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Matrix Algebra and Efficient 

Computation
• Pic source: the Parallel Computing Laboratory at U.C. Berkeley: A 

Research Agenda Based on the Berkeley View (2008)
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Discretization

• Cannot store/represent infinitely many 

continuous values

– To model turbulent features of flow through a pipe, 

say, I am interested in velocity and pressure at all 

points in a region of interest

1. Represent region of interest as a mesh of small discrete 

cells - discretization spacing

2. Solve equations for each cell

 Example: 
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diameter of the pipe = 5cm  
length=2.5cm 
discretization spacing = 0.1mm
(volume of cylinder = 𝜋𝑟2ℎ)

Exercise: how many variables do you need to declare?
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Discretization

• All problems with ‘continuous’ quantities don’t 

require discretization
– Most often they do.

• When discretization is done:
– How refined is your discretization depends on certain 

parameters: step-size, cell shape and size. E.g. 
• Size of the largest cell (PDEs in FEM),

• Step size in ODEs 

– Accuracy of the solution is of prime concern

• Discretization always gives an approximate solution. Why?

• Errors may creep in. Must provide an estimate of error. 
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Accuracy

• Discretization error
– Is because of the way discretization is done

– E.g. use more number of rays to minimize discretization 

error in ray tracing

• Solution error
– The equation to be solved influences solution error

– E.g. use more number of iterations in PDEs to minimize 

solution error

• Accuracy of the solution depends on both solution 

and discretization errors

• Accuracy also depends on cell shape
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Error Estimate

• You will have to deal with errors in the presence of 

discretization
– Providing error estimate is necessary

• Apriori error estimate
– Gives insight on whether a discretization strategy is 

suitable or not

– Depends on discretization parameter

– Properties of the (unknown) exact solution

– Error is bound by: Chp  where, C depends on exact 

solution, h is discretization parameter, and p is a fixed 

exponent. Assumption: exact solution is differentiable, 

typically, p+1 times.
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Error Estimate

• Aposteriori error estimate
– Is estimation of the error in computed (Approximate) 

solution and does not depend on information about 

exact solution

– E.g. Sleipner-A oil rig disaster
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Exercise

– does increasing mesh size always yield better 

accuracy? 

– does decreasing cell size always yield better 

accuracy? 

– How does changing mesh size affect 

computational cost?

– How does changing cell size affect 

computational cost?
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Cell Shape

• 2D:

• 3D: triangular or quadrilateral faced. E.g.

9

triangle quadrilateral

source: wikipedia

Tetrahedron: 4 vertices, 4 edges, 4   faces

Pyramid: 5 vertices, 8 edges, 4    and 1        face

Triangular prism: 6 vertices, 9 edges, 2    and 3       faces

Hexahedron: 8 vertices, 12 edges, 6        faces  
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Structured Grids

• Have regular connectivity between cells

– i.e. every cell is connected to a predictable number of 

neighbor cells

• Quadrilateral (in 2D) and Hexahedra (in 3D) are 

most common type of cells

• Simplest grid is a rectangular region with 

uniformly divided rectangular cells (in 2D). 
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credits: nanohub.org
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Structured Grids – Problem 

Statement
• Given:

– A geometry

– A mathematical model (partial differential equation)

– Certain conditions / constraints / known values etc.

• Goal:

– Discretize into a grid of cells

– Approximate the PDE on the grid

– Solve the PDE on the grid 
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Structured Grids - Representation

• Because of regular connectivity between cells

– Cells can be identified with indices (x,y) or  (x,y,z) and 

neighboring cell info can be obtained.

– How about identifying a cell here?
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Given:

𝜉 = (“Xi”) radius

𝜂 = (“Eta”) angle

Compute:

x =
1

2
+ 𝜉 cos 𝜋𝜂

y =
1

2
+ 𝜉 sin(𝜋𝜂)Nikhil Hegde



Structured Grids - Representation

• Assume that we have a grid. 

• Task:

– Approximate Partial Differential Equations (PDEs)

– Solve/Implement PDEs (turning PDEs into large set of 

algebraic equations)
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Mathematical Model of the Grid

• Partial Differential Equations (PDEs):

– Navier-Stokes equations to model water, blood flow, 

weather forecast, aerodynamics etc.

