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Discretization

• All problems with ‘continuous’ quantities don’t 

require discretization
– Most often they do.

• When discretization is done:
– How refined is your discretization depends on certain 

parameters: step-size, cell shape and size. E.g. 
• Size of the largest cell (PDEs in FEM),

• Step size in ODEs 

– Accuracy of the solution is of prime concern

• Discretization always gives an approximate solution. Why?

• Errors may creep in. Must provide an estimate of error. 
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Accuracy

• Discretization error
– Is because of the way discretization is done

– E.g. use more number of rays to minimize discretization 

error in ray tracing

• Solution error
– The equation to be solved influences solution error

– E.g. use more number of iterations in PDEs to minimize 

solution error

• Accuracy of the solution depends on both solution 

and discretization errors

• Accuracy also depends on cell shape
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Error Estimate

• You will have to deal with errors in the presence of 

discretization
– Providing error estimate is necessary

• Apriori error estimate
– Gives insight on whether a discretization strategy is 

suitable or not

– Depends on discretization parameter

– Properties of the (unknown) exact solution

– Error is bound by: Chp  where, C depends on exact 

solution, h is discretization parameter, and p is a fixed 

exponent. Assumption: exact solution is differentiable, 

typically, p+1 times.
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Error Estimate

• Aposteriori error estimate
– Is estimation of the error in computed (Approximate) 

solution and does not depend on information about 

exact solution

– E.g. Sleipner-A oil rig disaster
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Cell Shape

• 2D:

• 3D: triangular or quadrilateral faced. E.g.
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triangle quadrilateral

source: wikipedia

Tetrahedron: 4 vertices, 4 edges, 4   faces

Pyramid: 5 vertices, 8 edges, 4    and 1        face

Triangular prism: 6 vertices, 9 edges, 2    and 3       faces

Hexahedron: 8 vertices, 12 edges, 6        faces  
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Structured Grids

• Have regular connectivity between cells

– i.e. every cell is connected to a predictable number of 

neighbor cells

• Quadrilateral (in 2D) and Hexahedra (in 3D) are 

most common type of cells

• Simplest grid is a rectangular region with 

uniformly divided rectangular cells (in 2D). 
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credits: nanohub.org
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Structured Grids – Problem 

Statement
• Given:

– A geometry

– A mathematical model (partial differential equation (PDE))

– Certain conditions / constraints / known values etc.

• Goal:

1. Discretize into a grid of cells

2. Approximate the PDE on the grid

3. Solve the PDE on the grid 
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PDEs

• consider a function 𝑢 = 𝑢(𝑥, 𝑡) satisfying the 

second-order PDE:

𝐴
𝜕2𝑢

𝜕𝑥2 +𝐵
𝜕2𝑢

𝜕𝑥𝜕𝑡 
+ 𝐶

𝜕2𝑢

𝜕𝑡2 + 𝐷
𝜕𝑢

𝜕𝑥
+ 𝐸

𝜕𝑢

𝜕𝑡
+ 𝐹𝑢 = 𝐺 ,

Where A-G are given functions. This is a PDE of type:

• Parabolic: if 𝐵2 –  4𝐴𝐶 =  0 

• Elliptic: if 𝐵2 –  4𝐴𝐶 <  0

• Hyperbolic: if 𝐵2 –  4𝐴𝐶 >  0
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PDEs

• consider a function 𝑢 = 𝑢(𝑥, 𝑡) satisfying the 

second-order PDE:

𝐴
𝜕2𝑢

𝜕𝑥2 +𝐵
𝜕2𝑢

𝜕𝑥𝜕𝑡 
+ 𝐶

𝜕2𝑢

𝜕𝑡2 + 𝐷
𝜕𝑢

𝜕𝑥
+ 𝐸

𝜕𝑢

𝜕𝑡
+ 𝐹𝑢 = 𝐺 ,

Where A-G are given functions. This is a PDE of type:

