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Recap



Discretization

 All problems with ‘continuous’ quantities don't

require discretization
— Most often they do.

* When discretization is done:
— How refined is your discretization depends on certain

parameters: step-size, cell shape and size. E.qg.
« Size of the largest cell (PDEs in FEM),
« Step size in ODEs

— Accuracy of the solution is of prime concern
 Discretization always gives an approximate solution. Why?

* Errors may creep in. Must provide an estimate of error.



Accuracy

Discretization error

— |Is because of the way discretization is done

— E.g. use more number of rays to minimize discretization
error in ray tracing

Solution error

— The equation to be solved influences solution error

— E.g. use more number of iterations in PDEs to minimize
solution error

Accuracy of the solution depends on both solution
and discretization errors

Accuracy also depends on cell shape



Error Estimate

* You will have to deal with errors in the presence of

discretization
— Providing error estimate is necessary

e Apriori error estimate

— Gives insight on whether a discretization strategy is
suitable or not

— Depends on discretization parameter

— Properties of the (unknown) exact solution

— Error is bound by: Ch? where, C depends on exact
solution, h is discretization parameter, and p is a fixed
exponent. Assumption: exact solution is differentiable,
typically, p+1 times.
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Error Estimate

e Aposteriori error estimate
— |Is estimation of the error in computed (Approximate)
solution and does not depend on information about
exact solution
— E.g. Sleipner-A oll rig disaster



Cell Shape

. 2D: A

triangle guadrilateral

« 3D: triangular or quadrilateral faced. E.g.

Tetrahedron: 4 vertices, 4 edges, 4/\ faces
oo [Pt Pyramid: 5 vertices, 8 edges, 4 /\ and 1 L] face

-~ Triangular prism: 6 vertices, 9 edges, 2/\ and 3] faces
< ﬂ Hexahedron: 8 vertices, 12 edges, 6 (] faces

Triangular Prism

Hexahedron

source: wikipedia



Structured Grids

« Have regular connectivity between cells

— 1.e. every cell is connected to a predictable number of
neighbor cells

* Quadrilateral (in 2D) and Hexahedra (in 3D) are
most common type of cells

« Simplest grid Is a rectangular region with
uniformly divided rectangular cells (in 2D).

credits: nanohub.org



Structured Grids — Problem
Statement

* Given:
— A geometry
— A mathematical model (partial differential equation (PDE))
— Certain conditions / constraints / known values etc.

« Goal:
1. Discretize into a grid of cells

2. Approximate the PDE on the grid
3. Solve the PDE on the grid



PDES

consider a function u = u(x, t) satisfying the
second-order PDE:

A—+B

0%u ou ou
Py +Cﬁ+Da+Ea+FU—G,

Where A-G are given functions. This is a PDE of type:

Parabolic: if B4- 44AC = 0
Elliptic: if B4 - 4AC < 0
Hyperbolic: if B2 - 4AC > 0
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PDES

consider a function u = u(x, t) satisfying the
second-order PDE:

A—+B

+C—+D +E +Fu—G
dx0t

Where A-G are given functlons. ThIS IS a PDE of type:
Parabolic: if B2 - 4AC = 0 Heat equation: d,u —Au = f
Elliptic: if B4- 4AC < 0  Poisson problem: —Au = f
Hyperbolic: if B> - 4AC > 0

Wave equation: d,u —Au = f
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Approximating PDESs

Finite Difference Method

* Suppose y = f(x)
— Forward difference approximation to the first-order
derivative of f w.r.t. x Is:
ar (f (x+6x)—f(x))

dx ox

— Central difference approximation to the first-order
derivative of f w.r.t. x Is:
df - (f(x+68x)—f(x—6x))
dx 26x
— Central difference approximation to the second-order
derivative of f w.r.t. x Is:
d’f - (f(x+68x)=2f(x)+f(x—6x))
dx* (6x)?
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Boundary Conditions and
Classification

« Essential / Dirichlet

— Value of the dependent variable is specified

— E.g. temperature at the edges of the rod are constant 0°
 Neumann / Natural

— Value of the dependent variable is specified as gradient of
the dependent variable T e.g. dT/dx.

« Mixed / Robin

— value of the dependent variable is specified as a function
of the gradient. E.Q. —K(dTdx)x=L=hA(T—Tw)
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Boundary and Initial Value Problems

* Boundary Value Problems

— PDE contains independent variables that are only spatial
In nature (do not contain time).

