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Particle (Simulation) Methods

• N-Body Simulation – Problem

System of N-bodies (e.g. galaxies, stars, atoms, light rays 

etc.) interacting with each other continuously

– Problem:

• Compute force acting on a body due to all other bodies in the 

system 

• Determine position, velocity, at various times for each body

– Objective:

• Determine the (approximate) evolution of a system of bodies 

interacting with each other simultaneously
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Particle (Simulation) Methods

• N-Body Simulation - Examples

– Astrophysical simulation: E.g. each body is a 

star/galaxy 

https://commons.wikimedia.org/w/index.php?title=File

%3AGalaxy_collision.ogv

– Graphics: E.g. each body is a ray of light emanating 

from the light source. 

https://www.fxguide.com/fxfeatured/brave-new-hair/

• Here each body is a point on a strand of hair 
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N-Body Simulation

• All-pairs Method

– Naïve approach. Compute all pair-wise interactions

• Hierarchical Methods

– Optimize. Reduce the number of pair-wise force 

calculations. How? dependence on ‘distant’ particle(s) 

can be compressed  

– Examples:

• Barnes-Hut

• Fast Multipole Method
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N-Body Simulation

• Three fundamental simulation approaches
– Particle-Particle (PP)

– Particle-Mesh (PM)

– Particle-Particle-Particle-Mesh (P3M) 

• Hybrid approaches
– Nested Grid Particle Scheme

– Tree Codes

– Tree Code Particle Mesh (TPM)

• Self Consistent Field (SCF), Smoothed-Particle 

Hydrodynamics (SPH), Symplectic etc. 
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Particle-Particle method

• Simplest. Adopts an all-pairs approach.

• State of the system at time t given by particle 

positions xi(t) and velocity vi(t) for i=1 to N 

{𝑥𝑖 𝑡 , 𝑣𝑖 𝑡 ; 𝑖 = 1, 𝑁}

– Steps:

1. Compute forces

2. Integrate equations of motion

3. Update time counter 

Each iteration updates xi(t) and vi(t) to compute 

xi(t + Δt) and vi(t + Δt) 
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Particle-Particle Method

1. Compute forces

Typically: Fi = Fexternal + Fnearest_neighbor+ FN-Body
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//initialize forces
for i=1 to N 
  Fi = 0

//Accumulate forces
for i=1 to N-1 
  for j=i+1 to N 
 Fi = Fi + Fij
 Fj = Fj - Fij

Fij is the force on particle i due to particle j



Particle-Particle Method

2. Integrate equations of motion

3. Update time counter
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for i=1 to N

 𝑣𝑖
𝑛𝑒𝑤 = 𝑣𝑖

𝑜𝑙𝑑 +
𝐹𝑖

𝑚𝑖
 Δ𝑡 //using a=F/m and v=u+at

 𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖

𝑜𝑙𝑑 + 𝑣𝑖  Δ𝑡

𝑡𝑛𝑒𝑤 = 𝑡𝑜𝑙𝑑 +  Δ𝑡



Particle-Particle Method
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t=0
while(t<tfinal) {
//initialize forces
 for i=1 to N 
    Fi = 0
//Accumulate forces
 for i=1 to N-1 
    for j=i+1 to N 
     F[i] = F[i] + Fij
     F[j] = F[j] - Fij
//Integrate equations of motion
 for i=1 to N

   𝑣𝑖
𝑛𝑒𝑤 = 𝑣𝑖

𝑜𝑙𝑑 +
𝐹𝑖

𝑚𝑖
 Δ𝑡 //using a=F/m and v=u+at

     𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖

𝑜𝑙𝑑 + 𝑣𝑖  Δ𝑡
// Update time counter

 t = t + Δ𝑡
}



Particle-Particle Method

• Costs (CPU operations)?
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t=0
while(t<tfinal) {
//initialize forces
 for i=1 to N 
    Fi = 0
//Accumulate forces
 for i=1 to N-1 
    for j=i+1 to N 
     F[i] = F[i] + Fij
     F[j] = F[j] - Fij
//Integrate equations of motion
 for i=1 to N

   𝑣𝑖
𝑛𝑒𝑤 = 𝑣𝑖

𝑜𝑙𝑑 +
𝐹𝑖

𝑚𝑖
 Δ𝑡 //using a=F/m and v=u+at

     𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖

𝑜𝑙𝑑 + 𝑣𝑖  Δ𝑡
// Update time counter

 t = t + Δ𝑡
}



Particle-Particle Method

• Experimental results (then):

