CS601: Software Development for Scientific Computing Autumn 2023

Week13: Solution Methods for Irregular Geometry (FEM)

Recap

Discretization

- All problems with 'continuous' quantities don't require discretization
 - Most often they do.
- When discretization is done:
 - How refined is your discretization depends on certain parameters: step-size, cell shape and size. E.g.
 - Size of the largest cell (PDEs in FEM),
 - Step size in ODEs
 - Accuracy of the solution is of prime concern
 - Discretization always gives an approximate solution. Why?
 - Errors may creep in. Must provide an estimate of error.

Accuracy

- Discretization error
 - Is because of the way discretization is done
 - E.g. use more number of rays to minimize discretization error in ray tracing
- Solution error
 - The equation to be solved influences solution error
 - E.g. use more number of iterations in PDEs to minimize solution error
- Accuracy of the solution depends on both solution and discretization errors
- Accuracy also depends on cell shape

Error Estimate

- You will have to deal with errors in the presence of discretization
 - Providing error estimate is necessary
- Apriori error estimate
 - Gives insight on whether a discretization strategy is suitable or not
 - Depends on discretization parameter
 - Properties of the (unknown) exact solution
 - Error is bound by: Ch^p where, C depends on exact solution, h is discretization parameter, and p is a fixed exponent. Assumption: exact solution is differentiable, typically, p+1 times.

Error Estimate

- Aposteriori error estimate
 - Is estimation of the error in computed (Approximate) solution and does not depend on information about exact solution
 - E.g. Sleipner-A oil rig disaster

Cell Shape

• 3D: triangular or quadrilateral faced. E.g.

Tetrahedron: 4 vertices, 4 edges, $4 \triangle$ faces Pyramid: 5 vertices, 8 edges, $4 \triangle$ and 1 \square face Triangular prism: 6 vertices, 9 edges, $2 \triangle$ and 3 \square faces Hexahedron: 8 vertices, 12 edges, 6 \square faces

Structured Grids

- Have regular connectivity between cells
 - i.e. every cell is connected to a predictable number of neighbor cells
- Quadrilateral (in 2D) and Hexahedra (in 3D) are most common type of cells
- Simplest grid is a rectangular region with uniformly divided rectangular cells (in 2D).

Nikhil Hegde

credits: nanohub.org

Structured Grids – Problem Statement

- Given:
 - A geometry
 - A mathematical model (partial differential equation (PDE))
 - Certain conditions / constraints / known values etc.
- Goal:
 - 1. Discretize into a grid of cells
 - 2. Approximate the PDE on the grid
 - 3. Solve the PDE on the grid

PDEs

• consider a function u = u(x, t) satisfying the second-order PDE:

$$A\frac{\partial^2 u}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial t} + C\frac{\partial^2 u}{\partial t^2} + D\frac{\partial u}{\partial x} + E\frac{\partial u}{\partial t} + Fu = G ,$$

Where A-G are given functions. This is a PDE of type:

- Parabolic: if $B^2 4AC = 0$
- Elliptic: if $B^2 4AC < 0$
- Hyperbolic: if $B^2 4AC > 0$

PDEs

• consider a function u = u(x, t) satisfying the second-order PDE:

$$A\frac{\partial^2 u}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial t} + C\frac{\partial^2 u}{\partial t^2} + D\frac{\partial u}{\partial x} + E\frac{\partial u}{\partial t} + Fu = G ,$$

Where A-G are given functions. This is a PDE of type:

- Parabolic: if $B^2 4AC = 0$ Heat equation: $\partial_t u \Delta u = f$
- Elliptic: if $B^2 4AC < 0$ Poisson problem: $-\Delta u = f$
- Hyperbolic: if $B^2 4AC > 0$

Wave equation: $\partial_t^2 u - \Delta u = f$

Approximating PDEs

Finite Difference Method

- Suppose y = f(x)
 - Forward difference approximation to the first-order derivative of *f* w.r.t. *x* is:

$$\frac{df}{dx} \approx \frac{\left(f(x+\delta x) - f(x)\right)}{\delta x}$$

- Central difference approximation to the first-order derivative of f w.r.t. x is:

$$\frac{df}{dx} \approx \frac{\left(f(x+\delta x) - f(x-\delta x)\right)}{2\delta x}$$

