CS601: Software Development for

Scientific Computing
Autumn 2023

Week14 : FEM and Program Representation
(Grids)

Nikhil Hegde

Program Representation — Structured
Grids

« Grid requirements:

— Grid dimension shall not be hardcoded
« Consequence: implementations must define a compile-time
constant

— Grid step size shall not be hardcoded E.g. h=1/3, h=1/5 etc.
» Consequence: can’t define int arr[m][n]; //m,n to be constant expr.

— A grid point shall be identified with cartesian coordinates /
polar coordinates (e.g. with angle and radius from origin)

« Shall be able to generate a structured grid given number of points,
Xi, and eta.

— Shall allow access to any grid point
— Shall allow for implementation of grid operators

Structured Grids - Representation

« Because of regular connectivity between cells

— Cells can be identified with indices (x,y) or (X,y,z) and
neighboring cell info can be obtained.

— How about identifying a cell here?
Given: \
¢ = (“Xi") radius
n = (“Eta”) angle

Compute:

X = (% + f) cos(mn)
1
y = (E + f) sin(mn) 3

class Domain

* We discretize the domain using a grid

class Domain{
public:
generate grid(int m, int n);
Domain(); // constructor

//...

private:
//...
¥

Method GenerateGrid

« What is the shortcoming of the following method?

void Domain: :GenerateGrid(int m, int n) {
if (m <=0 || n<=0)
throw std::invalid _argument(“ERR_generate grid”);
else if((xlen > @) || (ylen > 0)) {
//there already exists a grid! Attempt to create a grid again
delete [] x; delete [] vy;
}
xlen=m;ylen=n; // initialize members
x=new double[xlen*ylen]; y=new double[xlen*ylen];

« Assumes a 2D grid.

Grid Function

 We let a grid function to operate on the grid points
— Example of an operator: numerical differentiation
— Different operations possible
— Note: grid function always operates on some grid.

— Many functions may operate on the same grid.

class GridFn{
public:
/...
private:
Domain* d; //denotes aggregation relationship

//...
}s

Detour: Relationships among Classes

o Dependencies (”USES” E.g. Customer uses a MS Word editor

* Association / Aggregation (“has a”)

association
<> aggregation

E.g. Every course has a name, credits - aggregation
A student registers for course(s) — association
between student and course

* Generalization (“is a”

>
E.g. Apple is a Fruit (Apple and Fruit are

modeled as classes, where Fruit is a super-class
and Apple is a sub-class)

Boundary conditions

« Multiple options: affect the accuracy of the solution

Name Prescription Interpretation
Dirichlet u Fixed
(essential) temperature
Neumann ou/on Energy Flow
(Natural)
Robin (Mixed) ou/on + f(u) Temperature
dependent flow

* How to represent boundary conditions?
— Create a separate Solution class

Solution

e pseudo-code

Domain dom; // create domain

GridFn g(dom); //create grid function to operate on a domain
Solution u(g) //prepare to compute a solution:

u.initcond() //1) set initial conditions

for(int step=0; step<maxsteps; step++) 2) iterate:

{
¥

u.compute(); //2) compute solution repeatedly

u.iterate() or u.solve()

class Solution

* We discretize the domain using a grid

class Solution{
public:
Solution(GridFn* d): sol(d) {}
initcond();
boundarycond();
//.. other member functions?
private:
GridFn* sol;

}s

10

What Is missing?

« Data array?

— We need to make provision for storing the results of
algebraic equations (temperature, displacements,
stress, strain etc.)

« Type of data as template parameter?

— Does the application accept single-precision results?
Double-precision results?

« Operation on subgrids (Box)?

