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Program Representation — Structured
Grids

« Grid requirements:

— Grid dimension shall not be hardcoded
« Consequence: implementations must define a compile-time
constant

— Grid step size shall not be hardcoded E.g. h=1/3, h=1/5 etc.
» Consequence: can’t define int arr[m][n]; //m,n to be constant expr.

— A grid point shall be identified with cartesian coordinates /
polar coordinates (e.g. with angle and radius from origin)

« Shall be able to generate a structured grid given number of points,
Xi, and eta.

— Shall allow access to any grid point
— Shall allow for implementation of grid operators



Structured Grids - Representation

« Because of regular connectivity between cells

— Cells can be identified with indices (x,y) or (X,y,z) and
neighboring cell info can be obtained.

— How about identifying a cell here?
Given: \
¢ = (“Xi") radius
n = (“Eta”) angle

Compute:

X = (% + f) cos(mn)
1
y = (E + f) sin(mn) 3



class Domain

* We discretize the domain using a grid

class Domain{
public:
generate grid(int m, int n);
Domain(); // constructor

//...

private:
//...
¥



Method GenerateGrid

« What is the shortcoming of the following method?

void Domain: :GenerateGrid(int m, int n) {
if (m <=0 || n<=0)
throw std::invalid _argument(“ERR_generate grid”);
else if( (xlen > @) || (ylen > 0)) {
//there already exists a grid! Attempt to create a grid again
delete [] x; delete [] vy;
}
xlen=m;ylen=n; // initialize members
x=new double[xlen*ylen]; y=new double[xlen*ylen];

« Assumes a 2D grid.



Grid Function

 We let a grid function to operate on the grid points
— Example of an operator: numerical differentiation
— Different operations possible
— Note: grid function always operates on some grid.

— Many functions may operate on the same grid.

class GridFn{
public:
/...
private:
Domain* d; //denotes aggregation relationship

//...
}s



Detour: Relationships among Classes

o Dependencies (”USES” E.g. Customer uses a MS Word editor

* Association / Aggregation (“has a”)

association
<> aggregation

E.g. Every course has a name, credits - aggregation
A student registers for course(s) — association
between student and course

* Generalization (“is a”

>
E.g. Apple is a Fruit (Apple and Fruit are

modeled as classes, where Fruit is a super-class
and Apple is a sub-class)



Boundary conditions

« Multiple options: affect the accuracy of the solution

Name Prescription Interpretation
Dirichlet u Fixed
(essential) temperature
Neumann ou/on Energy Flow
(Natural)
Robin (Mixed) ou/on + f(u) Temperature
dependent flow

* How to represent boundary conditions?
— Create a separate Solution class



Solution

e pseudo-code

Domain dom; // create domain

GridFn g(dom); //create grid function to operate on a domain
Solution u(g) //prepare to compute a solution:

u.initcond() //1) set initial conditions

for(int step=0; step<maxsteps; step++) 2) iterate:

{
¥

u.compute(); //2) compute solution repeatedly

u.iterate() or u.solve()



class Solution

* We discretize the domain using a grid

class Solution{
public:
Solution(GridFn* d): sol(d) {}
initcond();
boundarycond();
//.. other member functions?
private:
GridFn* sol;

}s
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What Is missing?

« Data array?

— We need to make provision for storing the results of
algebraic equations (temperature, displacements,
stress, strain etc.)

« Type of data as template parameter?

— Does the application accept single-precision results?
Double-precision results?

« Operation on subgrids (Box)?

— When a particular grid function is applied only in a
certain region
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Matrix Algebra and Efficient
Computation

 Pic source: the Parallel Computing Laboratory at U.C. Berkeley: A
Research Agenda Based on the Berkeley View (2008)
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Faster y=Ax: Discrete Fourier
Transforms (DFT)

* Very widely used
— Image compression (jpeg)
— Signal processing
— Solving Poisson’s Equation

* Represent A with F, a Fourier Matrix that has the following
(remarkable) properties:

— F1lis easy to compute
— Multiplications by F and F is fast. (need to do Fx=y and x= F1y quickly)
* F has complex numbers in its entries.
— Every entry is a power of a single number w such that wr=1
— Any entry of a Fourier matrix can be written using f;; = w¥ (row and
col indices start from 0)
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Using the 1D FFT for filtering
° Signal = sin(7t) + .5 sin(5t) at 128 points

(o]

Noise = random number bounded by .75

(o]

Filter by zeroing out FFT components < .25
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Slide courtesy: James Demmel (CS267, Springl19)



http://www.cs.berkeley.edu/~demmel

Using the 2D FFT for image compression

(o]

Image = 200x320 matrix of values

Compress by keeping largest 2.5% of FFT
components

Similar idea used by jpeg
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Slide courtesy: James Demmel (CS267, Spring19)


http://www.cs.berkeley.edu/~demmel

Y=Fft(X) in MATLAB

« X Input vector
— Size="?
* Y output vector

n
Y(k) = z X(k) w,ﬁ’_l)(k_l) where
=1

2711

ane n
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Examples: Fourier Matrix

