CS601: Software Development for Scientific Computing

Autumn 2023
Week13: Solution Methods for Irregular
Geometry (FEM)

Recap

Discretization

- All problems with 'continuous' quantities don't require discretization
- Most often they do.
- When discretization is done:
- How refined is your discretization depends on certain parameters: step-size, cell shape and size. E.g.
- Size of the largest cell (PDEs in FEM),
- Step size in ODEs
- Accuracy of the solution is of prime concern
- Discretization always gives an approximate solution. Why?
- Errors may creep in. Must provide an estimate of error.

Accuracy

- Discretization error
- Is because of the way discretization is done
- E.g. use more number of rays to minimize discretization error in ray tracing
- Solution error
- The equation to be solved influences solution error
- E.g. use more number of iterations in PDEs to minimize solution error
- Accuracy of the solution depends on both solution and discretization errors
- Accuracy also depends on cell shape

Error Estimate

- You will have to deal with errors in the presence of discretization
- Providing error estimate is necessary
- Apriori error estimate
- Gives insight on whether a discretization strategy is suitable or not
- Depends on discretization parameter
- Properties of the (unknown) exact solution
- Error is bound by: $\mathbf{C h}^{\boldsymbol{p}}$ where, C depends on exact solution, h is discretization parameter, and p is a fixed exponent. Assumption: exact solution is differentiable, typically, p+1 times.

Error Estimate

- Aposteriori error estimate
- Is estimation of the error in computed (Approximate) solution and does not depend on information about exact solution
- E.g. Sleipner-A oil rig disaster

Cell Shape

- 2D:

- 3D: triangular or quadrilateral faced. E.g.

Tetrahedron

Hexahedron
Tetrahedron: 4 vertices, 4 edges, $4 \triangle$ faces
Pyramid: 5 vertices, 8 edges, $4 \triangle$ and $1 \square$ face Triangular prism: 6 vertices, 9 edges, $2 \triangle$ and $3 \square$ faces Hexahedron: 8 vertices, 12 edges, $6 \square$ faces

Structured Grids

- Have regular connectivity between cells
- i.e. every cell is connected to a predictable number of neighbor cells
- Quadrilateral (in 2D) and Hexahedra (in 3D) are most common type of cells
- Simplest grid is a rectangular region with uniformly divided rectangular cells (in 2D).

Structured Grids - Problem Statement

- Given:
- A geometry
- A mathematical model (partial differential equation (PDE))
- Certain conditions / constraints / known values etc.
- Goal:

1. Discretize into a grid of cells
2. Approximate the PDE on the grid
3. Solve the PDE on the grid

PDEs

- consider a function $u=u(x, t)$ satisfying the second-order PDE:
$A \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial^{2} u}{\partial x \partial t}+C \frac{\partial^{2} u}{\partial t^{2}}+D \frac{\partial u}{\partial x}+E \frac{\partial u}{\partial t}+F u=G$,
Where $A-G$ are given functions. This is a PDE of type:
- Parabolic: if $B^{2}-4 A C=0$
- Elliptic: if $B^{2}-4 A C<0$
- Hyperbolic: if $B^{2}-4 A C>0$

PDEs

- consider a function $u=u(x, t)$ satisfying the second-order PDE:
$A \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial^{2} u}{\partial x \partial t}+C \frac{\partial^{2} u}{\partial t^{2}}+D \frac{\partial u}{\partial x}+E \frac{\partial u}{\partial t}+F u=G$,
Where A-G are given functions. This is a PDE of type:
- Parabolic: if $B^{2}-4 A C=0$ Heat equation: $\partial_{t} u-\Delta u=f$
- Elliptic: if $B^{2}-4 A C<0 \quad$ Poisson problem: $-\Delta u=f$
- Hyperbolic: if $B^{2}-4 A C>0$

Wave equation: $\partial_{t}{ }^{2} u-\Delta u=f$

Approximating PDEs
 Finite Difference Method

- Suppose $y=f(x)$
- Forward difference approximation to the first-order derivative of f w.r.t. x is:

$$
\frac{d f}{d x} \approx \frac{(f(x+\delta x)-f(x))}{\delta x}
$$

- Central difference approximation to the first-order derivative of f w.r.t. x is:

$$
\frac{d f}{d x} \approx \frac{(f(x+\delta x)-f(x-\delta x))}{2 \delta x}
$$

- Central difference approximation to the second-order derivative of f w.r.t. x is:

$$
\frac{d^{2} f}{d x^{2}} \approx \frac{(f(x+\delta x)-2 f(x)+f(x-\delta x))}{(\delta x)^{2}}
$$