– Elasticity (Lame-Navier equations)

– Nutrient transport in blood flow

– Heat conduction: how heat conducts/diffuses through a 

material given the temperature at boundaries? 

– Mechanics: how does a mass reach from point p1 to point p2 

in shortest time under gravitational forces?
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Notation and Terminology

•
𝜕𝑢

𝜕𝑥
= 𝜕𝑥𝑢

•
𝜕2𝑢

𝜕𝑥𝜕𝑦
= 𝜕𝑥𝑦𝑢

•
𝜕𝑢

𝜕𝑡
= 𝜕𝑡𝑢, t usually denotes time.

• Laplace operator (L) : of a two-times 

continuously differentiable scalar-valued function 

𝑢: ℝ𝑛 → ℝ

Δ𝑢 = σ𝑘=1
𝑛 𝜕𝑘𝑘𝑢
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Important PDEs

• Three important types (not a complete 

categorization by any means): 

– Poisson problem: −Δ𝑢 = 𝑓 (elliptic)

– Heat equation: 𝜕𝑡𝑢 − Δ𝑢 = 𝑓 (parabolic. Here, 𝜕𝑡𝑢 =
𝜕𝑢

𝜕𝑡
= partial derivative w.r.t. time)

– Wave equation: 𝜕𝑡
2𝑢 − Δ𝑢 = 𝑓 (Hyperbolic. Here, 

𝜕𝑡
2𝑢 =

𝜕2𝑢

𝜕𝑡𝜕𝑡
= second-order partial derivative w.r.t. 

time)
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Application: Heat Equation

• Example: heat conduction through a rod

• 𝑢 = 𝑢(𝑥, 𝑡) is the temperature of the metal bar at 

distance 𝑥 from one end and at time 𝑡

• Goal: find 𝑢

Nikhil Hegde 17

𝑢𝐿 𝑢𝑅

𝑥

𝑙0



Initial and Boundary Conditions

• Example: heat conduction through a rod

• Metal bar has length  𝑙 and the ends are held at constant 

temperatures 𝑢𝐿 at the left and 𝑢𝑅 at the right

• Temperature distribution at the initial time is known 𝑓(𝑥), 

with 𝑓 0 = 𝑢𝐿 and 𝑓 𝑙 = 𝑢𝑅
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𝑢𝐿 𝑢𝑅

𝑥

𝑙0



Equations

• Example: heat conduction through a rod
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𝑢𝐿 𝑢𝑅

𝑥

𝑙0

𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2  0 < 𝑥 < 𝑙, 𝑡 > 0   

    𝛼 is thermal diffusivity 

 (a constant if the material is homogeneous and isotropic.

 copper = 1.14 cm2 s-1, aluminium = 0.86 cm2 s-1)



Equations

• Example: heat conduction through a rod

• Exercise: what kind of a PDE is this? (Poisson/Heat/Wave?)
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𝑢𝐿 𝑢𝑅

𝑥

𝑙0

𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2  0 < 𝑥 < 𝑙, 𝑡 > 0   

    𝛼 is thermal diffusivity 

 (a constant if the material is homogeneous and isotropic.

 copper = 1.14 cm2 s-1, aluminium = 0.86 cm2 s-1)



Equations

• Example: heat conduction through a rod
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𝑢𝐿 𝑢𝑅

𝑥

𝑙0

𝜕𝑡𝑢 = 𝛼Δ𝑢  as per the notation mentioned earlier



Equations

• Example: heat conduction through a rod
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𝑢𝐿 𝑢𝑅

𝑥

𝑙0

𝜕𝑡𝑢 = 𝛼Δ𝑢  

Can also be written as:

𝜕𝑡𝑢 − 𝛼Δ𝑢 = 0



Equations

• Example: heat conduction through a rod
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𝑢𝐿 𝑢𝑅

𝑥

𝑙0

𝜕𝑡𝑢 − 𝛼Δ𝑢 = 0 ,

Based on initial and boundary conditions:

𝑢 0, 𝑡 = 𝑢𝐿 ,

𝑢 𝑙, 𝑡 = 𝑢𝑅 ,

𝑢(𝑥, 0)  =  𝑓(𝑥) 



Equations

• Summarizing:

1. 𝜕𝑡𝑢 − 𝛼Δ𝑢 = 0, 0<x<l, t>0

2. 𝑢 0, 𝑡 = 𝑢𝐿, 𝑡 > 0 

3. 𝑢 𝑙, 𝑡 = 𝑢𝑅 , 𝑡 > 0

4. 𝑢 𝑥, 0 =  𝑓 𝑥 , 0 < 𝑥 < 𝑙

• Solution:

𝑢 𝑥, 𝑡 = σ𝑚=1
∞ 𝐵𝑚𝑒−𝑚2𝛼𝜋2𝑡/𝑙2

sin(
𝑚𝜋𝑥

𝑙
) ,

   where, 𝐵𝑚 = 2/𝑙 0

𝑙
𝑓 𝑠 sin

𝑚𝜋𝑠

𝑙
𝑑𝑠
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Equations

• Summarizing:

1. 𝜕𝑡𝑢 − 𝛼Δ𝑢 = 0, 0<x<l, t>0

2. 𝑢 0, 𝑡 = 𝑢𝐿, 𝑡 > 0 

3. 𝑢 𝑙, 𝑡 = 𝑢𝑅 , 𝑡 > 0

4. 𝑢 𝑥, 0 =  𝑓 𝑥 , 0 < 𝑥 < 𝑙

• Solution:

𝑢 𝑥, 𝑡 = σ𝑚=1
∞ 𝐵𝑚𝑒−𝑚2𝛼𝜋2𝑡/𝑙2

sin(
𝑚𝜋𝑥

𝑙
) ,

   where, 𝐵𝑚 = 2/𝑙 0

𝑙
𝑓 𝑠 sin

𝑚𝜋𝑠

𝑙
𝑑𝑠
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But we are interested in a numerical solution



Approximating Partial Derivatives

• Suppose 𝑦 = 𝑓(𝑥) 
– Forward difference approximation to the first-order 

derivative of 𝑓 w.r.t. 𝑥 is:

  
𝑑𝑓

𝑑𝑥
≈

𝑓 𝑥+𝛿𝑥 −𝑓 𝑥

𝛿𝑥
 

– Central difference approximation to the first-order 

derivative of 𝑓 w.r.t. 𝑥 is:

  
𝑑𝑓

𝑑𝑥
≈

𝑓 𝑥+𝛿𝑥 −𝑓 𝑥−𝛿𝑥

2𝛿𝑥
 

– Central difference approximation to the second-order 

derivative of 𝑓 w.r.t. 𝑥 is:

  
𝑑2𝑓

𝑑𝑥2 ≈
𝑓 𝑥+𝛿𝑥 −2𝑓 𝑥 +𝑓 𝑥−𝛿𝑥

𝛿𝑥 2  
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Approximating Partial Derivatives

• In example heat application 𝑓 = 𝑢 = 𝑢(𝑥, 𝑡) and
𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2 

– First, approximating 
𝜕𝑢

𝜕𝑡
:

𝜕𝑢

𝜕𝑡
≈

𝑢 𝑥,𝑡+𝛿𝑡 −𝑢 𝑥,𝑡

𝛿𝑡
, where 𝛿𝑡 is a small increment in time 

– Next, approximating 
𝜕2𝑢

𝜕𝑥2 :

𝜕2𝑢

𝜕𝑥2 ≈
𝑢 𝑥+𝛿𝑥,𝑡 −2𝑢 𝑥,𝑡 +𝑢 𝑥−𝛿𝑥,𝑡

𝛿𝑥 2 , where 𝛿𝑥 is a small 

increment in space (along the length of the rod) 
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Approximating Partial Derivatives

• Divide length 𝑙 into 𝐽 equal divisions: 𝛿𝑥 =  𝑙/𝐽 (space 

step)

• Choose an appropriate 𝛿𝑡 (time step) 

Nikhil Hegde 28

2𝛿t
𝛿t 

𝑛 = 2
𝑛 = 1 

j=1 j=2  j=3    j=J-1  j=J

𝛿𝑥 2𝛿𝑥 𝑥 = 𝑙 

𝑡

𝑥



Approximating Partial Derivatives

• Find sequence of numbers which approximate 𝑢 at a 

sequence of (𝑥, 𝑡) points (i.e. at the intersection of horizontal and 

vertical lines below)