• Parabolic: if 𝐵2 –  4𝐴𝐶 =  0 

• Elliptic: if 𝐵2 –  4𝐴𝐶 <  0

• Hyperbolic: if 𝐵2 –  4𝐴𝐶 >  0
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Poisson problem: −Δ𝑢 = 𝑓 

Heat equation: 𝜕𝑡𝑢 − Δ𝑢 = 𝑓 

Wave equation: 𝜕𝑡
2𝑢 − Δ𝑢 = 𝑓 



Approximating PDEs

• Suppose 𝑦 = 𝑓(𝑥) 
– Forward difference approximation to the first-order 

derivative of 𝑓 w.r.t. 𝑥 is:

  
𝑑𝑓

𝑑𝑥
≈

𝑓 𝑥+𝛿𝑥 −𝑓 𝑥

𝛿𝑥
 

– Central difference approximation to the first-order 

derivative of 𝑓 w.r.t. 𝑥 is:

  
𝑑𝑓

𝑑𝑥
≈

𝑓 𝑥+𝛿𝑥 −𝑓 𝑥−𝛿𝑥

2𝛿𝑥
 

– Central difference approximation to the second-order 

derivative of 𝑓 w.r.t. 𝑥 is:

  
𝑑2𝑓

𝑑𝑥2 ≈
𝑓 𝑥+𝛿𝑥 −2𝑓 𝑥 +𝑓 𝑥−𝛿𝑥

𝛿𝑥 2  
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Finite Difference Method



Boundary Conditions and 

Classification

• Essential / Dirichlet

– Value of the dependent variable is specified

– E.g. temperature at the edges of the rod are constant 0°

• Neumann / Natural

– Value of the dependent variable is specified as gradient of 

the dependent variable T e.g. 𝑑𝑇/𝑑𝑥. 

• Mixed / Robin

– value of the dependent variable is specified as a function 

of the gradient. E.g. −𝐾(𝑑𝑇𝑑𝑥)𝑥=𝐿=ℎ𝐴(𝑇−𝑇∞) 
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Boundary and Initial Value Problems

• Boundary Value Problems

– PDE contains independent variables that are only spatial 

in nature (do not contain time). 

– E.g. 
𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑦2 = 0

• Initial Value Problems 

– PDE contains independent variables that are spatial and 

temporal in nature.

– E.g. 
𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
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Definitions (Laplace Equation and 

Poisson Equation) 

• Consider a region of interest 𝑅 in, say, 𝑥𝑦 plane. 

The following is a boundary-value problem:

 
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 𝑓(𝑥, 𝑦) ,where 

  𝑓 is a given function in 𝑅 and

  𝑢 = 𝑔 ,where

  the function 𝑔 tells the value of function 𝑢 at boundary of 𝑅

• if 𝑓 = 0 everywhere, then Eqn. (1) is Laplace’s Equation

• if 𝑓 ≠ 0 somewhere in 𝑅, then Eqn. (1) is Poisson’s Equation
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Application: 1D Heat Equation

𝜕𝑡𝑢 − Δ𝑢 = 𝑓(𝑥) 

• Recall notation: Δ𝑢 = σ𝑘=1
𝑛 𝜕𝑘𝑘𝑢  

𝜕𝑢

𝜕𝑡
= 𝜕𝑡𝑢

• Example: heat conduction through a rod

• 𝑢 = 𝑢(𝑥, 𝑡) is the temperature of the metal bar at 

distance 𝑥 from one end and at time 𝑡

• Goal: find 𝑢, temperature at different points along the 

length of the rod (i.e. from 0 to 𝑙)
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𝑢𝐿 𝑢𝑅

𝑥

𝑙0



1D Heat Equation - Equations

• Example: heat conduction through a rod
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𝑢𝐿 𝑢𝑅

𝑥

𝑙0

𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2  0 < 𝑥 < 𝑙, 𝑡 > 0  𝛼 is thermal diffusivity 