– Intel Delta = 1992 supercomputer, 512 Intel i860s

– 17 million particles, 600 time steps, 24 hours elapsed time

M. Warren and J. Salmon

Gordon Bell Prize at Supercomputing 1992

– Sustained 5.2 Gigaflops = 44K Flops/particle/time step

– 1% accuracy

– Direct method (17 Flops/particle/time step) at 5.2 Gflops would have 

taken 18 years, 6570 times longer

11
Courtesy: CS267 Lecture 24 https://sites.google.com/lbl.gov/cs267-spr2019/
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Particle-Particle Method

• Experimental results (now):

     Vortex particle simulation of turbulence

– Cluster of 256 NVIDIA GeForce 8800 GPUs

– 16.8 million particles

• T. Hamada, R. Yokota, K. Nitadori. T. Narumi, K. Yasoki et al

• Gordon Bell Prize for Price/Performance at Supercomputing 

2009

– Sustained 20 Teraflops,  or $8/Gigaflop
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Particle-Particle (PP) Method

• Discussion

– Simple/trivial to program

– High computational cost

• Useful when number of particles are small (few thousands) and

• We are interested in close-range dynamics when the particles in 

the range contribute significantly to forces 

• Constant time step must be replaced with variable time steps 

and numerical integration schemes for close-range interactions
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N-Body Simulation

• All-pairs Method

– Naïve approach. Compute all pair-wise interactions

• Hierarchical Methods

– Optimize. Reduce the number of pair-wise force 

calculations. How? dependence on ‘distant’ particle(s) 

can be compressed  

– Examples:

• Barnes-Hut

• Fast Multipole Method
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Tree Codes

Fi = Fexternal + Fnearest_neighbor+ FN-Body
• Fexternal can be computed for each body independently. O(N)

• Fnearest_neighbor involve computations corresponding to few 

nearest neighbors. O(N)

• FN-Body require all-to-all computations. Most expensive. O(N2) 

if computed using all-pairs approach. 

for(i = 1 to N)

 𝐹𝑖  =  σ𝑖≠𝑗 𝐹𝑖𝑗 Fij= force on i from j

Nikhil Hegde 15We can do better.

𝐹𝑖𝑗 =c*v/||v||3   in 3D, 𝐹𝑖𝑗 = c*v/||v||2   in 2D  

v = vector from particle i to particle j , ||v|| = length 

of v, c = product of masses or charges  



Tree Codes: Divide-Conquer Approach

• Consider computing force on earth due to all celestial bodies

➢ Look at the night sky. Number of terms in σ𝑖≠𝑗 𝐹𝑖𝑗 is greater than the 

number of visible stars

➢ One “star” could really be the Andromeda galaxy, which contains 

billions of real stars. Seems like a lot more work than we thought … 

– Idea: Ok to approximate all stars in Andromeda by a single point at its 

center of mass (CM) with same total mass (TM)

– Require that D/r be “small enough” (D = size of box containing Andromeda , r 

= distance of CM to Earth).
16

Slide contents based on: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Nikhil HegdeIdea is not new. Newton approximated earth and falling apple by CM
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Tree Codes: Divide-Conquer Approach

– If you are in Andromeda, Milky Way 

(the galaxy we are part of) could 

appear like a white dot. So, can be 

approximated by a point mass.

– Within Andromeda, picture repeats 

itself
• As long as D1/r1 is small enough, 

stars inside smaller box can be 

replaced by their CM to compute 

the force on Vulcan

• If you are on Vulcan, another solar 

system in Andromeda can be a 

white dot. 

• Boxes nest in boxes recursively

17

Slide contents based on: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Nikhil Hegde

• New idea: recursively divide the box.

https://sites.google.com/lbl.gov/cs267-spr2019/


Tree Codes: Divide-Conquer Approach
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• Data structures needed:

– Quad-trees

– Octrees



Background – metric trees

A

B

C

D

E
F

G

2-dimensional space of points

G

FEA C

B D

Binary kd-tree, 1 point /leaf cell

e.g. K-dimensional (kd-), Vantage Point (vp-), quad-trees, octrees, ball-

trees

X

Y
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G

20

Background - metric trees

Typical use: traverse the tree (often repeatedly), truncate 

the traversal at some intermediate node if a domain-

specific criteria is not met.