 Central difference approximation to the second-order derivative of *f* w.r.t. *x* is:

$$\frac{d^2f}{dx^2} \approx \frac{\left(f(x+\delta x)-2f(x)+f(x-\delta x)\right)}{(\delta x)^2}$$

Boundary Conditions and Classification

- Essential / Dirichlet
 - Value of the dependent variable is specified
 - E.g. temperature at the edges of the rod are constant 0°
- Neumann / Natural
 - Value of the dependent variable is specified as gradient of the dependent variable T e.g. dT/dx.
- Mixed / Robin
 - value of the dependent variable is specified as a function of the gradient. E.g. $-K(dTdx)x=L=hA(T-T\infty)$

Boundary and Initial Value Problems

- Boundary Value Problems
 - PDE contains independent variables that are only spatial in nature (do not contain time).

$$- \mathsf{E.g.} \, \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$$

- Initial Value Problems
 - PDE contains independent variables that are spatial and temporal in nature.

$$- \operatorname{E.g.} \frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$$

Nikhil Hegde

Definitions (Laplace Equation and Poisson Equation)

• Consider a region of interest *R* in, say, *xy* plane. The following is a *boundary-value problem*:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y) \qquad \text{,where}$$

f is a given function in R and

u = g ,where the function g tells the value of function u at boundary of R

- if f = 0 everywhere, then Eqn. (1) is Laplace's Equation
- if $f \neq 0$ somewhere in R, then Eqn. (1) is Poisson's Equation

Application: 1D Heat Equation $\partial_t u - \Delta u = f(x)$

• Recall notation: $\Delta u = \sum_{k=1}^{n} \partial_{kk} u$

$$\frac{\partial u}{\partial t} = \partial_t u$$

• Example: heat conduction through a rod

- u = u(x, t) is the temperature of the metal bar at distance x from one end and at time t
- Goal: find *u*, temperature at different points along the length of the rod (i.e. from 0 to *l*)

1D Heat Equation - Equations

• Example: heat conduction through a rod

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} \qquad (0 < x < l, t > 0) \ \alpha \text{ is thermal diffusivity}$$

$$u(0,t) = u_L, \ t > 0$$

$$u(l,t) = u_R, \ t > 0$$

$$u(x,0) = f(x)$$

$$x(l-x)$$

~ 2

1D Heat Equation - Analytical Solution

• Analytical Solution:

$$u(x,t) = \sum_{m=1}^{\infty} B_m e^{-m^2 \alpha \pi^2 t/l^2} \sin(\frac{m\pi x}{l}) ,$$

where, $B_m = 2/l \int_0^l f(s) \sin(\frac{m\pi s}{l}) ds$

But we are interested in a numerical solution

1D Heat Equation - Approximating Partial Derivatives

Plugging into $\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$:

$$\frac{(u_j^{n+1} - u_j^n)}{\delta t} = \alpha \frac{(u_{j+1}^n - 2 u_j^n + u_{j-1}^n)}{(\delta x)^2}$$

This is also called as difference equation because you are computing difference between successive values of a function involving discrete variables.

Recall: u_j^{n+1} denotes taking *j* steps along the length of the rod (*x* axis) and *n* + 1 time steps (*t* axis)

1D Heat Equation - Approximating Partial Derivatives

visualizing,

$$u_j^{n+1} = ru_{j-1}^n + (1 - 2r)u_j^n + ru_{j+1}^n$$

To compute the value of function at blue dot, you need 3 values indicated by the red dots – 3-point stencil

Nikhil Hegde

1D Heat Equation - Computation

visualizing,

$$u_j^{n+1} = ru_{j-1}^n + (1 - 2r)u_j^n + ru_{j+1}^n$$

All the red dot values are known. We begin with computing the temp at blue dots (after time δt) Order of computation: start from left and move to the right. Then move up ₂₁ (to the next time step, $2\delta t$)

- Given: l = 1, $u(0,t) = u_L = 0$, $u(l,t) = u_R = 0$, u(x,0) = f(x) = x(l - x) $\alpha = 1$,
- Choose: $\delta x = 0.25, \delta t = 0.075$
- Solve.