𝑢 0, 𝑡 = 𝑢𝐿 ,

𝑢 𝑙, 𝑡 = 𝑢𝑅 ,

𝑢(𝑥, 0)  =  𝑓(𝑥) 
Initial and boundary conditions

𝑡 > 0
𝑡 > 0

𝑥 𝑙 − 𝑥



1D Heat Equation - Analytical 

Solution

• Analytical Solution:

𝑢 𝑥, 𝑡 = σ𝑚=1
∞ 𝐵𝑚𝑒−𝑚2𝛼𝜋2𝑡/𝑙2

sin(
𝑚𝜋𝑥

𝑙
) ,

   where, 𝐵𝑚 = 2/𝑙 0׬

𝑙
𝑓 𝑠 sin

𝑚𝜋𝑠

𝑙
𝑑𝑠
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But we are interested in a numerical solution



1D Heat Equation - Approximating 

Partial Derivatives

Plugging into 
𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2 :

This is also called as difference equation because you 

are computing difference between successive values of 

a function involving discrete variables.  
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(𝑢𝑗
𝑛+1−𝑢𝑗

𝑛)

𝛿𝑡
= 𝛼

(𝑢𝑗+1
𝑛 −2 𝑢𝑗

𝑛 + 𝑢𝑗−1
𝑛 )

𝛿𝑥 2

Recall: uj
n+1 denotes taking 𝑗 steps along the length of the 

rod (𝑥 axis) and 𝑛 + 1 time steps (𝑡 axis) 



1D Heat Equation - Approximating 

Partial Derivatives

visualizing, 
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2𝛿t
𝛿t 

𝑛 = 2
𝑛 = 1 

j=1 j=2  j=3    j=J-1  j=J

𝛿𝑥 2𝛿𝑥 𝑥 = 𝑙 

𝑡

𝑥
To compute the value of function at blue dot, you need 3 values indicated 

by the red dots – 3-point stencil

𝑢𝑗
𝑛+1 = 𝑟𝑢𝑗−1

𝑛 + 1 − 2𝑟 𝑢𝑗
𝑛 + 𝑟𝑢𝑗+1

𝑛



1D Heat Equation - Computation

visualizing, 

Nikhil Hegde
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2𝛿t
𝛿t 

𝑛 = 2
𝑛 = 1 

j=1 j=2  j=3    j=J-1  j=J

𝛿𝑥 2𝛿𝑥 𝑥 = 𝑙 

𝑡

𝑥
All the red dot values are known. We begin with computing the temp at 

blue dots (after time 𝛿t )

𝑢𝑗
𝑛+1 = 𝑟𝑢𝑗−1

𝑛 + 1 − 2𝑟 𝑢𝑗
𝑛 + 𝑟𝑢𝑗+1

𝑛

Order of computation: start from left and move to the right. Then move up 

(to the next time step, 2𝛿t)  



Explicit Difference Method: Stability

• Given:

• Choose: 𝛿𝑥 = 0.25, 𝛿𝑡 = 0.075 

• Solve.
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𝑙 = 1, 
𝑢 0, 𝑡 = 𝑢𝐿= 0,

𝑢 𝑙, 𝑡 = 𝑢𝑅 = 0,

𝑢(𝑥, 0)  =  𝑓 𝑥  = 𝑥 𝑙 − 𝑥
𝛼 = 1, 



Explicit Difference Method: Stability

• Compute time-step 2 values
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𝑢𝑗
𝑛+1 = 𝑟𝑢𝑗−1