1 1 1 1 1 1 1 1] 1 1 1 1
1 w w? wd 1 i i% i3 1 w w? wi
e 4X4: F, = = oo = i=+-1
4 1 w2 w? w 1 % * ¢ 1 w21 w?
1 w3 w® w?l 11 i3 i® i°l 11 w3 w? wl
— Here, w =i (also denoted as w,=1). w*=1=>1 is a root.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
e 8X8: Fg =
141 1 w w2 w wt w we w/ 1 w w? w wiw wbé w’
Here, w B V2 11 w2wA wé w8 wi0 wi2 i 1 w2wwh 1 w2 w* wé
(= sqrt of i) =
1 W3 W6 W9 W12 W15 W18 W21 1 W3 W6 w W4 W7 W2 W5
1 W4 W8 W12 W16 WZO W24 W28 1 W4 1 W4 1 W4 1 W4
1 W5 WlO W15 W20 W25 W30 W35 1 W5 WZ W7 W4 Wl W6 W3
1 W6 W12 W18 W24 W30 W36 W42 1 W6 W4 WZ 1 W6 W4 WZ
1 W7 W14 W21 W28 W35 W42 W49 1 W7 W6 W5 W4 W3 W2 Wl
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Faster y=Fx

Example

2

2 3 4 5 6

Column: 1

(Writing columns 1,3,5,7 first and then columns 2,4,6,8)

1111111 |1|1

1 | w3welw w* | w’|w?2lw>
1 w4l (w41 (w41 w?
1 | wolwiw’ w4 wllwew3

1 | ww?we |1l |w2lwd we

1 | wowd w2l |wb|wiw?
1 | w/|we w> w?| w3 |wZwl
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Example: Faster y=Fx

11111111 |_711 1 1}1 1 1 1°
1 w? Wt W w wowd W
2 w3 wh w5 wb w7
1w whws wiw? w?w 1 w? 1 W W W W WS
1 w2wrwé 1 w?w*wb 1 Wb Wt WP W w W WP
1 1 1 1 -1 -1 —1 -1
1 w3wbw wt w ww? 1 @? w? Wb —w —wd -’ —uT
1 w41l w41 w41l wh 1 wt 1 W] —w? —wb —w? —uWh
I 1 Wb w? w?| - —w - =W _
1 w>w?w’ w* w! wow3 i
1 wow? w2l wh whw? (Partitioning into 4 matrix blocks of size 4x4.)
1 w/wé w>w* w3 wiwl ) ]
- - 1 1 1 1
_ 1 w w? wd .
Recall: F, = 1 w2 w* wé| wherew =i = w,
1 w3 wé wo
. 14i
Note: in Fg, w = \/_zl = wg

therefore, w§ = w, 19



Example: Faster y=Fx

1 1 1 1 1 1 1
w w2 w3 wrw? wbé w’

w2w*wé 1 w2 w? wb

wil w1 w1l w?
we w2 w/ w? wl wéw3
wew* w2l wé wtw?

w’ we w® wt w3 w2wl

1
1
1
1 w3wébw wt w/ w?w?
1
1
1
1

F,

QuF,

F,

i

_'Q4- I:4

(because w?=w,)

(note: w = % = Wg)
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We can obtain 8-point DFT from 4-p
obtain the result of y=Fgx, from y,,, 3

Fg

|:4 'Q4 |:4

|:4 _94 |:4

X
T

X3
x5
X7
X2
x4
X6

FFT

oint DFT. But how do we

'F4Xodd and ybottom T |:4)(even

y

—— IEVE - _yl_
— X3 y3
X7 = y7

X2 y2

— X6 y6
—— %8 y8

Note: can be done with 4 multiplications

yl o y4 = ytop + 'Q4 * ybottom

Yiop = FaXoad
ybottom = |:4)(even

/

y5 to y8 = ytop B 'Q'4 * Ybottom

(x,44= €lements at odd numbered indices of vector x)

(X.,en= €lements at even numbered indices of vector x)

21




Divide-and-Conquer FFT (D&C FFT)
FFT(v, ©, m) ... assume m is a power of 2

if m =1 return v[0]

else
Veven = FFT(V[0:2:m-2], © 2, m/2)
Voaa = FFT(V[1:2:m-1], @ 2, m/2) precomputed
w-vec = [@°, o', ... ©w (M21)] /
return [Vgyen + (@-VeC .* Voqq),

Veven - (‘EI-VEC -* Vudd) ]

a

Matlab notation: “.*” means component-wise multiply.

Cost: T(m) = 2T(m/2)+O(m) = O(m log m) operations.

Popularized/published by Cooley-Tuckey in 1965.

Slide courtesy: James Demmel, www.cs.berkeley.edu/~demmel



http://www.cs.berkeley.edu/~demmel

: FFT

A A ‘ =h Cooley Tukey
i I I | ‘\‘ F'has a sparse factorization. For n = |6 we have
& l{,f,,,fjti:,iju\;JLt 14 T % . ‘. & " .

FFT - Summary

We will revisit FFT when solving Poisson’s equation
2-slide summary (courtesy: Alex Townsend, Cornell. Source )
1965: THE FAST FOURIER TRANSFORM HOW DOES IT WORK?

, Given equally spaced samples f(0/n), f(1/n),..., f((n—1)/n), find ay so that
s “Mozart could listen to music just once and then write it o
Y 5 o n 1
down from memory without any mistakes™ [vernon, 1996] 6 ) = Z a2k G/m) by
k=—n/2

Fourier series

A simple example: sound

J £(0/n) B2 Py
: =F| : |, FEp=emGm ] h
Shid |Frequencies| f((n—1)/n) A /2-1 R \

“time”’ Hz

sound(t) = 3 cos(2710t + 0.2) + cos(2730t — 0.3) + 2 cos(2w40t + 2.4)

References:
— Refer to Lecture 20 (Spring 2018) at hitps://inst.eecs.berkeley.edu/~cs267/archives.html
— Section 1.4, Matrix Computations, 4" Ed, Golub and Van Loan
— Section 3.5, Linear Algebra and Its Applications, 4t Ed, Gilbert Strang
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