- Compute time-step 2 values
- $u_j^{n+1} = ru_{j-1}^n + (1 2r)u_j^n + ru_{j+1}^n$
- $u_1^2 = u_1^1 + r(u_0^1 2u_1^1 + u_2^1) = 0.06851$ $u_2^2 = u_2^1 + r(u_1^1 - 2u_2^1 + u_3^1) = -0.05173$ $u_3^2 = u_3^1 + r(u_2^1 - 2u_3^1 + u_4^1) = 0.06851$

- Temperature at $2\delta x$ after $2\delta t$ time units went into negative! (when the boundaries were held constant at 0)
 - Example of instability

$$u_2^2 = u_2^1 + r(u_1^1 - 2u_2^1 + u_3^1) = -0.05173$$

The solution is stable (for heat diffusion problem) only if the approximations for u(x,t) do not get bigger in magnitude with time

• The solution for heat diffusion problem is stable only if:

$$r \leq \frac{1}{2}$$

Therefore, choose your time step in such a way that:

$$\delta t \le \frac{\delta x^2}{2\alpha}$$

But this is a severe limitation!

Implicit Method: Stability

• Overcoming instability:

To compute the value of function at blue dot, you need 6 values indicated by the red dots (known) and 3 additional ones (unknown) above

Implicit Method: Stability

• Overcoming instability:

$$u_{j}^{n+1} = u_{j}^{n} + 1/2 \operatorname{r}(u_{j-1}^{n} - 2u_{j}^{n} + u_{j+1}^{n} + u_{j-1}^{n+1} - 2u_{j}^{n+1} + u_{j+1}^{n+1})$$

- Extra work involved to determine the values of unknowns in a time step
 - Solve a system of simultaneous equations. Is it worth it?

Exercise

- Consider the *boundary-value* problem:
- $u_{xx} + uyy = 0$ in the square 0 < x < 1, 0 < y < 1 $u = x^2y$ on the boundary.

Is this Laplace equation or Poisson equation?

Elliptic Equation – Numerical Solution for a 2D Problem

- 1. Approximate the derivatives of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$ using central differences
- 2. Choose step sizes δx and δy for x and y axis resp.
 - 1. Both and x and y are independent variables here.
 - 2. Choose $\delta x = \delta y = h$
- 3. Write difference equation for approximating the PDE above

Elliptic Equation – Numerical Solution

1. Approximate the derivatives of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$ using central differences

$$\frac{\partial^2 u}{\partial x^2} \approx \frac{\left(u(x+\delta x,y)-2u(x,y)+u(x-\delta x,y)\right)}{(\delta x)^2}$$

$$\frac{\partial^2 u}{\partial y^2} \approx \frac{\left(u(x, y + \delta y) - 2u(x, y) + u(x, y - \delta y)\right)}{(\delta y)^2}$$

Where, δx and δy are step sizes along x and y direction resp.

Elliptic Equation – Numerical Solution

• Substituting in $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x, y)$: $\left(u(x+\delta x,y)-2u(x,y)+u(x-\delta x,y)\right)$ $(\delta x)^2$ ╋ $(u(x, y + \delta y) - 2u(x, y) + u(x, y - \delta y))$ $(\delta \gamma)^2$ $\left(u(x+\delta x,y)+u(x,y+\delta y)-4u(x,y)+u(x-\delta x,y)+u(x,y-\delta y)\right)$ $(h)^{2}$

= f(x, y)

Nikhil Hegde

Elliptic Equation – Numerical Solution

• Rewriting:

 $\left(u(x+\delta x,y)+u(x,y+\delta y)-4u(x,y)+u(x-\delta x,y)+u(x,y-\delta y)\right)$ $(h)^{2}$ = f(x, y) $u_{i+1,j} + u_{i,j+1} - 4u_{i,j} + u_{i-1,j} + u_{i,j-1} = f_{i,j}$ h² u_i,j 5-point stencil 32 Nikhil Hegde Ĺ