𝑛 + 1 − 2𝑟 𝑢𝑗
𝑛 + 𝑟𝑢𝑗+1

𝑛  

2𝛿t
𝛿t 

𝑛 = 2
𝑛 = 1 

j=1 j=2  j=3 j=4

𝑥=0 𝛿𝑥 2𝛿𝑥 3𝛿𝑥 x=𝑙 

𝑡

𝑥

𝑢1
2 = 𝑢1

1 + 𝑟 𝑢0
1 −2𝑢1

1 +𝑢2
1 =0.06851

𝑢2
2 = 𝑢2

1 + 𝑟 𝑢1
1 −2𝑢2

1 +𝑢3
1 =-0.05173

𝑢3
2 = 𝑢3

1 + 𝑟 𝑢2
1 −2𝑢3

1 +𝑢4
1 =0.06851



Explicit Difference Method: Stability

• Temperature at 2𝛿𝑥 after 2𝛿𝑡 time units went into 

negative! (when the boundaries were held constant at 0)

– Example of instability
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2𝛿t
𝛿t 

𝑛 = 2
𝑛 = 1 

j=1 j=2  j=3 j=4

𝑥=0 𝛿𝑥 2𝛿𝑥 3𝛿𝑥 x=𝑙 

𝑡

𝑥

𝑢2
2 = 𝑢2

1 + 𝑟 𝑢1
1 −2𝑢2

1 +𝑢3
1 =-0.05173

The solution is stable (for heat diffusion problem) only if the approximations 

for 𝑢(𝑥, 𝑡) do not get bigger in magnitude with time



Explicit Difference Method: Stability

• The solution for heat diffusion problem is stable 

only if:

𝑟 ≤
1

2

Therefore, choose your time step in such a way 

that:

𝛿𝑡 ≤
𝛿𝑥2

2𝛼

    

  But this is a severe limitation!
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Implicit Method: Stability

• Overcoming instability: 
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2𝛿t
𝛿t 

𝑛 = 2
𝑛 = 1 

j=1 j=2  j=3    j=J-1  j=J

𝛿𝑥 2𝛿𝑥 𝑥 = 𝑙 

𝑡

𝑥
To compute the value of function at blue dot, you need 6 values indicated 

by the red dots (known) and 3 additional ones (unknown) above

𝑢𝑗
𝑛+1= 𝑢𝑗

𝑛  +  1/2 r( 𝑢𝑗−1
𝑛 − 2𝑢𝑗

𝑛 + 𝑢𝑗+1
𝑛 + 𝑢𝑗−1

𝑛+1 −

2𝑢𝑗
𝑛+1 + 𝑢𝑗+1

𝑛+1 )



Implicit Method: Stability

• Overcoming instability:

• Extra work involved to determine the values of 

unknowns in a time step

– Solve a system of simultaneous equations. Is it worth 

it?
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𝑢𝑗
𝑛+1= 𝑢𝑗

𝑛  +  1/2 r( 𝑢𝑗−1
𝑛 − 2𝑢𝑗

𝑛 + 𝑢𝑗+1
𝑛 + 𝑢𝑗−1

𝑛+1 −

2𝑢𝑗
𝑛+1 + 𝑢𝑗+1

𝑛+1 )



Exercise

• Consider the boundary-value problem:

𝑢𝑥𝑥 +  𝑢𝑦𝑦 =  0 in the square 0 <  𝑥 <  1, 0 <  𝑦 <  1

𝑢 =  𝑥2𝑦 on the boundary.

Is this Laplace equation or Poisson equation?
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Elliptic Equation – Numerical Solution 

for a 2D Problem

1. Approximate the derivatives of 
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 𝑓 𝑥, 𝑦  

using central differences

2. Choose step sizes 𝛿𝑥 and 𝛿𝑦 for x and y axis resp.

1. Both and x and y are independent variables here.

2. Choose 𝛿𝑥= 𝛿𝑦 = ℎ

3. Write difference equation for approximating the 

PDE above
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Elliptic Equation – Numerical Solution