Boundary Conditions and Classification

- Essential / Dirichlet
- Value of the dependent variable is specified
- E.g. temperature at the edges of the rod are constant 0°
- Neumann / Natural
- Value of the dependent variable is specified as gradient of the dependent variable T e.g. $d T / d x$.
- Mixed / Robin
- value of the dependent variable is specified as a function of the gradient. E.g. $-K(d T d x) x=L=h A(T-T \infty)$

Boundary and Initial Value Problems

- Boundary Value Problems
- PDE contains independent variables that are only spatial in nature (do not contain time).
- E.g. $\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0$
- Initial Value Problems
- PDE contains independent variables that are spatial and temporal in nature.
- E.g. $\frac{\partial u}{\partial t}=\alpha \frac{\partial^{2} u}{\partial x^{2}}$

Definitions (Laplace Equation and Poisson Equation)

- Consider a region of interest R in, say, $x y$ plane. The following is a boundary-value problem:

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f(x, y) \quad \text {,where }
$$

f is a given function in R and
$u=g$,where
the function g tells the value of function u at boundary of R

- if $f=0$ everywhere, then Eqn. (1) is Laplace's Equation
- if $f \neq 0$ somewhere in R, then Eqn. (1) is Poisson's Equation

Application: 1D Heat Equation

$$
\partial_{t} u-\Delta u=f(x)
$$

- Recall notation: $\Delta u=\sum_{k=1}^{n} \partial_{k k} u$

$$
\frac{\partial u}{\partial t}=\partial_{t} u
$$

- Example: heat conduction through a rod

- $u=u(x, t)$ is the temperature of the metal bar at distance x from one end and at time t
- Goal: find u, temperature at different points along the length of the rod (i.e. from 0 to l)

1D Heat Equation - Equations

- Example: heat conduction through a rod

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\alpha \frac{\partial^{2} u}{\partial x^{2}} \\
& u(0, t)=u_{L}, \quad t>0 \\
& u(l, t)=u_{R}, \quad t>0 \\
& u(x, 0)=f(x) \\
& x(l-x)
\end{aligned} \quad(0<x<l, t>0) \alpha \text { is thermal diffusivity }
$$

1D Heat Equation - Analytical Solution

- Analytical Solution:

$$
\begin{aligned}
& u(x, t)=\sum_{m=1}^{\infty} B_{m} e^{-m^{2} \alpha \pi^{2} t / l^{2}} \sin \left(\frac{m \pi x}{l}\right), \\
& \quad \text { where, } B_{m}=2 / l \int_{0}^{l} f(s) \sin \left(\frac{m \pi s}{l}\right) d s
\end{aligned}
$$

But we are interested in a numerical solution

1D Heat Equation - Approximating Partial Derivatives

Plugging into $\frac{\partial u}{\partial t}=\alpha \frac{\partial^{2} u}{\partial x^{2}}$:

$$
\frac{\left(u_{j}^{n+1}-u_{j}^{n}\right)}{\delta t}=\alpha \frac{\left(u_{j+1}^{n}-2 u_{j}^{n}+u_{j-1}^{n}\right)}{(\delta x)^{2}}
$$

This is also called as difference equation because you are computing difference between successive values of a function involving discrete variables.

Recall: $\mathrm{u}_{\mathrm{j}}{ }^{\mathrm{n}+1}$ denotes taking j steps along the length of the $\operatorname{rod}(x$ axis) and $n+1$ time steps (t axis)

1D Heat Equation - Approximating Partial Derivatives

visualizing,

$$
u_{j}^{n+1}=r u_{j-1}^{n}+(1-2 r) u_{j}^{n}+r u_{j+1}^{n}
$$

To compute the value of function at blue dot, you need 3 values indicated by the red dots - 3-point stencil

1D Heat Equation - Computation

visualizing,

$$
u_{j}^{n+1}=r u_{j-1}^{n}+(1-2 r) u_{j}^{n}+r u_{j+1}^{n}
$$

All the red dot values are known. We begin with computing the temp at blue dots (after time $\delta \mathrm{t}$)
Order of computation: start from left and move to the right. Then move up 21 (to the next time step, $2 \delta \mathrm{t}$)

Explicit Difference Method: Stability

- Given: $l=1$,

$$
\begin{aligned}
& u(0, t)=u_{L}=0, \\
& u(l, t)=u_{R}=0, \\
& u(x, 0)=f(x)=x(l-x) \\
& \alpha=1,
\end{aligned}
$$

- Choose: $\delta x=0.25, \delta t=0.075$
- Solve.