0%¢ |, 9%¢
-EQ. 5+ 5y2 0

* |nitial Value Problems

— PDE contains independent variables that are spatial and
temporal In nature.
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Definitions (Laplace Equation and
Poisson Equation)

« Consider a region of interest R In, say, xy plane.
The following is a boundary-value problem:
62

™) + — = f(x,y) ,where

f Is a given functlon In R and
u = g ,where
the function g tells the value of function u at boundary of R

« If f = 0 everywhere, then Eqn. (1) is Laplace’s Equation
« If f # 0 somewhere in R, then Eqgn. (1) is Poisson’s Equation
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Application: 1D Heat Equation
du —Au = f(x)

* Recall notation: Au = )}_,0,,u - = 0u
« Example: heat conduction through a rod
> X
U, Up

0 [

e u = u(x,t) Is the temperature of the metal bar at
distance x from one end and at time t

« Goal: find u, temperature at different points along the
length of the rod (i.e. from O to )
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1D Heat Equation - Equations

« Example: heat conduction through a rod

» X

Uu; Up
0 [
ou 0°u
Py — aﬁ (O <x<l[lt> 0) a is thermal diffusivity

u0,t)=u;, t>0 |

u(l,t) =ug, t>0 ~— |Initial and boundary conditions

u(x,0) = f(x) N
x(l — x)
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1D Heat Equation - Analytical
Solution

« Analytical Solution:

u(x,t) =Z,‘?,?L=13me_m2“”2t/lzsin(@) :

where, B, = 2/1 folf(s) sin (mns) ds

l

But we are interested in a numerical solution
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1D Heat Equation - Approximating
Partial Derivatives

ou o*u
Plugging into Pl (sl
() 20 4wy
st (5x)2

This Is also called as difference equation because you
are computing difference between successive values of
a function involving discrete variables.

Recall: u*! denotes taking j steps along the length of the
rod (x axis) and n + 1 time steps (t axis)
19



1D Heat Equation - Approximating
Partial Derivatives

visualizing,

n+1 _ n n n
uj " =ruisg + (1 = 2r)u +rujgg

i=1j=|2 j=3 =11 j=]

t| 20te i o— n=>2
ot n=1

Ox 20x x =1

X
To compute the value of function at blue dot, you need 3 values indicated
by the red dots — 3-point stencil
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1D Heat Equation - Computation

visualizing,

n+1 _ n n n
uj " =ruisg + (1 = 2r)u +rujgg

j=1j=2j=3 j=J-1j=]

t n=>2
n=1
i x =1

v

All the red dot values are known. We begin with computing the temp at

blue dots (after time §t)
Order of computation: start from left and move to the right. Then move up ,;

(to the next time step, 26t)




Explicit Difference Method: Stability

« Given: =1,
u(0,t) =u;=0,
u(l,t) =ugp =0,
u(x,0) = f(x) =x( —x)

a=1,

e Choose: §x = 0.25,6t = 0.075
 Solve.
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Explicit Difference Method: Stability

Compute time-step 2 values

n+1 _ n n n
uj " =ruisg + (1 = 2r)u) + rufy

j j
uf =ui +r(uy —2uz +u3)=0.06851 j=1j=2 j=3j=4
ué =us +r(ui —2ul +ui)=-0.05173
us =ui +r(ul —2ul +ui)=0.06851

t| 20t @—@—— =27
ot n=1

x=0 éx 26x 36x x=l

X
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Explicit Difference Method: Stability

 Temperature at 26x after 25t time units went into
negative! (when the boundaries were held constant at 0)

— Example of instability

j=1j=2j=3j=4
us =uy +r(ut —2ul +ul)=-0.05173
t | 26t ® n=2
ot n=1

x=0 éx 26x 36x x=l

X

The solution is stable (for heat diffusion problem) only if the approximations
for u(x, t) do not get bigger in magnitude with time
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Explicit Difference Method: Stability

« The solution for heat diffusion problem is stable
only if:

Therefore, choose your time step in such a way
that:

But this I1s a severe limitation!
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Implicit Method: Stability

Overcoming instability:

ut =l + 120wty - 2ul Fuly +ul -

]

i=1j=|2 j=3 =11 j=]

S, D—
t| 26t v\bf n=>2
ot n=1
Ox 20x i x =1
x >

To compute the value of function at blue dot, you need 6 values indicated
by the red dots (known) and 3 additional ones (unknown) above



Implicit Method: Stability

« Overcoming instability:

ut =l + 120wty - 2ul Fuly +ul -

]

Extra Work mvolved to determine the values of
unknowns in a time step

— Solve a system of simultaneous equations. Is it worth
it?
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Exercise

* Consider the boundary-value problem:
u, + uyy = 0inthesquare0 < x < 1,0 <y <1
u = x?%y on the boundary.