1. Approximate the derivatives of 
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 𝑓 𝑥, 𝑦  

using central differences

𝜕2𝑢

𝜕𝑥2
≈

𝑢 𝑥 + 𝛿𝑥, 𝑦 − 2𝑢 𝑥, 𝑦 + 𝑢 𝑥 − 𝛿𝑥, 𝑦

𝛿𝑥 2

𝜕2𝑢

𝜕𝑦2
≈

𝑢 𝑥, 𝑦 + 𝛿𝑦 − 2𝑢 𝑥, 𝑦 + 𝑢 𝑥, 𝑦 − 𝛿𝑦

𝛿𝑦 2

Where, 𝛿𝑥 and 𝛿𝑦 are step sizes along x and y direction resp.
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Elliptic Equation – Numerical Solution

• Substituting in 
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 𝑓 𝑥, 𝑦  :

𝑢 𝑥 + 𝛿𝑥, 𝑦 − 2𝑢 𝑥, 𝑦 + 𝑢 𝑥 − 𝛿𝑥, 𝑦

𝛿𝑥 2

            +

𝑢 𝑥, 𝑦 + 𝛿𝑦 − 2𝑢 𝑥, 𝑦 + 𝑢 𝑥, 𝑦 − 𝛿𝑦

𝛿𝑦 2

              =

𝑢 𝑥 + 𝛿𝑥, 𝑦 +  𝑢 𝑥, 𝑦 + 𝛿𝑦 − 4𝑢 𝑥, 𝑦 + 𝑢 𝑥 − 𝛿𝑥, 𝑦 +  𝑢 𝑥, 𝑦 − 𝛿𝑦

ℎ 2

    = 𝑓(𝑥, 𝑦)
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Elliptic Equation – Numerical Solution

• Rewriting:

𝑢 𝑥 + 𝛿𝑥, 𝑦 +  𝑢 𝑥, 𝑦 + 𝛿𝑦 − 4𝑢 𝑥, 𝑦 + 𝑢 𝑥 − 𝛿𝑥, 𝑦 +  𝑢 𝑥, 𝑦 − 𝛿𝑦

ℎ 2

    = 𝑓(𝑥, 𝑦)

ui+1,j + ui,j+1 - 4ui,j + ui-1,j + ui,j-1 =  fi,j
   h2

Nikhil Hegde 32𝑖

𝑗 5-point stencil
ui,j



Elliptic Equation – Computing Stencil

• Consider the boundary-value problem:

𝑢𝑥𝑥 +  𝑢𝑦𝑦  =  0 in the square 0 <  𝑥 <  1, 0 <  𝑦 <  1

𝑢 =  𝑥2𝑦 on the boundary, ℎ = 1/3
 

ui+1,j + ui,j+1 - 4ui,j + ui-1,j + ui,j-1 =  0

   h2
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𝑖

𝑗

u01u00 u20 u30

u11u01 u21 u31

u12u02 u22 u32

u13u03 u23 u33

𝑖

𝑗

00 0 0

u110 u21 1/3

u120 u22 2/3

1/90 4/9 1



Elliptic Equation – Computing Stencil

• System of Equations
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𝑖

𝑗

0

0

0 0

u110 u21 1/3

u120 u22 2/3

1/90 4/9 1

2/3 + 4/9 - 4u22 + u12 + u21 = 0

(ui+1,j + ui,j+1 - 4ui,j + ui-1,j + ui,j-1 = 0) 

u22 + 1/9 - 4u12 + 0 + u11 =  0

1/3 + u22 - 4u21 + u11 + 0 =  0

u21 + u12 - 4u11 + 0 + 0 =  0

CenterRight Top Left Bottom



Elliptic Equation – Computing Stencil

• Computing System of Equations:
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2/3 + 4/9 - 4u22 + u12 + u21 = 0

u22 + 1/9 - 4u12 + 0 + u11 =  0

1/3 + u22 - 4u21 + u11 + 0 =  0

u21 + u12 - 4u11 + 0 + 0 =  0

−4 1 1 0
1 − 4 0 1
1 0 − 4 1
0 1 1 − 4

𝑢11

𝑢21

𝑢12

𝑢22

=

0
−1/3
−1/9

−10/9

Matrix A has only coefficients

Ax=B

A            x    =      B 1
1  -4   1

1



Elliptic Equation – Computing Stencil
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-4 1 0 0 1

1 -4 1 0 0 1

0 1 -4 1 0 0 1

0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

• Matrix A has this format (shown here for h=5)

• Lot of Zeros!