Explicit Difference Method: Stability

- Compute time-step 2 values

$$
\begin{aligned}
& u_{j}^{n+1}=r u_{j-1}^{n}+(1-2 r) u_{j}^{n}+r u_{j+1}^{n} \\
& u_{1}^{2}=u_{1}^{1}+r\left(u_{0}^{1}-2 u_{1}^{1}+u_{2}^{1}\right)=0.06851 \\
& u_{2}^{2}=u_{2}^{1}+r\left(u_{1}^{1}-2 u_{2}^{1}+u_{3}^{1}\right)=-0.05173 \\
& u_{3}^{2}=u_{3}^{1}+r\left(u_{2}^{1}-2 u_{3}^{1}+u_{4}^{1}\right)=0.06851
\end{aligned}
$$

Explicit Difference Method: Stability

- Temperature at $2 \delta x$ after $2 \delta t$ time units went into negative! (when the boundaries were held constant at 0)
- Example of instability

$$
u_{2}^{2}=u_{2}^{1}+r\left(u_{1}^{1}-2 u_{2}^{1}+u_{3}^{1}\right)=-0.05173
$$

The solution is stable (for heat diffusion problem) only if the approximations for $u(x, t)$ do not get bigger in magnitude with time

Explicit Difference Method: Stability

- The solution for heat diffusion problem is stable only if:

$$
r \leq \frac{1}{2}
$$

Therefore, choose your time step in such a way that:

$$
\delta t \leq \frac{\delta x^{2}}{2 \alpha}
$$

But this is a severe limitation!

Implicit Method: Stability

- Overcoming instability:

$$
\begin{aligned}
& u_{j}^{n+1}=u_{j}^{n}+1 / 2 \mathrm{r}\left(u_{j-1}^{n}-2 u_{j}^{n}+u_{j+1}^{n}+u_{j-1}^{n+1}-\right. \\
& \left.2 u_{j}^{n+1}+u_{j+1}^{n+1}\right)
\end{aligned}
$$

To compute the value of function at blue dot, you need 6 values indicated by the red dots (known) and 3 additional ones (unknown) above

Implicit Method: Stability

- Overcoming instability:

$$
\begin{aligned}
& u_{j}^{n+1}=u_{j}^{n}+1 / 2 r\left(u_{j-1}^{n}-2 u_{j}^{n}+u_{j+1}^{n}+u_{j-1}^{n+1}-\right. \\
& \left.2 u_{j}^{n+1}+u_{j+1}^{n+1}\right)
\end{aligned}
$$

- Extra work involved to determine the values of unknowns in a time step
- Solve a system of simultaneous equations. Is it worth it?

Exercise

- Consider the boundary-value problem: $u_{x x}+u y y=0$ in the square $0<x<1,0<y<1$ $u=x^{2} y$ on the boundary.

Is this Laplace equation or Poisson equation?

Elliptic Equation - Numerical Solution for a 2D Problem

1. Approximate the derivatives of $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f(x, y)$ using central differences
2. Choose step sizes δx and δy for x and y axis resp. 1. Both and x and y are independent variables here.
3. Choose $\delta x=\delta y=h$
4. Write difference equation for approximating the PDE above

Elliptic Equation - Numerical Solution

1. Approximate the derivatives of $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f(x, y)$ using central differences

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}} \approx \frac{(u(x+\delta x, y)-2 u(x, y)+u(x-\delta x, y))}{(\delta x)^{2}} \\
& \frac{\partial^{2} u}{\partial y^{2}} \approx \frac{(u(x, y+\delta y)-2 u(x, y)+u(x, y-\delta y))}{(\delta y)^{2}}
\end{aligned}
$$

Where, δx and δy are step sizes along x and y direction resp.