Is this Laplace equation or Poisson equation?
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Elliptic Equation — Numerical Solution
for a 2D Problem

1. Approximate the derivatives of % + Z—; = f(x,y)
using central differences

2. Choose step sizes 6x and dy for x and y axis resp.
1. Both and x and y are independent variables here.
2. Choose 6x=6y=nh

3. Write difference equation for approximating the
PDE above

29



Elliptic Equation — Numerical Solution

1. Approximate the derivatives of — + — = f(x,y)

using central differences

N (ulx + 6x,y) — 2ulx,y) + u(x — 6x,y))
0x2 (6x)*

0%u  (ulx,y +8y) — 2u(x,y) + ulx,y — 6y))
0y? (6y)?

Where, 6x and 8y are step sizes along x and y direction resp.

30



Elliptic Equation — Numerical Solution

« Substituting In a_ +i =f(x,y):

(u(x + 6x,y) — Zu(x, y) + u(x — dx, y))
(6x)*

+

(u(x,y + 6y) — 2ulx,y) + u(x,y — 5y))
(6y)*

(u(x +6x,v) + ulx,y +8y) —4u(x,y) + u(x — 6x,y) + u(x,y — Sy))
(h)?
=f(xy)

31



Elliptic Equation — Numerical Solution

* Rewriting:
(u(x +6x,y) + u(x,y + 6y) —4ulx,y) + ulx — éx,y) + u(x,y — 6y))
(h)?
=f(xy)
Uipa,j + Ui gea AUy 5+ U 5+ U5, = Fy 5
h2
o
| Ui, 5 . .
J oo o 5-point stencill
®




Elliptic Equation — Computing Stencll

* Consider the boundary-value problem:
U, + uy,, = 0inthesquare 0 < x < 1,0 <y < 1

u = x%y on the boundary, h = 1/3

Ujpq,5 F U 414U 5t U35 5+ U; 5, =0
h2
Ugs Uj3 Ups  Usg 0 1/9 4‘9 .1
Ugy| Uizl Uyy U I %) u u
] 32 j 12 22L *2/3
Ug1| Ujql Uy U3J. 0 U U21? .1/3
0 9 0 )

u u u u
00 o1 20 3@‘ Py ®
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Elliptic Equation — Computing Stencll

. 1
» System of Equations - /A
(ui+1,j + Uy g0 -4U; 3t Uy 5+ Uy g s 0) 0 Uip| Uy, 2/3
j .
(%] u, uzjr .1/3
Right Top  Center Left Bottom ol o 0
® [
N T R U S R
u,, + U, - 4u;; + 0+ 0 = 0O
1/3+ u,, - 4u,; + u,; + @ = 0
u,, + 1/9 - 4u,, + 0+ u;; = ©

2/3 + 4/9 -4u,, +u, + U, = 0

34



Elliptic Equation — Computing Stencll

« Computing System of Equations:

u,, + U, - 4u;; + 0+ 0 = 0O
1/3 + uy,, - 4u,; + U, + 0 = 0
u,, + 1/9 - 4u, + 0+ u;; = ©

2/3+ 4/9 -4u,, +u,, + U,; = 0O

—4 11 0\ /uy 0
1 —4 0 1 |[uy|_|( —1/3 Ax=B
10 —4 1]\u,| | -1/9
01 1 —4/ \uy ~10/9
A X = B 1

Matrix A has only coefficients 1 .



Elliptic Equation — Computing Stencll

-4 11 (0 |O 1
1 |14 |1 (0 |O 1
o (1 |4 (1 |0 |O 1
O (0 1 |4 |1 |0 |0 |1
1 (0 |0 1 |4 |1 |0 |O 1
1 |0 |0 1 |4 |1 (0 |O 1
1 |0 |0 1 |41 |0 |O 1
1 |0 |0 1 (4 (1 |0 |O 1
1 |0 (0 (2 |4 (1 |0 |O 1

Matrix A has this format (shown here for h=5)
Lot of Zeros!
Five non-zero bands
» Top-left to bottom-right diagonals
Main diagonal is all -4 (from center of the stencil)
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uting Stencill

Elliptic Equation — Com

- 1 0 0 1
/IN-4 [1 |0 |0 |1
1 -4 11 0 0 1
O (O 1 -4 |1 0 0O |1
1 |0 0 1 4 11 O (O 1
1 0 0 1 -4 |1 |0 0 1
1 0 0 1 4 |1 0 0
1 |0 |01 74 [1 |0 1
1 [0 |[oNe /|4 |1 0 |1
* Lot of Zeros! \
« Five non-zero bands Left

» Top-left to bottom-right diagonals
« Main diagonal is all -4 (from center of the stencil)
* What about others?