Cost ???

N21

E.g. Does the distance 

from CM to me < D/r?
Input points = {1, 2, … , N}   ℝK

Kd-tree

FEA C

B D
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• Data structure to subdivide the plane

– Nodes can contain coordinates of center of box, side 

length.

– Eventually also coordinates of CM, total mass, etc.

• In a complete quad tree, each non-leaf node has 4 children

21

Quad Tree

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/
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• Similar data structure for subdividing 3D space

22

Octree or Oct Tree

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Nikhil Hegde

https://sites.google.com/lbl.gov/cs267-spr2019/


• Begin by constructing a tree to hold all the 

particles

– Interesting cases have nonuniformly distributed particles

– In a complete tree most nodes would be empty, a waste 

of space and time

– Adaptive Quad (Oct) Tree only subdivides space where 

particles are located 

• For each particle, traverse the tree to compute 

force on it

23

Using Quad Tree and Octree

Slide contents based on: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/
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• In practice, have q>1 particles/square; tuning 

parameter (code to build data structure on hidden slide)
24

Using Quad Tree and Octree

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Child nodes enumerated counterclockwise

from SW corner, empty ones excluded

Nikhil Hegde
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Adaptive Quad Tree

X

Y
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• In practice, #particles/square > 1. tuning 

parameter

• Child nodes numbered as per Z-order 

numbering
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Adaptive Quad Tree Construction

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Procedure Quad_Tree_Build 

    Quad_Tree = {emtpy}

    for j = 1 to N                               … loop over all N particles

         Quad_Tree_Insert(j, root)        … insert particle j in QuadTree

    endfor

    …   At this point, each leaf of Quad_Tree will have 0 or 1 particles 

    …   There will be 0 particles when some sibling has 1

    Traverse the Quad_Tree eliminating empty leaves  … via, say Breadth First Search

Procedure Quad_Tree_Insert(j, n) … Try to insert particle j at node n in Quad_Tree

    if n an internal node              … n has 4 children

        - determine which child c of node n contains particle j

        - Quad_Tree_Insert(j, c)

   else if n contains 1 particle   …  n is a leaf

        - add n’s 4 children to the Quad_Tree

        - move the particle already in n into the child containing it

        - let c be the child of n containing j

        - Quad_Tree_Insert(j, c)

    else                                         …  n empty 

        - store particle j in node n

    endNikhil Hegde
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Adaptive Quad Tree Construction – 

Cost?

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Procedure Quad_Tree_Build 

    Quad_Tree = {emtpy}

    for j = 1 to N                               … loop over all N particles

         Quad_Tree_Insert(j, root)        … insert particle j in QuadTree

    endfor

    …   At this point, each leaf of Quad_Tree will have 0 or 1 particles 

    …   There will be 0 particles when some sibling has 1

    Traverse the Quad_Tree eliminating empty leaves  … via, say Breadth First Search

Procedure Quad_Tree_Insert(j, n) … Try to insert particle j at node n in Quad_Tree

    if n an internal node              … n has 4 children

        - determine which child c of node n contains particle j

        - Quad_Tree_Insert(j, c)

   else if n contains 1 particle   …  n is a leaf

        - add n’s 4 children to the Quad_Tree

        - move the particle already in n into the child containing it

        - let c be the child of n containing j

        - Quad_Tree_Insert(j, c)

    else                                         …  n empty 

        - store particle j in node n

    end

≤ N *max cost of Quad_Tree_Insert

≤ max depth of Quad Tree

https://sites.google.com/lbl.gov/cs267-spr2019/


Adaptive Quad Tree Construction – 

Cost?

• Max Depth of Tree:

– For uniformly distributed points?

– For arbitrarily distributed points?

• Total Cost = ?

Nikhil Hegde 28



Adaptive Quad Tree Construction – 

Cost?

• Max Depth of Tree:

– For uniformly distributed points? = O(log N)

– For arbitrarily distributed points? = O(bN) 

• b is number bits used to represent the coordinates 

• Total Cost = Ο( b N) or Ο(N ∗ log N)
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Barnes-Hut

• Simplest hierarchical method for N-Body 

simulation
– "A Hierarchical O(n log n) force calculation algorithm" by J. Barnes and P. Hut, 

Nature, v. 324, December 1986

• Widely used in astrophysics

• Accuracy ≥ 1% (good when low accuracy is 

desired/acceptable. Often the case in astrophysics simulations.)