— When a particular grid function is applied only in a
certain region

11

Matrix Algebra and Efficient
Computation

 Pic source: the Parallel Computing Laboratory at U.C. Berkeley: A
Research Agenda Based on the Berkeley View (2008)

2 o = o 'r:)- S » :_:> o £ n O
S 2 B = 2 £ 2 mJd S 2 8 = 2
S 2 2 /® 2 s 3z 0O > ST 2 2@ 3
. = 50 = i R O 0O = FU =
Motif = ’ @ Motif _ = ' M
1 Finite State Mach. 9 N-Body
2 Combinational 10 MapReduce .
3 Graph Traversal 11 Backtrack/B&B
4 Structured Grid 12 Graphical Models
|:>{ 5 Dense Matrix 13 Unstructured Grid
6 Sparse Maftrix Temperature Chart of Need |DB = database

Hot

| 7%5& EPT)-i Warm | Med | Cool ML = machine learning
'vanuc 102 HPC = High Perf. Comp.
Figure 4. Temperature Chart of the 13 Motifs. It shows their importance to each of the original
six application areas and then how important each one 1s to the five compelling applications of
Section 3.1. More details on the motifs can be found i (Asanovic, Bodik et al. 2006).

= Seen earlier

i Next.. e

Faster y=Ax: Discrete Fourier
Transforms (DFT)

* Very widely used
— Image compression (jpeg)
— Signal processing
— Solving Poisson’s Equation

* Represent A with F, a Fourier Matrix that has the following
(remarkable) properties:

— F1lis easy to compute
— Multiplications by F and F is fast. (need to do Fx=y and x= F1y quickly)
* F has complex numbers in its entries.
— Every entry is a power of a single number w such that wr=1
— Any entry of a Fourier matrix can be written using f;; = w¥ (row and
col indices start from 0)

13

Using the 1D FFT for filtering
° Signal = sin(7t) + .5 sin(5t) at 128 points

(o]

Noise = random number bounded by .75

(o]

Filter by zeroing out FFT components < .25

slgnal roalfi{elgnal)) Ima g{F{signal))
1 I . 5O | 50 ‘k
ar - 0 !
-1 F =n -50 w

° sErnalendlze D realfffisignalinsisa)} Umagifisigralinoisef]
1 50 50
o 0 prad e ey ok
-1 50 | 50
@ % Aiterad ¢ T redirymidred; ® imdgAyAarad) ©

1] E0 | 0 *L
::- 1 o ~ o
A} 1 Eof -&0 w

a = 4] a = & L] a = 4]

CS267 Lecture 25
Slide courtesy: James Demmel (CS267, Springl19)

http://www.cs.berkeley.edu/~demmel

Using the 2D FFT for image compression

(o]

Image = 200x320 matrix of values

Compress by keeping largest 2.5% of FFT
components

Similar idea used by jpeg

Original Imags Kaap only largast2 £% of antrlas of 2DFFT
et Tl b 1. i

20 20

e 3 B
i s AL pahe
iy Lo ""::
1 . L,
L - i
e’ ' =
40 40 ol _ ”
a0 a0 ' i
a0 a0
100 & 100
120 120
140 & 140
180 180
180 180
200 - 200
50 100 150 200 250 ann &0 100 150 200 250 ann

Slide courtesy: James Demmel (CS267, Spring19)

http://www.cs.berkeley.edu/~demmel

Y=Fft(X) in MATLAB

« X Input vector
— Size="?
* Y output vector

n
Y(k) = z X(k) w,ﬁ’_l)(k_l) where
=1

2711

ane n

16

Examples: Fourier Matrix

1 1 1 1 1 1 1 1] 1 1 1 1
1 w w? wd 1 i i% i3 1 w w? wi
e 4X4: F, = = oo = i=+-1
4 1 w2 w? w 1 % * ¢ 1 w21 w?
1 w3 w® w?l 11 i3 i® i°l 11 w3 w? wl
— Here, w =i (also denoted as w,=1). w*=1=>1 is a root.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
e 8X8: Fg =
141 1 w w2 w wt w we w/ 1 w w? w wiw wbé w’
Here, w B V2 11 w2wA wé w8 wi0 wi2 i 1 w2wwh 1 w2 w* wé
(= sqrt of i) =
1 W3 W6 W9 W12 W15 W18 W21 1 W3 W6 w W4 W7 W2 W5
1 W4 W8 W12 W16 WZO W24 W28 1 W4 1 W4 1 W4 1 W4
1 W5 WlO W15 W20 W25 W30 W35 1 W5 WZ W7 W4 Wl W6 W3
1 W6 W12 W18 W24 W30 W36 W42 1 W6 W4 WZ 1 W6 W4 WZ
1 W7 W14 W21 W28 W35 W42 W49 1 W7 W6 W5 W4 W3 W2 Wl