• Approximate the exact solution 𝑢 𝑗 × 𝛿𝑥, 𝑛 × 𝛿𝑡  using 

the approximation for partial derivatives mentioned 

earlier
Nikhil Hegde 29

2𝛿t
𝛿t 

𝑛 = 2
𝑛 = 1 

j=1 j=2  j=3    j=J-1  j=J

𝛿𝑥 2𝛿𝑥 𝑥 = 𝑙 

𝑡

𝑥



Approximating Partial Derivatives

𝜕𝑢

𝜕𝑡
≈

𝑢 𝑥, 𝑡 + 𝛿𝑡 − 𝑢 𝑥, 𝑡

𝛿𝑡

   = 
(𝑢𝑗

𝑛+1−𝑢𝑗
𝑛)

𝛿𝑡

where uj
n+1 denotes taking 𝑗 steps along 𝑥 direction and 

𝑛 + 1 steps along 𝑡 direction 

Similarly, 
𝜕2𝑢

𝜕𝑥2 ≈
𝑢 𝑥+𝛿𝑥,𝑡 −2𝑢 𝑥,𝑡 +𝑢 𝑥−𝛿𝑥,𝑡

𝛿𝑥 2  

  =
(𝑢𝑗+1

𝑛 −2 𝑢𝑗
𝑛+𝑢𝑗−1

𝑛 )

𝛿𝑥 2
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Approximating Partial Derivatives

Plugging into 
𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2 :

This is also called as difference equation because you 

are computing difference between successive values of 

a function involving discrete variables.  
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(𝑢𝑗
𝑛+1−𝑢𝑗

𝑛)

𝛿𝑡
= 𝛼

(𝑢𝑗+1
𝑛 −2 𝑢𝑗

𝑛 + 𝑢𝑗−1
𝑛 )

𝛿𝑥 2



Approximating Partial Derivatives

Simplifying:
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𝑢𝑗
𝑛+1 = 𝑢𝑗

𝑛 + 𝑟(𝑢𝑗+1
𝑛 −2 𝑢𝑗

𝑛 + 𝑢𝑗−1
𝑛 )

= 𝑟𝑢𝑗−1
𝑛 + 1 − 2𝑟 𝑢𝑗

𝑛 + 𝑟𝑢𝑗+1
𝑛 , 

𝑤ℎ𝑒𝑟𝑒 𝑟 = 𝛼
𝛿𝑡

𝛿𝑥 2



Approximating Partial Derivatives

visualizing, 
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2𝛿t
𝛿t 

𝑛 = 2
𝑛 = 1 

j=1 j=2  j=3    j=J-1  j=J

𝛿𝑥 2𝛿𝑥 𝑥 = 𝑙 

𝑡

𝑥
To compute the value of function at blue dot, you need 3 values indicated 

by the red dots – 3-point stencil

𝑢𝑗
𝑛+1 = 𝑟𝑢𝑗−1

𝑛 + 1 − 2𝑟 𝑢𝑗
𝑛 + 𝑟𝑢𝑗+1

𝑛



Approximating Partial Derivatives

• Initial and boundary conditions tell us that:

• 𝑢0
0, 𝑢1

0 𝑢2
0, … . 𝑢𝐽

0   are known (at time t=0, the temperature at 

all points along the distance is known as indicated by 𝑓(𝑥) = 

𝑓𝑗).

• 𝑢0
1 is 𝑢𝐿 , 𝑢𝐽

1 is 𝑢𝑅

• Now compute points on the grid from left-to-right:
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𝑢 0, 𝑡 = 𝑢𝐿 ,

𝑢 𝑙, 𝑡 = 𝑢𝑅 ,

𝑢(𝑥, 0)  =  𝑓(𝑥) 



Approximating Partial Derivatives

• Now compute points on the grid from left-to-right:

• This constitutes the computation done in the first time step.

• Now do the second time step computation…and so on..
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𝑢1
1 = 𝑢1

0 + 𝑟 𝑢0
0 −2𝑢1

0 +𝑢2
0

𝑢2
1 = 𝑢2

0 + 𝑟 𝑢1
0 −2𝑢2

0 +𝑢3
0

.

.