Nikhil Hegde 30



Barnes-Hut: Algorithm

(2D for simplicity)

31

1) Build the QuadTree using QuadTreeBuild

      … already described, cost = O( N log N) or O(b N)

     

2) For each node/subsquare in the QuadTree, compute the 

    Center of Mass (CM) and total mass (TM)  of all the particles it contains.

3) For each particle, traverse the QuadTree to compute the force on it, 

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

https://sites.google.com/lbl.gov/cs267-spr2019/


Barnes-Hut: Algorithm (step 2)

32

Slide  based on : CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Goal: Compute the Center of Mass (CM) and Total Mass (TM) of all the 
particles in each node of the QuadTree. (TM, CM) = Compute_Mass( root )

(TM, CM)  = Compute_Mass( n )    //compute the CM and TM of node n
  if n contains 1 particle

     //TM and CM are identical to the particle’s mass and location
     store (TM, CM) at n
     return (TM, CM)
else
   for each child c(j) of n  //j = 1,2,3,4
         ( TM(j), CM(j) ) = Compute_Mass( c(j) )
   endfor
   TM = TM(1) + TM(2) + TM(3) + TM(4)  
   //the total mass is the sum of the children’s masses
   CM = ( TM(1)*CM(1) + TM(2)*CM(2) + TM(3)*CM(3) + TM(4)*CM(4) ) / TM
   //the CM is the mass-weighted sum of the children’s centers of mass
   store ( TM, CM ) at n
   return ( TM, CM )
end if

https://sites.google.com/lbl.gov/cs267-spr2019/


Barnes-Hut: Algorithm (step 2 cost)

(2D for simplicity)

33

1) Build the QuadTree using QuadTreeBuild

      … already described, cost = O( N log N) or O(b N)

     

2) For each node/subsquare in the QuadTree, compute the 

    Center of Mass (CM) and total mass (TM)  of all the particles it contains.

    … cost = O(number of nodes in the tree) = O( N log N) or O(b N)

3) For each particle, traverse the QuadTree to compute the force on it, 

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/
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Barnes-Hut: Algorithm (step 3)

34

Slide  based on : CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Goal: Compute the force on each particle by traversing the tree. For each 

particle, use as few nodes as possible to compute force, subject to accuracy constraint. 

• For each node = square, can approximate force on particles outside the 

node due to particles inside node by using the node’s CM and TM

• This will be accurate enough if the node is “far away enough” from the 

particle

• Need criterion to decide if a node is far enough from a particle

– D = side length of node

– r = distance from particle to CM of node

• q = user supplied error tolerance < 1

– Use CM and TM to approximate force of node on box if D/r < q

https://sites.google.com/lbl.gov/cs267-spr2019/


Barnes-Hut: Algorithm (step 3)

35

Slide  based on : CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

function f = TreeForce( k, n )   
    //compute force on particle k due to all particles inside node n (except k)
    f = 0
    if n contains one particle (not k)  //evaluate directly
        return f = force computed using direct formula 
    else
        r = distance from particle k to CM of particles in n
        D = size of n
        if  D/r  < q    //ok to approximate by CM and TM
             return f = computed approximately using CM and TM
        else              //need to look inside node
            for each child c(j) of n //j=1,2,3,4
                   f = f + TreeForce ( k, c(j) )
             end for
             return f
        end if
    end if

//for each particle, traverse the QuadTree to compute the force on it
for k = 1 to N
    f(k) = TreeForce( k, root )   
    //compute force on particle k due to all particles inside root (except k)
endfor

https://sites.google.com/lbl.gov/cs267-spr2019/


Barnes-Hut: step 3 example

X

Y

36Nikhil Hegde

• Example: Assume 𝜃 ≥ 1. In practice 𝜃 <  1. 

Point 1

Point 1: is 𝐷/𝑟 < 𝜃 ? 

𝐷

𝐷
assume: (TM, CM)

𝑟
No. Compute force due to each 
child of the root node (i.e. 
particles in each quadrant of 
the square). Start with child 
1: c(1).

What is the force on Point 1 due to all 
other points in the box with black-boundary? 



Barnes-Hut: step 3 example

X

Y
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• Example: Assume 𝜃 ≥ 1. In practice 𝜃 <  1. 

Point 1

Point 1: is 𝐷/𝑟 < 𝜃 ? 