17

Faster y=Fx

Example

2

2 3 4 5 6

Column: 1

(Writing columns 1,3,5,7 first and then columns 2,4,6,8)

1111111 |1|1

1 | w3welw w* | w’|w?2lw>
1 w4l (w41 (w41 w?
1 | wolwiw’ w4 wllwew3

1 | ww?we |1l |w2lwd we

1 | wowd w2l |wb|wiw?
1 | w/|we w> w?| w3 |wZwl

18

Example: Faster y=Fx

11111111 |_711 1 1}1 1 1 1°
1 w? Wt W w wowd W
2 w3 wh w5 wb w7
1w whws wiw? w?w 1 w? 1 W W W W WS
1 w2wrwé 1 w?w*wb 1 Wb Wt WP W w W WP
1 1 1 1 -1 -1 —1 -1
1 w3wbw wt w ww? 1 @? w? Wb —w —wd -’ —uT
1 w41l w41 w41l wh 1 wt 1 W] —w? —wb —w? —uWh
I 1 Wb w? w?| - —w - =W _
1 w>w?w’ w* w! wow3 i
1 wow? w2l wh whw? (Partitioning into 4 matrix blocks of size 4x4.)
1 w/wé w>w* w3 wiwl)]
- - 1 1 1 1
_ 1 w w? wd .
Recall: F, = 1 w2 w* wé| wherew =i = w,
1 w3 wé wo
. 14i
Note: in Fg, w = \/_zl = wg

therefore, w§ = w, 19

Example: Faster y=Fx

1 1 1 1 1 1 1
w w2 w3 wrw? wbé w’

w2w*wé 1 w2 w? wb

wil w1 w1l w?
we w2 w/ w? wl wéw3
wew* w2l wé wtw?

w’ we w® wt w3 w2wl

1
1
1
1 w3wébw wt w/ w?w?
1
1
1
1

F,

QuF,

F,

i

_'Q4- I:4

(because w?=w,)

(note: w = % = Wg)

20

We can obtain 8-point DFT from 4-p
obtain the result of y=Fgx, from y,,, 3

Fg

|:4 'Q4 |:4

|:4 _94 |:4

X
T

X3
x5
X7
X2
x4
X6

FFT

oint DFT. But how do we

'F4Xodd and ybottom T |:4)(even

y

—— IEVE - _yl_
— X3 y3
X7 = y7

X2 y2

— X6 y6
—— %8 y8

Note: can be done with 4 multiplications

yl o y4 = ytop + 'Q4 * ybottom

Yiop = FaXoad
ybottom = |:4)(even

/

y5 to y8 = ytop B 'Q'4 * Ybottom

(x,44= €lements at odd numbered indices of vector x)

(X.,en= €lements at even numbered indices of vector x)

21

Divide-and-Conquer FFT (D&C FFT)
FFT(v, ©, m) ... assume m is a power of 2

if m =1 return v[0]

else
Veven = FFT(V[0:2:m-2], © 2, m/2)
Voaa = FFT(V[1:2:m-1], @ 2, m/2) precomputed
w-vec = [@°, o', ... ©w (M21)] /
return [Vgyen + (@-VeC .* Voqq),

Veven - (‘EI-VEC -* Vudd)]

a

Matlab notation: “.*” means component-wise multiply.

Cost: T(m) = 2T(m/2)+O(m) = O(m log m) operations.

Popularized/published by Cooley-Tuckey in 1965.

Slide courtesy: James Demmel, www.cs.berkeley.edu/~demmel

http://www.cs.berkeley.edu/~demmel

: FFT

A A ‘ =h Cooley Tukey
i I I | ‘\‘ F'has a sparse factorization. For n = |6 we have
& l{,f,,,fjti:,iju\;JLt 14 T % . ‘. & " .