Elliptic Equation - Numerical Solution

- Substituting in $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f(x, y)$:

$$
\begin{gathered}
\frac{(u(x+\delta x, y)-2 u(x, y)+u(x-\delta x, y))}{(\delta x)^{2}} \\
\boldsymbol{+}
\end{gathered}
$$

$$
\frac{(u(x, y+\delta y)-2 u(x, y)+u(x, y-\delta y))}{(\delta y)^{2}}
$$

=

$$
\begin{gathered}
\frac{(u(x+\delta x, y)+u(x, y+\delta y)-4 u(x, y)+u(x-\delta x, y)+u(x, y-\delta y))}{(h)^{2}} \\
=f(x, y)
\end{gathered}
$$

Elliptic Equation - Numerical Solution

- Rewriting:

$$
\begin{gathered}
\frac{(u(x+\delta x, y)+u(x, y+\delta y)-4 u(x, y)+u(x-\delta x, y)+u(x, y-\delta y))}{(h)^{2}} \\
=f(x, y) \\
\frac{\mathbf{u}_{\mathbf{i}+\mathbf{1}, \mathbf{j}}+\mathbf{u}_{\mathbf{i}, \mathbf{j}+\mathbf{1}}-4 \mathbf{u}_{\mathbf{i}, \mathbf{j}}+\mathbf{u}_{\mathbf{i}-\mathbf{1}, \mathbf{j}}+\mathbf{u}_{\mathbf{i}, \mathbf{j}-\mathbf{1}}}{\mathbf{h}^{2}}=\mathbf{f}_{\mathbf{i}, \mathbf{j}} \\
\text { Nikhil Hegde }
\end{gathered}
$$

Elliptic Equation - Computing Stencil

- Consider the boundary-value problem:
$u_{x x}+u_{y y}=0$ in the square $0<x<1,0<y<1$
$u=x^{2} y$ on the boundary, $h=1 / 3$

$$
\frac{u_{i+1, j}+u_{i, j+1}-4 u_{i, j}+u_{i-1, j}+u_{i, j-1}}{h^{2}}=0
$$

Elliptic Equation - Computing Stencil

- System of Equations

$$
\left(u_{i+1, j}+u_{i, j+1}-4 u_{i, j}+u_{i-1, j}+u_{i, j-1}=0\right)
$$

$1 / 3+u_{22}-4 u_{21}+u_{11}+0=0$
$\mathrm{u}_{22}+1 / 9-4 \mathrm{u}_{12}+0+\mathrm{u}_{11}=0$
$2 / 3+4 / 9-4 u_{22}+u_{12}+u_{21}=0$

Elliptic Equation - Computing Stencil

- Computing System of Equations:

$$
\begin{aligned}
& u_{21}+u_{12}-4 u_{11}+0+0=0 \\
& 1 / 3+u_{22}-4 u_{21}+u_{11}+0=0 \\
& u_{22}+1 / 9-4 u_{12}+0+u_{11}=0 \\
& 2 / 3+4 / 9-4 u_{22}+u_{12}+u_{21}=0 \\
& \begin{array}{l}
\left(\begin{array}{cccc}
-4 & 1 & 1 & 0 \\
1 & -4 & 0 & 1 \\
1 & 0 & -4 & 1 \\
0 & 1 & 1 & -4
\end{array}\right)\left(\begin{array}{l}
u_{11} \\
u_{21} \\
u_{12} \\
u_{22}
\end{array}\right)=\left(\begin{array}{c}
0 \\
-1 / 3 \\
-1 / 9 \\
-10 / 9
\end{array}\right) \\
\left.\begin{array}{c}
\mathbf{A} \\
\mathbf{x} \\
\mathbf{B}
\end{array}\right) \\
\text { Matrix } \mathbf{A} \text { has only coefficients }
\end{array}
\end{aligned}
$$

Elliptic Equation - Computing Stencil

-4	1	0	0	1								
1	-4	1	0	0	1							
0	1	-4	1	0	0	1						
0	0	1	-4	1	0	0	1					
1	0	0	1	-4	1	0	0	1				
	1	0	0	1	-4	1	0	0	1			
		1	0	0	1	-4	1	0	0	1		
			1	0	0	1	-4	1	0	0	1	
				1	0	0	1	-4	1	0	0	1

- Matrix A has this format (shown here for $\mathrm{h}=5$)
- Lot of Zeros!
- Five non-zero bands
- Top-left to bottom-right diagonals
- Main diagonal is all -4 (from center of the stencil)

Elliptic Equation - Computing Stencil

-4	1	0	0	1								
1	-4	1	0	0	1							
0	1	-4	1	0	0	1						
0	0	1	-4	1	0	0	1					
1	0	0	1	-4	1	0	0	1				
	1	0	0	1	-4	1	0	0	1			
		1	0	0	1	-4	1	0	0	1		
			1	0	0	1	-4	1	0	0	1	
				1	0	0	1	-4	1	0	0	1

- Top-left to bottom-right diagonals
- Main diagonal is all -4 (from center of the stencil)
- What about others?