 𝑢𝐽−1
1  = 𝑢𝐽−1

0 + 𝑟 𝑢𝐽−2
0 −2𝑢𝐽−1

0 +𝑢𝐽
0



Explicit Difference Method: Stability

• Given:

• Choose: 𝛿𝑥 = 0.25, 𝛿𝑡 = 0.075 

• Solve.
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𝑙 = 1, 
𝑢 0, 𝑡 = 𝑢𝐿= 0,

𝑢 𝑙, 𝑡 = 𝑢𝑅 = 0,

𝑢(𝑥, 0)  =  𝑓 𝑥  = 𝑥 𝑙 − 𝑥
𝛼 = 1, 



Explicit Difference Method: Stability

• Initialize 𝑢𝑗
0 values from initial and boundary 

conditions i.e. get time-step 0 values 
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2𝛿t
𝛿t 

𝑛 = 2
𝑛 = 1 

j=1 j=2  j=3 j=4

𝑥=0 𝛿𝑥 2𝛿𝑥 3𝛿𝑥 x=𝑙 

𝑡

𝑥

𝑢0
0 = 0

𝑢1
0 = 𝑓(𝛿𝑥) = 𝛿𝑥(𝑙 − 𝛿𝑥) = .1875

𝑢2
0 = 𝑓(2𝛿𝑥) = 2𝛿𝑥(𝑙 − 2𝛿𝑥) = .25

𝑢3
0 = 𝑓(3𝛿𝑥) = 3𝛿𝑥(𝑙 − 3𝛿𝑥) = .1875

𝑢4
0 = 0



Explicit Difference Method: Stability

• Compute time-step 1 values
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𝑢𝑗
𝑛+1 = 𝑟𝑢𝑗−1

𝑛 + 1 − 2𝑟 𝑢𝑗
𝑛 + 𝑟𝑢𝑗+1

𝑛  

2𝛿t
𝛿t 

𝑛 = 2
𝑛 = 1 

j=1 j=2  j=3 j=4

𝑥=0 𝛿𝑥 2𝛿𝑥 3𝛿𝑥 x=𝑙 

𝑡

𝑥



Explicit Difference Method: Stability

• Compute time-step 1 values
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𝑢𝑗
𝑛+1 = 𝑟𝑢𝑗−1

𝑛 + 1 − 2𝑟 𝑢𝑗
𝑛 + 𝑟𝑢𝑗+1

𝑛  

2𝛿t
𝛿t 

𝑛 = 2
𝑛 = 1 

j=1 j=2  j=3 j=4

𝑥=0 𝛿𝑥 2𝛿𝑥 3𝛿𝑥 x=𝑙 

𝑡

𝑥

What about values of 𝑢(𝑥, 𝑡) at      ?



Explicit Difference Method: Stability

• Compute time-step 1 values
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𝑢𝑗
𝑛+1 = 𝑟𝑢𝑗−1

𝑛 + 1 − 2𝑟 𝑢𝑗
𝑛 + 𝑟𝑢𝑗+1

𝑛  

2𝛿t
𝛿t 

𝑛 = 2
𝑛 = 1 

j=1 j=2  j=3 j=4

𝑥=0 𝛿𝑥 2𝛿𝑥 3𝛿𝑥 x=𝑙 

𝑡

𝑥

What about values of 𝑢(𝑥, 𝑡) at      ?

Get it from boundary conditions



Explicit Difference Method: Stability

• Compute time-step 1 values
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𝑢𝑗
𝑛+1 = 𝑟𝑢𝑗−1

𝑛 + 1 − 2𝑟 𝑢𝑗
𝑛 + 𝑟𝑢𝑗+1

𝑛  

2𝛿t
𝛿t 

𝑛 = 2
𝑛 = 1 

j=1 j=2  j=3 j=4

𝑥=0 𝛿𝑥 2𝛿𝑥 3𝛿𝑥 x=𝑙 

𝑡

𝑥

𝑟 = 𝛼𝛿𝑡/ 𝛿𝑥 2  = 1.2

𝑢1
1 = 𝑢1

0 + 𝑟 𝑢0
0 −2𝑢1

0 +𝑢2
0  = 0.03678



Explicit Difference Method: Stability

• Compute time-step 1 values
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𝑢𝑗
𝑛+1 = 𝑟𝑢𝑗−1