FFT - Summary

We will revisit FFT when solving Poisson’s equation
2-slide summary (courtesy: Alex Townsend, Cornell. Source)
1965: THE FAST FOURIER TRANSFORM HOW DOES IT WORK?

, Given equally spaced samples f(0/n), f(1/n),..., f((n—1)/n), find ay so that
s “Mozart could listen to music just once and then write it o
Y 5 o n 1
down from memory without any mistakes™ [vernon, 1996] 6) = Z a2k G/m) by
k=—n/2

Fourier series

A simple example: sound

J £(0/n) B2 Py
: =F| : |, FEp=emGm] h
Shid |Frequencies| f((n—1)/n) A /2-1 R \

“time”’ Hz

sound(t) = 3 cos(2710t + 0.2) + cos(2730t — 0.3) + 2 cos(2w40t + 2.4)

References:
— Refer to Lecture 20 (Spring 2018) at hitps://inst.eecs.berkeley.edu/~cs267/archives.html
— Section 1.4, Matrix Computations, 4" Ed, Golub and Van Loan
— Section 3.5, Linear Algebra and Its Applications, 4t Ed, Gilbert Strang

23

http://pi.math.cornell.edu/~ajt/presentations/TopTenAlgorithms.pdf
https://inst.eecs.berkeley.edu/~cs267/archives.html

	Slide 1: CS601: Software Development for Scientific Computing Autumn 2023
	Slide 2: Program Representation – Structured Grids
	Slide 3: Structured Grids - Representation
	Slide 4: class Domain
	Slide 5: Method GenerateGrid
	Slide 6: Grid Function
	Slide 7: Detour: Relationships among Classes
	Slide 8: Boundary conditions
	Slide 9: Solution
	Slide 10: class Solution
	Slide 11: What is missing?
	Slide 12: Matrix Algebra and Efficient Computation
	Slide 13: Faster y=Ax: Discrete Fourier Transforms (DFT)
	Slide 14: Using the 1D FFT for filtering
	Slide 15: Using the 2D FFT for image compression
	Slide 16: Y=fft(X) in MATLAB
	Slide 17: Examples: Fourier Matrix
	Slide 18: Example: Faster y=Fx
	Slide 19: Example: Faster y=Fx
	Slide 20: Example: Faster y=Fx
	Slide 21: FFT
	Slide 22
	Slide 23: FFT - Summary
	Slide 24: Course Progress..
	Slide 25: Particle (Simulation) Methods
	Slide 26: Particle (Simulation) Methods
	Slide 27: N-Body Simulation
	Slide 28: N-Body Simulation
	Slide 29: Particle-Particle method
	Slide 30: Particle-Particle Method
	Slide 31: Particle-Particle Method
	Slide 32: Particle-Particle Method
	Slide 33: Particle-Particle Method
	Slide 34: Particle-Particle Method
	Slide 35: Particle-Particle Method
	Slide 36: Particle-Particle (PP) Method
	Slide 37: Particle-Mesh (PM) Method
	Slide 38: Particle-Mesh (PM) Method
	Slide 39: Particle-Mesh (PM) Method
	Slide 40: Particle-Mesh (PM) Method
	Slide 41: Particle-Mesh (PM) Method
	Slide 42: Exercise
	Slide 43: N-Body Simulation
	Slide 44: Particle-Particle-Particle-Mesh (P3M)
	Slide 45: N-Body Simulation
	Slide 46: Tree Codes
	Slide 47: Tree Codes: Divide-Conquer Approach
	Slide 48: Tree Codes: Divide-Conquer Approach
	Slide 49: Tree Codes: Divide-Conquer Approach
	Slide 50: Background – metric trees
	Slide 51
	Slide 52: Quad Tree
	Slide 53: Octree or Oct Tree
	Slide 54: Using Quad Tree and Octree
	Slide 55: Using Quad Tree and Octree