37



Elllptlc Equatlon — Com

4 0
154\1001
0 [1 |[=&J1o |o |1
0 [0 |1 [=aJ1o |0 |1
110 |0 |1 [=aJ1o [0 |1
1 (o |0 |1 |aJ1Q |0 |1
1 (o |o |1 |-ay1 Q0 |0 |1
1 (o |0 |1 [-4N1 pa_ |0 |12
1 [0 |o |1 [-4N&/]o |o

Lot of Zeros!
Five non-zero bands
» Top-left to bottom-right diagonals

N

Right

Main diagonal is all -4 (from center of the stencil)

What about others?

uting Stencill
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Elliptic Equation — Computing Stencll

401 |0 [0 |1
1 |4 |1 0 |1
0 [1 |4 |1 |0 |0 |1
0o [0 |1 |4 |1 o |o |1
10 |0 |1 |4 |1 |o |0 |1
13 [0 [1 |4 |1 |0 [0 |1
1 Yo [0 |1 [-41 [0 |0 |1
1 Y [0 |1 |4 |1 o |0 |1
1 o [0 |1 [4 |1 o |o |1

Lot of Zeros! \

Five non-zero bands

» Top-left to bottom-right diagonals
Main diagonal is all -4 (from center of the stencil)
What about others?

Bottom

39



Elliptic Equation — Computing Stencll

41 [0 |0 (1
1 |4 |1 |0 |01
0 |1 [-4 |1 |0 |01
0|0 [1 |4 |1 |0 |01
110 |0 |1 [-4 |1 |0 |04
1 (o |0 |1 |4 |1 |0 |04
1 (o |0 |1 |41 |0 |oO
1 (o |0 |1 [-4 |1 |0 |oNg
1001-4100@

Lot of Zeros!
Five non-zero bands
» Top-left to bottom-right diagonals
Main diagonal is all -4 (from center of the stencil)
What about others?

Top

40



Computing Stenclil — Iterative Methods

« Jacobi and Gauss-Seidel
— Start with an initial guess for the unknowns u®;
— Improve the guess u?;

— Iterate: derive the new guess, u"!
un..
J

j » from old guess

« Solution (Jacobi):

— Approximate the value of the center with old values
of (left, right, top, bottom)

41



Background — Jacobi Iteration

« Goal: find solution to system of equations
represented by AX=B

« Approach: find sequence of approximations X°

Xt X2 . . . X" which gradually approach X.
- X% is called initial guess, X*’ s called iterates

* Method:
— Split Ainto A=L+D+U e.qg.

—4 1 1 0 0
1 —4 0 1) (1
1 0 —4 1] \1
011 —4 0

- O O

O R = O
\/

o OO O M
o OO M

42



Background — Jacobi Iteration

« Compute: AX=B is (L+D+U)X=B
= DX = -(L+U)X+B

= DX(k+1)= - (L+U)Xk+B (iterate step)
= XMk+D= p-1 (-(L+U)XK) + D-1B

(As long as D has no zeros in the diagonal X(k+1) js obtained)

—4 0 0 0\ /u,\L /0 1 1 0\ /u;\0 0
0 —4 0 0\[{uy|\_[10 0 1)/[uy -1/3
e E.Q. = - +
E.g 00 —4 0]\ uy, 1 0 0 1)\ up, -1/9 |’
00 0 —4/ \u, 0 1 1 0/ \uy —10/9
e

u;; ‘s valuein (1)s* iteration is computed based on u;; values

computed in (@)t" iteration
43



Background — Jacobi Iteration

—4 0 0 0\ /un\k+1 /0 0\ /U \K 0
O _4‘ O 0 u21 _ 1 1 u21 _1/3
¢ " " —_— - +
E g 0 0 —4 0 u'12 1 1 u12 _1/9 :
00 0 —4/ \uy 0 0/ \u,, —10/9

u;; ‘s valuein (k+1)** iteration is computed based on u;;
values computed in (k)" iteration

1
0
0
1

C

* Center's value is updated. Why?

j o9 5-point stencil

44




Computing Stencill

° uright + utop o 4ucenter + uleft + Upottom = 0

=> Ucenter = 1/4(uright + utop + uleft + ubottom)
* Applying Jacobi Iteration:

(k+1) _
center ~—

(k) (k) (k) (k)
1/4(uright + utop + uleft + ubottom)
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Computing Stencill