• Consider the *boundary-value* problem:

Nikhi

 $u_{xx} + u_{yy} = 0$ in the square 0 < x < 1, 0 < y < 1 $u = x^2y$ on the boundary, h = 1/3

$$\underbrace{u_{i+1,j} + u_{i,j+1} - 4u_{i,j} + u_{i-1,j} + u_{i,j-1}}_{h^2} = 0$$

$$\underbrace{u_{i+1,j} + u_{i,j+1} - 4u_{i,j} + u_{i-1,j} + u_{i,j-1}}_{h^2} = 0$$

$$\underbrace{u_{i+1,j} + u_{i,j+1} - 4u_{i,j} + u_{i-1,j} + u_{i,j-1}}_{h^2} = 0$$

$$\underbrace{u_{i+1,j} + u_{i,j+1} - 4u_{i,j} + u_{i-1,j} + u_{i,j-1}}_{h^2} = 0$$

$$\underbrace{u_{i+1,j} + u_{i,j+1} - 4u_{i,j} + u_{i-1,j} + u_{i,j-1}}_{h^2} = 0$$

$$\underbrace{u_{i+1,j} + u_{i,j+1} - 4u_{i,j} + u_{i-1,j} + u_{i,j-1}}_{h^2} = 0$$

$$\underbrace{u_{i+1,j} + u_{i,j+1} - 4u_{i,j+1} + u_{i,j-1}}_{h^2} = 0$$

$$\underbrace{u_{i+1,j} + u_{i,j+1} - 4u_{i,j} + u_{i-1,j} + u_{i,j-1}}_{h^2} = 0$$

$$\underbrace{u_{i+1,j} + u_{i,j+1} - 4u_{i,j} + u_{i,j+1} + u_{i,j-1}}_{h^2} = 0$$

$$\underbrace{u_{i+1,j} + u_{i,j+1} - 4u_{i,j} + u_{i,j+1} + u_{i,j-1}}_{h^2} = 0$$

$$\underbrace{u_{i+1,j} + u_{i,j+1} - 4u_{i,j} + u_{i,j+1} + u_{i,j+1} + u_{i,j-1}}_{h^2} = 0$$

$$\underbrace{u_{i+1,j} + u_{i,j+1} - 4u_{i,j} + u_{i,j+1} + u_$$

• Computing System of Equations:

$$u_{21} + u_{12} - 4u_{11} + 0 + 0 = 0$$

$$1/3 + u_{22} - 4u_{21} + u_{11} + 0 = 0$$

$$u_{22} + 1/9 - 4u_{12} + 0 + u_{11} = 0$$

$$2/3 + 4/9 - 4u_{22} + u_{12} + u_{21} = 0$$

$$\begin{pmatrix} -4 & 1 & 1 & 0 \\ 1 & -4 & 0 & 1 \\ 1 & 0 & -4 & 1 \\ 0 & 1 & 1 & -4 \end{pmatrix} \begin{pmatrix} u_{11} \\ u_{21} \\ u_{12} \\ u_{22} \end{pmatrix} = \begin{pmatrix} 0 \\ -1/3 \\ -1/9 \\ -10/9 \end{pmatrix}$$
 Ax=B
A X = B 1
Matrix A has only coefficients 1 -4 1

Nikhil Hegde

-4	1	0	0	1								
1	-4	1	0	0	1							
0	1	-4	1	0	0	1						
0	0	1	-4	1	0	0	1					
1	0	0	1	-4	1	0	0	1				
	1	0	0	1	-4	1	0	0	1			
		1	0	0	1	-4	1	0	0	1		
			1	0	0	1	-4	1	0	0	1	
				1	0	0	1	-4	1	0	0	1

- Matrix A has this format (shown here for h=5)
- Lot of Zeros!
- Five non-zero bands
 - Top-left to bottom-right diagonals
- Main diagonal is all -4 (from center of the stencil)

- Lot of Zeros!
- Five non-zero bands

- Left
- Top-left to bottom-right diagonals
- Main diagonal is all -4 (from center of the stencil)
- What about others?