• Five non-zero bands

• Top-left to bottom-right diagonals

• Main diagonal is all -4 (from center of the stencil)



Elliptic Equation – Computing Stencil
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-4 1 0 0 1

1 -4 1 0 0 1

0 1 -4 1 0 0 1

0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

• Lot of Zeros!

• Five non-zero bands

• Top-left to bottom-right diagonals

• Main diagonal is all -4 (from center of the stencil)

• What about others?

Left



Elliptic Equation – Computing Stencil
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-4 1 0 0 1

1 -4 1 0 0 1

0 1 -4 1 0 0 1

0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

• Lot of Zeros!

• Five non-zero bands

• Top-left to bottom-right diagonals

• Main diagonal is all -4 (from center of the stencil)

• What about others?

Right 



Elliptic Equation – Computing Stencil
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-4 1 0 0 1

1 -4 1 0 0 1

0 1 -4 1 0 0 1

0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

• Lot of Zeros!

• Five non-zero bands

• Top-left to bottom-right diagonals

• Main diagonal is all -4 (from center of the stencil)

• What about others?

Bottom
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-4 1 0 0 1

1 -4 1 0 0 1

0 1 -4 1 0 0 1

0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

• Lot of Zeros!

• Five non-zero bands

• Top-left to bottom-right diagonals

• Main diagonal is all -4 (from center of the stencil)

• What about others?

Top



Computing Stencil – Iterative Methods

• Jacobi and Gauss-Seidel

– Start with an initial guess for the unknowns u0
ij

– Improve the guess u1
ij

– Iterate: derive the new guess, un+1
ij , from old guess 

un
ij

• Solution (Jacobi):

– Approximate the value of the center with old values 

of (left, right, top, bottom)  
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Background – Jacobi Iteration

• Goal: find solution to system of equations 

represented by AX=B

• Approach: find sequence of approximations X0 
X1 X2 . . . Xn , which gradually approach X.
– X0 is called initial guess, Xi’s called iterates

• Method:
– Split A into A=L+D+U e.g.

42Nikhil Hegde

−4 1 1 0
1 − 4 0 1
1 0 − 4 1
0 1 1 − 4

=

0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0

 + 

−4 0 0 0
0 − 4 0 0
0 0 − 4 0
0 0 0 − 4

 + 

0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0

L D U



Background – Jacobi Iteration

• Compute: AX=B is (L+D+U)X=B
 DX = -(L+U)X+B

 DX(k+1)= -(L+U)Xk+B  (iterate step) 

  X(k+1)= D-1 (-(L+U)Xk) + D-1B

(As long as D has no zeros in the diagonal X(k+1) is obtained)

• E.g. 

−4 0 0 0
0 − 4 0 0
0 0 − 4 0
0 0 0 − 4

𝑢11

𝑢21

𝑢12

𝑢22

 = -

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

𝑢11

𝑢21

𝑢12

𝑢22

 + 

0
−1/3
−1/9

−10/9

, 

uij ‘s value in (1)st iteration is computed based on uij values 

computed in (0)th iteration 
43Nikhil Hegde

01



Background – Jacobi Iteration

• E.g. 

−4 0 0 0
0 − 4 0 0
0 0 − 4 0
0 0 0 − 4

𝑢11

𝑢21

𝑢12

𝑢22

 = -

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

𝑢11

𝑢21

𝑢12

𝑢22

 + 

0
−1/3
−1/9

−10/9

, 

uij ‘s value in (k+1)st iteration is computed based on uij 
values computed in (k)th iteration

• Center’s value is updated. Why?