Elliptic Equation - Computing Stencil

-4	1	0	0	1								
1	-4	1	0	0	1							
0	1	-4	1	0	0	1						
0	0	1	-4	1	0	0	1					
1	0	0	1	-4	1	0	0	1				
	1	0	0	1	-4	1	0	0	1			
		1	0	0	1	-4	1	0	0	1		
			1	0	0	1	-4	1	0	0	1	
				1	0	0	1	-4	1	0	0	1

- Lot of Zeros!
- Five non-zero bands

Right

- Top-left to bottom-right diagonals
- Main diagonal is all -4 (from center of the stencil)
- What about others?

Elliptic Equation - Computing Stencil

-4	1	0	0	1								
1	-4	1	0	0	1							
0	1	-4	1	0	0	1						
0	0	1	-4	1	0	0	1					
1	0	0	1	-4	1	0	0	1				
	1	0	0	1	-4	1	0	0	1			
		1	0	0	1	-4	1	0	0	1		
			1	0	0	1	-4	1	0	0	1	
				1	0	0	1	-4	1	0	0	1

- Five non-zero bands
- Top-left to bottom-right diagonals
- Main diagonal is all -4 (from center of the stencil)
- What about others?

Elliptic Equation - Computing Stencil

| -4 | 1 | 0 | 0 | 1_{1} | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | -4 | 1 | 0 | 0 | 1 | | | | | | | |
| 0 | 1 | -4 | 1 | 0 | 0 | 1 | | | | | | |
| 0 | 0 | 1 | -4 | 1 | 0 | 0 | 1 | | | | | |
| 1 | 0 | 0 | 1 | -4 | 1 | 0 | 0 | 1 | | | | |
| | 1 | 0 | 0 | 1 | -4 | 1 | 0 | 0 | 1 | | | |
| | | 1 | 0 | 0 | 1 | -4 | 1 | 0 | 0 | 1 | | |
| | | | 1 | 0 | 0 | 1 | -4 | 1 | 0 | 0 | 1 | |
| | | | | 1 | 0 | 0 | 1 | -4 | 1 | 0 | 0 | 1 |

- Lot of Zeros!
- Five non-zero bands

Top

- Top-left to bottom-right diagonals
- Main diagonal is all -4 (from center of the stencil)
- What about others?

Computing Stencil - Iterative Methods

- Jacobi and Gauss-Seidel
- Start with an initial guess for the unknowns $\mathrm{u}^{0}{ }_{i j}$
- Improve the guess $\mathrm{u}^{1}{ }_{\mathrm{ij}}$
- Iterate: derive the new guess, $\mathrm{u}^{\mathrm{n}+1}{ }_{\mathrm{ij}}$, from old guess $\mathrm{u}_{\mathrm{ij}}{ }^{\text {i }}$
- Solution (Jacobi):
- Approximate the value of the center with old values of (left, right, top, bottom)

Background - Jacobi Iteration

- Goal: find solution to system of equations represented by AX=B
- Approach: find sequence of approximations X^{\ominus} $X^{1} X^{2}$. . . X^{n} which gradually approach X.
- X^{θ} is called initial guess, $X^{i}{ }^{\prime}$ s called iterates
- Method:
- Split A into A=L+D+U e.g.

$$
\begin{gathered}
\left(\begin{array}{cccc}
-4 & 1 & 1 & 0 \\
1 & -4 & 0 & 1 \\
1 & 0 & -4 & 1 \\
0 & 1 & 1 & -4
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right)+\left(\begin{array}{cccc}
-4 & 0 & 0 & 0 \\
0 & -4 & 0 & 0 \\
0 & 0 & -4 & 0 \\
0 & 0 & 0 & -4
\end{array}\right)+\left(\begin{array}{cccc}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \\
\underset{\mathrm{N}}{\mathrm{~N}} \mathrm{~N}
\end{gathered}
$$

