: step 3 example

X

Y

39Nikhil Hegde

• Example: Assume 𝜃 ≥ 1. In practice 𝜃 < 1.

Point 1

Point 1: is 𝐷/𝑟 < 𝜃 ?

𝐷
𝐷

(TM, CM)

𝑟
Contains 1 particle / leaf
node. Compute force using
direct formula.

What is the force on Point 1 due to all
other points in the box with black-boundary?

Barnes-Hut: step 3 example

X

Y

40Nikhil Hegde

• Example: Assume 𝜃 ≥ 1. In practice 𝜃 < 1.

Point 2

Point 2: is 𝐷/𝑟 < 𝜃 ?

𝐷

𝐷

assume: (TM, CM)
𝑟

Traverse the tree for particle 2.

What is the force on Point 2 due to all
other points in the box with black-boundary?

Barnes-Hut: Algorithm (step 3 cost)

41

Slide based on : CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

• Correctness follows from recursive accumulation

of force from each subtree

– Each particle is accounted for exactly once, whether it

is in a leaf or other node

• Complexity analysis

– Cost of TreeForce(k, root) = O(depth of leaf

containing k in the QuadTree)

– Proof by Example (for q>1):

• For each undivided node = square, (except

one containing k), D/r < 1 < q

• There are at most 3 undivided nodes at each

level of the QuadTree.

–There is O(1) work per node

–Cost = O(level of k)

Total cost = O(Sk level of k) = O(N log N)

Strongly depends on q

https://sites.google.com/lbl.gov/cs267-spr2019/

Barnes-Hut: Algorithm (step 3 cost)

(2D for simplicity)

42

1) Build the QuadTree using QuadTreeBuild

 … already described, cost = O(N log N) or O(b N)

2) For each node/subsquare in the QuadTree, compute the

 Center of Mass (CM) and total mass (TM) of all the particles it contains.

 … cost = O(number of nodes in the tree) = O(N log N) or O(b N)

3) For each particle, traverse the QuadTree to compute the force on it,

 … cost depends on accuracy desired (𝜃) but still

O(N log N) or O(bN)

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

https://sites.google.com/lbl.gov/cs267-spr2019/

N-Body Simulation: Big Picture

• Recall:

Nikhil Hegde 43

t=0
while(t<tfinal) {
//initialize forces

//Accumulate forces
 BH(steps 1 to 3)

//Integrate equations of motion

//Update time counter
 t = t + Δ𝑡
}

Fast Multipole Method (FMM)

• Can we make the complexity independent of the accuracy

parameter (𝜃) ? FMM achieves this.
– "Rapid Solution of Integral Equations of Classical Potential Theory", V. Rokhlin, J.

Comp. Phys. v. 60, 1985 and

– "A Fast Algorithm for Particle Simulations", L. Greengard and V. Rokhlin, J.

Comp. Phys. v. 73, 1987.

• Similar to BH:
– uses QuadTree and the divide-conquer paradigm

• Different from BH:
– Uses more than TM and CM information in a box. So, computation

is expensive and accurate than BH.

– The number of boxes evaluated is fixed for a given accuracy

parameter

– Computes potential and not the Force as in BH

44Nikhil Hegde

Concluding Thoughts

“The future isn’t only in computer science. Computer
science can be key to building many futures.” - Mark Guzdial,

Professor of EECS, Michigan State Univ.

(from blog on creating elite engineers)

https://cacm.acm.org/blogs/blog-cacm/254883-the-role-of-computer-science-in-elite-

higher-education-seeing-the-expert-blind-spot/fulltext

Nikhil Hegde 76

https://cacm.acm.org/blogs/blog-cacm/254883-the-role-of-computer-science-in-elite-higher-education-seeing-the-expert-blind-spot/fulltext
https://cacm.acm.org/blogs/blog-cacm/254883-the-role-of-computer-science-in-elite-higher-education-seeing-the-expert-blind-spot/fulltext

Concluding Thoughts

Nikhil Hegde

77

	Slide 1: CS601: Software Development for Scientific Computing Autumn 2023
	Slide 2: Particle (Simulation) Methods
	Slide 3: Particle (Simulation) Methods
	Slide 4: N-Body Simulation
	Slide 5: N-Body Simulation
	Slide 6: Particle-Particle method
	Slide 7: Particle-Particle Method
	Slide 8: Particle-Particle Method
	Slide 9: Particle-Particle Method
	Slide 10: Particle-Particle Method
	Slide 11: Particle-Particle Method
	Slide 12: Particle-Particle Method
	Slide 13: Particle-Particle (PP) Method
	Slide 14: N-Body Simulation
	Slide 15: Tree Codes
	Slide 16: Tree Codes: Divide-Conquer Approach
	Slide 17: Tree Codes: Divide-Conquer Approach
	Slide 18: Tree Codes: Divide-Conquer Approach
	Slide 19: Background – metric trees
	Slide 20
	Slide 21: Quad Tree
	Slide 22: Octree or Oct Tree
	Slide 23: Using Quad Tree and Octree
	Slide 24: Using Quad Tree and Octree
	Slide 25: Adaptive Quad Tree
	Slide 26: Adaptive Quad Tree Construction
	Slide 27: Adaptive Quad Tree Construction – Cost?
	Slide 28: Adaptive Quad Tree Construction – Cost?
	Slide 29: Adaptive Quad Tree Construction – Cost?
	Slide 30: Barnes-Hut
	Slide 31: Barnes-Hut: Algorithm
	Slide 32: Barnes-Hut: Algorithm (step 2)
	Slide 33: Barnes-Hut: Algorithm (step 2 cost)
	Slide 34: Barnes-Hut: Algorithm (step 3)
	Slide 35: Barnes-Hut: Algorithm (step 3)
	Slide 36: Barnes-Hut: step 3 example
	Slide 37: Barnes-Hut: step 3 example
	Slide 38: Barnes-Hut: step 3 example
	Slide 39: Barnes-Hut: step 3 example
	Slide 40: Barnes-Hut: step 3 example
	Slide 41: Barnes-Hut: Algorithm (step 3 cost)
	Slide 42: Barnes-Hut: Algorithm (step 3 cost)
	Slide 43: N-Body Simulation: Big Picture
	Slide 44: Fast Multipole Method (FMM)
	Slide 76: Concluding Thoughts
	Slide 77: Concluding Thoughts