44Nikhil Hegde

kk+1

𝑖

𝑗 5-point stencil
ui,j



Computing Stencil

• 𝒖𝒓𝒊𝒈𝒉𝒕 
+  𝒖𝒕𝒐𝒑 −  4𝒖𝒄𝒆𝒏𝒕𝒆𝒓 +  𝒖𝒍𝒆𝒇𝒕 

+  𝒖𝒃𝒐𝒕𝒕𝒐𝒎 
=

 
𝟎

 

=> 𝒖𝒄𝒆𝒏𝒕𝒆𝒓 
=  𝟏/𝟒(𝒖𝒓𝒊𝒈𝒉𝒕 

+  𝒖𝒕𝒐𝒑 +  𝒖𝒍𝒆𝒇𝒕 
+  𝒖𝒃𝒐𝒕𝒕𝒐𝒎 )

• Applying Jacobi Iteration:  

𝒖𝒄𝒆𝒏𝒕𝒆𝒓
(𝒌+𝟏)

 
= 1/4(𝒖𝒓𝒊𝒈𝒉𝒕

(𝒌)
 + 𝒖𝒕𝒐𝒑

(𝒌)
 + 𝒖𝒍𝒆𝒇𝒕

(𝒌)
 + 𝒖𝒃𝒐𝒕𝒕𝒐𝒎

(𝒌)
)
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Computing Stencil

• Example: applying Jacobi Iteration:  

𝒖𝒄𝒆𝒏𝒕𝒆𝒓
(𝒌+𝟏)

 
= 1/4(𝒖𝒓𝒊𝒈𝒉𝒕

(𝒌)
 + 𝒖𝒕𝒐𝒑

(𝒌)
 + 𝒖𝒍𝒆𝒇𝒕

(𝒌)
 + 𝒖𝒃𝒐𝒕𝒕𝒐𝒎

(𝒌)
)
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𝑖

𝑗

u11 u21 u31

u12 u22 u32

u13 u23 u33

u41

u42

u43u43u33 u43

u14 u24 u34 u44
1) Compute u11  using initial guess for u12 and 

u21. u01 and u10 are known from boundary 

conditions 

Iteration 1

u01

u10



Computing Stencil

• Example: applying Jacobi Iteration:  

𝒖𝒄𝒆𝒏𝒕𝒆𝒓
(𝒌+𝟏)

 
= 1/4(𝒖𝒓𝒊𝒈𝒉𝒕

(𝒌)
 + 𝒖𝒕𝒐𝒑

(𝒌)
 + 𝒖𝒍𝒆𝒇𝒕

(𝒌)
 + 𝒖𝒃𝒐𝒕𝒕𝒐𝒎

(𝒌)
)
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𝑖

𝑗

u11 u21 u31

u12 u22 u32

u13 u23 u33

u41

u42

u43u43u33 u43

u14 u24 u34 u44
1) Compute u11  using initial guess for u12 and 

u21. u01 and u10 are known from boundary 

conditions 

Iteration 1

u20

2) Compute u21  using initial guess for 

u11,u31, and u22. u20 are known from 

boundary conditions 

In 2), note that the initial guess for u11 is used even though u11 was 

updated just before in 1)



Today: Computing Stencil

• Jacobi and Gauss-Seidel (Solution approach)

– Start with an initial guess for the unknowns u0
ij

– Improve the guess u1
ij

– Iterate: derive the new guess, un+1
ij , from old guess 

un
ij

• Solution (Jacobi):

– Approximate the value of the center with old values 

of (left, right, top, bottom)  

48Nikhil Hegde



Elliptic Equation – Computing Stencil

• In every iteration, suppose we follow the  

computing order as shown (dashed):

Nikhil Hegde 49

𝑖

𝑗

u01u00 u20 u30

u11u01 u21 u31

u12u02 u22 u32

u13u03 u23 u33

u40 u50

u41 u51

u42 u52

u43 u53u43 u53u33 u43 u53

u14u04 u24 u34 u44 u54

u15u05 u25 u35 u45 u55

𝑖

𝑗
ui,j

In any iteration, what are all 

the points of a 5-point stencil 

already updated while 

computing uij ?