𝐷

𝐷

assume: (TM, CM)

𝑟
Yes. Approximate force due to 
each particle contained in the 
black-boundary box by the TM 
and CM of the box. 

What is the force on Point 1 due to all 
other points in the box with black-boundary? 



Barnes-Hut: step 3 example

X

Y
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• Example: Assume 𝜃 ≥ 1. In practice 𝜃 <  1. 

Point 1

Point 1: is 𝐷/𝑟 < 𝜃 ? 

𝐷

𝐷

assume: (TM, CM)

𝑟 Yes. Approximate force due to 
each particle contained in the 
black-boundary box by the TM 
and CM of the box. 

What is the force on Point 1 due to all 
other points in the box with black-boundary? 



Barnes-Hut: step 3 example

X

Y
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• Example: Assume 𝜃 ≥ 1. In practice 𝜃 <  1. 

Point 1

Point 1: is 𝐷/𝑟 < 𝜃 ? 

𝐷
𝐷

(TM, CM)

𝑟
Contains 1 particle / leaf 
node. Compute force using 
direct formula.

What is the force on Point 1 due to all 
other points in the box with black-boundary? 



Barnes-Hut: step 3 example

X

Y
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• Example: Assume 𝜃 ≥ 1. In practice 𝜃 <  1. 

Point 2

Point 2: is 𝐷/𝑟 < 𝜃 ? 

𝐷

𝐷

assume: (TM, CM)
𝑟

Traverse the tree for particle 2.

What is the force on Point 2 due to all 
other points in the box with black-boundary? 



Barnes-Hut: Algorithm (step 3 cost)

41

Slide  based on : CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

• Correctness follows from recursive accumulation 

of force from each subtree

– Each particle is accounted for exactly once, whether it 

is in a leaf or other node

• Complexity analysis

– Cost of TreeForce( k, root )  = O(depth of leaf 

containing k in the QuadTree)

– Proof by Example (for q>1): 

• For each undivided node = square,  (except 

one containing k), D/r < 1 < q

• There are at most 3 undivided nodes at each 

level of the QuadTree. 

–There is O(1) work per node

–Cost = O(level of k)

Total cost = O(Sk level of k) = O(N log N) 

Strongly depends on q

https://sites.google.com/lbl.gov/cs267-spr2019/


Barnes-Hut: Algorithm (step 3 cost)

(2D for simplicity)

42

1) Build the QuadTree using QuadTreeBuild

      … already described, cost = O( N log N) or O(b N)

     

2) For each node/subsquare in the QuadTree, compute the 

    Center of Mass (CM) and total mass (TM)  of all the particles it contains.

    … cost = O(number of nodes in the tree) = O( N log N) or O(b N)

3) For each particle, traverse the QuadTree to compute the force on it, 

    … cost depends on accuracy desired (𝜃) but still 

O(N log N) or O(bN)

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

https://sites.google.com/lbl.gov/cs267-spr2019/


N-Body Simulation: Big Picture

• Recall:

Nikhil Hegde 43

t=0
while(t<tfinal) {
//initialize forces
 
//Accumulate forces
 BH(steps 1 to 3) 

//Integrate equations of motion

//Update time counter
 t = t + Δ𝑡
}



Fast Multipole Method (FMM)

• Can we make the complexity independent of the accuracy 

parameter (𝜃) ? FMM achieves this.
– "Rapid Solution of Integral Equations of Classical Potential Theory", V. Rokhlin, J. 

Comp. Phys. v. 60, 1985 and 

– "A Fast Algorithm for Particle Simulations", L. Greengard and V. Rokhlin, J. 

Comp. Phys. v. 73, 1987.

• Similar to BH: 
– uses QuadTree and the divide-conquer paradigm

• Different from BH: 
– Uses more than TM and CM information in a box. So, computation 

is expensive and accurate than BH. 

– The number of boxes evaluated is fixed for a given accuracy 

parameter

– Computes potential and not the Force as in BH

44Nikhil Hegde



Concluding Thoughts

“The future isn’t only in computer science. Computer 
science can be key to building many futures.” - Mark Guzdial, 

Professor of EECS, Michigan State Univ. 

(from blog on creating elite engineers) 

https://cacm.acm.org/blogs/blog-cacm/254883-the-role-of-computer-science-in-elite-

higher-education-seeing-the-expert-blind-spot/fulltext

Nikhil Hegde 76
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Concluding Thoughts

Nikhil Hegde
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