- Lot of Zeros!
- Five non-zero bands
 - Top-left to bottom-right diagonals
- Main diagonal is all -4 (from center of the stencil)
- What about others?

Right

• Lot of Zeros!

Bottom

- Five non-zero bands
 - Top-left to bottom-right diagonals
- Main diagonal is all -4 (from center of the stencil)
- What about others?

- Lot of Zeros!
- Five non-zero bands
 - Top-left to bottom-right diagonals
- Main diagonal is all -4 (from center of the stencil)
- What about others?

Top

Computing Stencil – Iterative Methods

- Jacobi and Gauss-Seidel
 - Start with an initial guess for the unknowns u⁰_{ii}
 - Improve the guess u_{ij}^{1}
 - Iterate: derive the new guess, u^{n+1}_{ij} , from old guess u^{n}_{ij}
- Solution (Jacobi):
 - Approximate the value of the center with old values of (left, right, top, bottom)

Background – Jacobi Iteration

- **Goal:** find solution to system of equations represented by AX=B
- Approach: find sequence of approximations X⁰
 X¹ X² . . Xⁿ, which gradually approach X.
 X⁰ is called initial guess, Xⁱ's called *iterates*
- Method:

- Split A into A=L+D+U e.g.

$$\begin{pmatrix} -4 & 1 & 1 & 0 \\ 1 & -4 & 0 & 1 \\ 1 & 0 & -4 & 1 \\ 0 & 1 & 1 & -4 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} + \begin{pmatrix} -4 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & -4 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
Nikhil Hegde L L D U

Background – Jacobi Iteration

- Compute: AX=B is (L+D+U)X=B
 - \Rightarrow DX = -(L+U)X+B
 - \Rightarrow DX^(k+1)= -(L+U)X^k+B (iterate step)
 - \Rightarrow X^(k+1)= D⁻¹ (-(L+U)X^k) + D⁻¹B

(As long as D has no zeros in the diagonal $X^{(k+1)}$ is obtained)

• E.g.
$$\begin{pmatrix} -4 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & -4 \end{pmatrix} \begin{pmatrix} u_{11} \\ u_{21} \\ u_{12} \\ u_{22} \end{pmatrix}^{1} = -\begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} u_{11} \\ u_{21} \\ u_{12} \\ u_{22} \end{pmatrix}^{0} + \begin{pmatrix} 0 \\ -1/3 \\ -1/9 \\ -10/9 \end{pmatrix},$$

 u_{ij} 's value in (1)st iteration is computed based on u_{ij} values computed in (0)th iteration

Nikhil Hegde

Background – Jacobi Iteration

• E.g.
$$\begin{pmatrix} -4 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & -4 \end{pmatrix} \begin{pmatrix} u_{11} \\ u_{21} \\ u_{12} \\ u_{22} \end{pmatrix}^{k+1} = - \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} u_{11} \\ u_{21} \\ u_{12} \\ u_{22} \end{pmatrix}^{k} + \begin{pmatrix} 0 \\ -1/3 \\ -1/9 \\ -10/9 \end{pmatrix},$$

 u_{ij} 's value in (k+1)st iteration is computed based on u_{ij} values computed in (k)th iteration

Center's value is updated. Why?

Nikhil Hegde

44

Computing Stencil

•
$$u_{right} + u_{top} - 4u_{center} + u_{left} + u_{bottom} = 0$$

=> $u_{center} = 1/4(u_{right} + u_{top} + u_{left} + u_{bottom})$

• Applying Jacobi Iteration:

$$u_{center}^{(k+1)} = 1/4(u_{right}^{(k)} + u_{top}^{(k)} + u_{left}^{(k)} + u_{bottom}^{(k)})$$

Computing Stencil

• Example: applying Jacobi Iteration:

Computing Stencil

• Example: applying Jacobi Iteration:

Nikhil Hegde updated just before in 1)

Today: Computing Stencil

- Jacobi and Gauss-Seidel (Solution approach)
 - Start with an initial guess for the unknowns u⁰_{ii}
 - Improve the guess u¹_{ij}
 - Iterate: derive the new guess, u^{n+1}_{ij} , from old guess u^n_{ij}
- Solution (Jacobi):
 - Approximate the value of the center with old values of (left, right, top, bottom)

• In every iteration, suppose we follow the computing order as shown (dashed):

In any iteration, what are all the points of a 5-point stencil already updated while computing u_{ii}?