Elliptic Equation – Computing Stencil
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𝑖

𝑗

u01u00 u20 u30

u11u01 u21 u31

u12u02 u22 u32

u13u03 u23 u33

u40 u50

u41 u51

u42 u52

u43 u53u43 u53u33 u43 u53

u14u04 u24 u34 u44 u54

u15u05 u25 u35 u45 u55

What are the points that are 

already computed at ui,j?
uleft,ubottom

ui,j



Background – Gauss-Seidel Iteration

• Compute: AX=B is (L+D+U)X=B
 (L+D)X = -UX+B

 (L+D)X(k+1)= -UXk+B  (iterate step) 

  X(k+1)= (L+D)-1 (-UXk) + (L+D)-1B

(As long as L+D has no zeros in the diagonal X(k+1) is obtained)

• E.g. 

−4 0 0 0
1 − 4 0 0
1 0 − 4 0
0 1 1 − 4

𝑢11

𝑢21

𝑢12

𝑢22

 = -

0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0

𝑢11

𝑢21

𝑢12

𝑢22

 + 

0
−1/3
−1/9

−10/9

51Nikhil Hegde
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Computing Stencil – Gauss-Seidel

• Gauss-Seidel: Applying for 2D Laplace Equation  

𝒖𝒄𝒆𝒏𝒕𝒆𝒓
(𝒌+𝟏)

 
= 1/4(𝒖𝒓𝒊𝒈𝒉𝒕

(𝒌)
 + 𝒖𝒕𝒐𝒑

(𝒌)
 + 𝒖𝒍𝒆𝒇𝒕

(𝒌+𝟏)
 + 𝒖𝒃𝒐𝒕𝒕𝒐𝒎

(𝒌+𝟏)
)

• Gauss-Seidel: Observations

– For a given problem and initial guess, Gauss-seidel 

converges faster than Jacobi 

– An iteration in Jacobi can be parallelized but not 

gauss-seidel
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IMPORTANT – Numbering the grid 

points

• Computing System of Equations:

Nikhil Hegde 53

2/3 + 4/9 - 4u22 + u12 + u21 = 0

u22 + 1/9 - 4u12 + 0 + u11 =  0

1/3 + u22 - 4u21 + u11 + 0 =  0

u21 + u12 - 4u11 + 0 + 0 =  0

−4 1 1 0
1 − 4 0 1
1 0 − 4 1
0 1 1 − 4

𝑢11

𝑢21

𝑢12

𝑢22

=

0
−1/3
−1/9

−10/9

Ax=B

A            x    =      B

u11  u21  u12 u22



IMPORTANT – Numbering the grid 

points

• Computing System of Equations:

Nikhil Hegde 54

2/3 + 4/9 - 4u22 + u12 + u21 = 0

u22 + 1/9 - 4u12 + 0 + u11 =  0

1/3 + u22 - 4u21 + u11 + 0 =  0

u21 + u12 - 4u11 + 0 + 0 =  0

−4 1 1 0
1 0 − 4 1
1 − 4 0 1
0 1 1 − 4

𝑢11

𝑢12

𝑢21

𝑢22

=

0
−1/9
−1/3

−10/9

Ax=B

A            x    =      B

u11  u12  u21 u22



IMPORTANT – Numbering the grid 

points

55Nikhil Hegde

𝑖

𝑗

1 5 9

2 6 10

3 7 11

13

14

15

4 8 12 16

1    2       3       4       5      6       7     8       9   ….



• Refer to class notes for FEM
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