Background - Jacobi Iteration

- Compute: $\mathrm{AX}=\mathrm{B}$ is $(\mathrm{L}+\mathrm{D}+\mathrm{U}) \mathrm{X}=\mathrm{B}$

$$
\begin{aligned}
& \Rightarrow D X=-(L+U) X+B \\
& \Rightarrow D X^{(k+1)}=-(L+U) X^{k}+B \quad \quad \text { itera } \\
& \Rightarrow X^{(k+1)}=D^{-1} \quad\left(-(L+U) X^{k}\right)+D^{-1} B
\end{aligned}
$$

(As long as D has no zeros in the diagonal $X^{(k+1)}$ is obtained)

- E.g. $\left(\begin{array}{cccc}-4 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & -4\end{array}\right)\left(\begin{array}{l}u_{11} \\ u_{21} \\ u_{12} \\ u_{22}\end{array}\right)^{1}=-\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right)\left(\begin{array}{l}u_{11} \\ u_{21} \\ u_{12} \\ u_{22}\end{array}\right)^{0}+\left(\begin{array}{c}0 \\ -1 / 3 \\ -1 / 9 \\ -10 / 9\end{array}\right)$,
$u_{i j}$'s value in (1) st iteration is computed based on $u_{i j}$ values computed in (0) ${ }^{\text {th }}$ iteration

Background - Jacobi Iteration

- E.g. $\left(\begin{array}{cccc}-4 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & -4\end{array}\right)\left(\begin{array}{l}u_{11} \\ u_{21} \\ u_{12} \\ u_{22}\end{array}\right)^{\mathbf{k + 1}}=-\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right)\left(\begin{array}{l}u_{11} \\ u_{21} \\ u_{12} \\ u_{22}\end{array}\right)^{\mathbf{k}}+\left(\begin{array}{c}0 \\ -1 / 3 \\ -1 / 9 \\ -10 / 9\end{array}\right)$,
$u_{i j}$'s value in ($\left.k+1\right)^{\text {st }}$ iteration is computed based on $u_{i j}$ values computed in (k) ${ }^{\text {th }}$ iteration
- Center's value is updated. Why?

5-point stencil

Computing Stencil

- $\boldsymbol{u}_{\text {right }}+\boldsymbol{u}_{\text {top }}-4 \boldsymbol{u}_{\text {center }}+\boldsymbol{u}_{\text {left }}+\boldsymbol{u}_{\text {bottom }}=\mathbf{0}$

$$
\Rightarrow u_{\text {center }}=1 / 4\left(u_{\text {right }}+u_{\text {top }}+u_{\text {left }}+u_{\text {bottom }}\right)
$$

- Applying Jacobi Iteration:

$$
u_{c e n t e r}^{(k+1)}=1 / 4\left(u_{r i g h t}^{(k)}+u_{t o p}^{(k)}+u_{l e f t}^{(k)}+u_{\text {bottom }}^{(k)}\right)
$$

Computing Stencil

- Example: applying Jacobi Iteration:

Computing Stencil

- Example: applying Jacobi Iteration:

Today: Computing Stencil

- Jacobi and Gauss-Seidel (Solution approach)
- Start with an initial guess for the unknowns $\mathrm{u}^{0}{ }_{\mathrm{ij}}$
- Improve the guess $\mathrm{u}^{1}{ }_{\mathrm{ij}}$
- Iterate: derive the new guess, $\mathrm{u}^{\mathrm{n}+1}{ }_{\mathrm{ij}}$, from old guess $\mathrm{u}^{\mathrm{n}}{ }_{\mathrm{ij}}$
- Solution (Jacobi):
- Approximate the value of the center with old values of (left, right, top, bottom)

Elliptic Equation - Computing Stencil

- In every iteration, suppose we follow the computing order as shown (dashed):

In any iteration, what are all the points of a 5-point stencil already updated while computing $u_{i j}$?

Elliptic Equation - Computing Stencil

What are the points that are already computed at $\mathrm{u}_{\mathrm{i}, \mathrm{j}}$?