49

Nikhil Hegde

Background – Gauss-Seidel Iteration

 Compute: AX=B is (L+D+U)X=B \Rightarrow (L+D)X = -UX+B \Rightarrow (L+D)X^(k+1)= -UX^k+B (iterate step) \Rightarrow X^(k+1)= (L+D)⁻¹ (-UX^k) + (L+D)⁻¹B (As long as L+D has no zeros in the diagonal $X^{(k+1)}$ is obtained) • E.g. $\begin{pmatrix} -4 & 0 & 0 & 0 \\ 1 & -4 & 0 & 0 \\ 1 & 0 & -4 & 0 \\ 0 & 1 & 1 & -4 \end{pmatrix} \begin{pmatrix} u_{11} \\ u_{21} \\ u_{12} \end{pmatrix}^{1} = -\begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} u_{11} \\ u_{21} \\ u_{12} \\ u_{12} \end{pmatrix} + \begin{pmatrix} -1/3 \\ -1/9 \\ -1/9 \end{pmatrix}$

Computing Stencil – Gauss-Seidel

Gauss-Seidel: Applying for 2D Laplace Equation

 $u_{center}^{(k+1)} = 1/4(u_{right}^{(k)} + u_{top}^{(k)} + u_{left}^{(k+1)} + u_{bottom}^{(k+1)})$

- Gauss-Seidel: Observations
 - For a given problem and initial guess, Gauss-seidel converges faster than Jacobi
 - An iteration in Jacobi can be parallelized but not gauss-seidel

IMPORTANT – Numbering the grid points

• Computing System of Equations: Ax=B

 $u_{21} + u_{12} - 4u_{11} + 0 + 0 = 0$ $1/3 + u_{22} - 4u_{21} + u_{11} + 0 = 0$ $u_{22} + 1/9 - 4u_{12} + 0 + u_{11} = 0$ $2/3 + 4/9 - 4u_{22} + u_{12} + u_{21} = 0$ u11 u21 u12 u22 $\begin{pmatrix} -4 & 1 & 1 & 0 \\ 1 & -4 & 0 & 1 \\ 1 & 0 & -4 & 1 \\ 0 & 1 & 1 & -4 \end{pmatrix} \begin{pmatrix} u_{11} \\ u_{21} \\ u_{12} \\ u_{22} \end{pmatrix} = \begin{pmatrix} 0 \\ -1/3 \\ -1/9 \\ -10/9 \end{pmatrix}$ Χ Δ

IMPORTANT – Numbering the grid points

• Computing System of Equations: Ax=B

 $u_{21} + u_{12} - 4u_{11} + 0 + 0 = 0$ $1/3 + u_{22} - 4u_{21} + u_{11} + 0 = 0$ $u_{22} + 1/9 - 4u_{12} + 0 + u_{11} = 0$ $2/3 + 4/9 - 4u_{22} + u_{12} + u_{21} = 0$ u11 u12 u21 u22 $\begin{pmatrix} -4 & 1 & 1 & 0 \\ 1 & 0 & -4 & 1 \\ 1 & -4 & 0 & 1 \\ 0 & 1 & 1 & -4 \end{pmatrix} \begin{pmatrix} u_{11} \\ u_{12} \\ u_{21} \\ u_{22} \end{pmatrix} = \begin{pmatrix} 0 \\ -1/9 \\ -1/3 \\ -10/9 \end{pmatrix}$ Δ

IMPORTANT – Numbering the grid points

Refer to class notes for FEM