« Example: applying Jacobi Iteration:

(kt1) _ (k) (k) (k) (k)
Ucenter = 1/4(uright + utop + uleft + ubottom)
e f

ﬂ

. 1) Compute u,, using initial guess for u,, and

Ups| Uys| Usq U
13) oz Usg Haz & U,,. Uy, and u,, are known from boundary

J U, | Uy, ¢u3¥42$ J conditions
I
°

»

4_rii¥

Ui

[
»

46



Computing Stencill

« Example: applying Jacobi Iteration:

(kt1) _ (k) (k) (k) (k)
center ~ 1/4(uright + utop + uleft + ubottom)
L
-9

»
>

-9
+ 1) Compute u,; using initial guess for u,, and
Ups] Uzz| Usg Uy
® $ U,;. Uy, and u,, are known from boundary

J U, | Uy, | Usy u42$ conditions

2) Compute u,, using initial guess for
Un: Us;, and u,,. u,, are known from
U2y o/ & ® boundary conditions

ppe—

In 2); note that the initial guess for u,, is used even though u,; was
updated just before in 1)
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Today: Computing Stencil

« Jacobi and Gauss-Seidel (Solution approach)
— Start with an initial guess for the unknowns u®;
— Improve the guess u‘;

— lterate: derive the new guess, u"*?!
un..
1)

j » from old guess

 Solution (Jacobi):

— Approximate the value of the center with old values
of (left, right, top, bottom)

48



Elliptic Equation — Computing Stencll

* In every iteration, suppose we follow the
computing order as shown (dashed):

Ugs Ups Uzs  Uzs Ugs  Usg _ _
B In any iteration, what are all

“5&+ the points of a 5-point stencil
Uc, already updated while
t ¢ computing u;; ?
Us>
J
US A .
Usg j < ui.:j o

49




Elliptic Equation — Computing Stencll

Ugs Ujs Uy  Uzg Uy Uss

9 f #
Uga | Uqg uziu% U4&FU5§+
Ugz | Uj3] Up3| Uj u4¥u53
@ .
U | U 3 What are the points that are
%) 12 | Uy | Us U42$ Us, L 5
> already computed at u; ;"
u u
Holg Uirg UYag Usy “ 2 Uiefts Ubottom
.
® ® ®
i
.
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Background — Gauss-Seidel Iteration

« Compute: AX=B is (L+D+U)X=B
= (L+D)X = -UX+B

= (L+D)X(+1)= -uUXk+B (iterate step)
= X(&+= (L+D)-1 (-UXk) + (L+D)"1B

(As long as L+D has no zeros in the diagonal X(k+1) is obtained)
—4 O 0 0 u11 1 O 1 1 O u11 O
1 —4 0 O0ffuy|_ (00 0 1] uy —1/3
¢ n n P +
E.g 1 0 —4 0]\ up 00 0 1]\ up —-1/9
01 1 —4/ \uy, 0 0 0 0/ \uy, —~10/9
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Computing Stencil — Gauss-Seidel

« Gauss-Seidel: Applying for 2D Laplace Equation

(k+1) _ (k) (k) (k+1) (k+1)
center ~ 1/4(uright + utop + uleft bottom)

 Gauss-Seidel: Observations

— For a given problem and initial guess, Gauss-seidel
converges faster than Jacobi

— An iteration in Jacobi can be parallelized but not
gauss-seidel
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IMPORTANT — Numbering the grid

poINts
« Computing System of Equations: ax=s
u,, + U, - 4u;; + 0+ 0 = 0O
1/3 + uy,, - 4u,; + U, + 0 = 0
u,, + 1/9 - 4u, + 0+ u;; = ©

ull u2l1 ul2 u2?

-4 1 1 0\ /Uy 0

1 —4 0 1|[uy|_( —1/3
1 0 —4 1)\uy/| | =1/9
01 1 —4/ \uy —-10/9

A B

X
]
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IMPORTANT — Numbering the grid

poINts
« Computing System of Equations: ax=s
u,, + U, - 4u;; + 0+ 0 = 0O
1/3 + uy,, - 4u,; + U, + 0 = 0
u,, + 1/9 - 4u, + 0+ u;; = ©

ull ul2 u2l u2?

-4 1 1 0\ /upy 0

1 0 —4 1 \[ug|_|[ —1/9
1 —4 0 1 |Jluy/| | —1/3
0 1 1 —4/ \uy —-10/9

A X = B

54
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IMPORTANT — Numbering the grid
points
2

3+ 7 o 11,15L

| }

2] 6/ 1
*—
5.
o
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 Refer to class notes for FEM
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