Background - Gauss-Seidel Iteration

- Compute: $A X=B$ is $(L+D+U) X=B$

$$
\begin{aligned}
& \Rightarrow \quad(L+D) X=-U X+B \\
& \Rightarrow \quad(L+D) X^{(k+1)}=-U X^{k}+B \quad \quad \text { (iterate step) } \\
& \Rightarrow X^{(k+1)}=(L+D)^{-1} \quad\left(-U X^{k}\right)+(L+D)^{-1} B
\end{aligned}
$$

(As long as $L+D$ has no zeros in the diagonal $X^{(k+1)}$ is obtained)

- E.g. $\left(\begin{array}{cccc}-4 & 0 & 0 & 0 \\ 1 & -4 & 0 & 0 \\ 1 & 0 & -4 & 0 \\ 0 & 1 & 1 & -4\end{array}\right)\left(\begin{array}{l}u_{11} \\ u_{21} \\ u_{12} \\ u_{22}\end{array}\right)^{1}=-\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}u_{11} \\ u_{21} \\ u_{12} \\ u_{22}\end{array}\right)+\left(\begin{array}{c}0 \\ -1 / 3 \\ -1 / 9 \\ -10 / 9\end{array}\right)$

Computing Stencil - Gauss-Seidel

- Gauss-Seidel: Applying for 2D Laplace Equation

$$
u_{\text {center }}^{(k+1)}=1 / 4\left(u_{\text {right }}^{(k)}+u_{\text {top }}^{(k)}+u_{\text {left }}^{(k+1)}+u_{\text {bottom }}^{(k+1)}\right)
$$

- Gauss-Seidel: Observations
- For a given problem and initial guess, Gauss-seidel converges faster than Jacobi
- An iteration in Jacobi can be parallelized but not gauss-seidel

IMPORTANT - Numbering the grid points

- Computing System of Equations: \quad ax=

$$
\begin{aligned}
& \mathrm{u}_{21}+\mathrm{u}_{12}-4 \mathrm{u}_{11}+0+0=0 \\
& 1 / 3+u_{22}-4 u_{21}+u_{11}+0=0 \\
& u_{22}+1 / 9-4 u_{12}+0+u_{11}=0 \\
& 2 / 3+4 / 9-4 u_{22}+u_{12}+u_{21}=0 \\
& \text { u11 u21 u12 u22 } \\
& \left.\begin{array}{rl}
\left(\begin{array}{cccc}
-4 & 1 & 1 & 0 \\
1 & -4 & 0 & 1 \\
1 & 0 & -4 & 1 \\
0 & 1 & 1 & -4
\end{array}\right) & \left(\begin{array}{l}
u_{11} \\
u_{21} \\
u_{12} \\
u_{22}
\end{array}\right)
\end{array}\right)=\left(\begin{array}{c}
0 \\
\mathbf{x} \\
-1 / 3 \\
-1 / 9 \\
-10 / 9
\end{array}\right)
\end{aligned}
$$

IMPORTANT - Numbering the grid points

- Computing System of Equations: \quad ax=

$$
\begin{aligned}
& \mathrm{u}_{21}+\mathrm{u}_{12}-4 \mathrm{u}_{11}+0+0=0 \\
& 1 / 3+u_{22}-4 u_{21}+u_{11}+0=0 \\
& u_{22}+1 / 9-4 u_{12}+0+u_{11}=0 \\
& 2 / 3+4 / 9-4 u_{22}+u_{12}+u_{21}=0 \\
& \begin{aligned}
&\left(\begin{array}{cccc}
\mathbf{u 1 1} & \mathbf{u 1 2} \mathbf{~ u 2 1 ~ u 2 2 ~} \\
-4 & 1 & 1 & 0 \\
1 & 0 & -4 & 1 \\
1 & -4 & 0 & 1 \\
0 & 1 & 1 & -4
\end{array}\right)\left(\begin{array}{l}
u_{11} \\
u_{12} \\
u_{21} \\
u_{22}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\mathbf{x} \\
-1 / 9 \\
-1 / 3 \\
-10 / 9
\end{array}\right) \\
& \mathbf{B}
\end{aligned}
\end{aligned}
$$

IMPORTANT - Numbering the grid points

1	2	3	4	5	6	7	8	9	\ldots

-4	1	0	0	1					
1	-4	1	0	0	1				
0	1	-4	1	0	0	1			
0	0	1	-4	1	0	0	1		
1	0	0	1	-4	1	0	0	1	
	1	0	0	1	-4	1	0	0	1
		1	0	0	1	-4	1	0	0
			1	0	0	1	-4	1	0
				1	0	0	1	-4	1

- Refer to class notes for FEM