𝑛 + 1 − 2𝑟 𝑢𝑗
𝑛 + 𝑟𝑢𝑗+1

𝑛  

2𝛿t
𝛿t 

𝑛 = 2
𝑛 = 1 

j=1 j=2  j=3 j=4

𝑥=0 𝛿𝑥 2𝛿𝑥 3𝛿𝑥 x=𝑙 

𝑡

𝑥

𝑟 = 𝛼𝛿𝑡/ 𝛿𝑥 2  = 1.2

𝑢1
1 = 𝑢1

0 + 𝑟 𝑢0
0 −2𝑢1

0 +𝑢2
0 =0.03678

𝑢2
1 = 𝑢2

0 + 𝑟 𝑢1
0 −2𝑢2

0 +𝑢3
0 =0.1

𝑢3
1 = 𝑢3

0 + 𝑟 𝑢2
0 −2𝑢3

0 +𝑢4
0 =0.03678



Explicit Difference Method: Stability

• Compute time-step 2 values
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𝑢𝑗
𝑛+1 = 𝑟𝑢𝑗−1

𝑛 + 1 − 2𝑟 𝑢𝑗
𝑛 + 𝑟𝑢𝑗+1

𝑛  

2𝛿t
𝛿t 

𝑛 = 2
𝑛 = 1 

j=1 j=2  j=3 j=4

𝑥=0 𝛿𝑥 2𝛿𝑥 3𝛿𝑥 x=𝑙 

𝑡

𝑥

𝑢1
2 = 𝑢1

1 + 𝑟 𝑢0
1 −2𝑢1

1 +𝑢2
1 =0.06851

𝑢2
2 = 𝑢2

1 + 𝑟 𝑢1
1 −2𝑢2

1 +𝑢3
1 =-0.05173

𝑢3
2 = 𝑢3

1 + 𝑟 𝑢2
1 −2𝑢3

1 +𝑢4
1 =0.06851



Explicit Difference Method: Stability

• Temperature at 2𝛿𝑥 after 2𝛿𝑡 time units went into 

negative! (when the boundaries were held constant at 0)

– Example of instability
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2𝛿t
𝛿t 

𝑛 = 2
𝑛 = 1 

j=1 j=2  j=3 j=4

𝑥=0 𝛿𝑥 2𝛿𝑥 3𝛿𝑥 x=𝑙 

𝑡

𝑥

𝑢2
2 = 𝑢2

1 + 𝑟 𝑢1
1 −2𝑢2

1 +𝑢3
1 =-0.05173

The solution is stable (for heat diffusion problem) only if the approximations 

for 𝑢(𝑥, 𝑡) do not get bigger in magnitude with time



Explicit Difference Method: Stability

• The solution for heat diffusion problem is stable 

only if:

𝑟 ≤
1

2

Therefore, choose your time step in such a way 

that:

𝛿𝑡 ≤
𝛿𝑥2

2𝛼

    

  But this is a severe limitation!
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Implicit Method: Stability

• Overcoming instability: 
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2𝛿t
𝛿t 

𝑛 = 2
𝑛 = 1 

j=1 j=2  j=3    j=J-1  j=J

𝛿𝑥 2𝛿𝑥 𝑥 = 𝑙 

𝑡

𝑥
To compute the value of function at blue dot, you need 6 values indicated 

by the red dots (known) and 3 additional ones (unknown) above

𝑢𝑗
𝑛+1= 𝑢𝑗

𝑛  +  1/2 r( 𝑢𝑗−1
𝑛 − 2𝑢𝑗

𝑛 + 𝑢𝑗+1
𝑛 + 𝑢𝑗−1

𝑛+1 −

2𝑢𝑗
𝑛+1 + 𝑢𝑗+1

𝑛+1 )



Implicit Method: Stability

• Overcoming instability:

• Extra work involved to determine the values of 

unknowns in a time step

– Solve a system of simultaneous equations. Is it worth 

it?
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𝑢𝑗
𝑛+1= 𝑢𝑗

𝑛  +  1/2 r( 𝑢𝑗−1
𝑛 − 2𝑢𝑗

𝑛 + 𝑢𝑗+1
𝑛 + 𝑢𝑗−1

𝑛+1 −

2𝑢𝑗
𝑛+1 + 𝑢𝑗+1

𝑛+1 )



Suggested Reading

• J.W. Thomas. Numerical Partial Differential 

Equations: Finite Difference Methods

• Parabolic PDEs: 

https://learn.lboro.ac.uk/archive/olmp/olmp_reso

urces/pages/workbooks_1_50_jan2008/Workbo

ok32/32_4_prblc_pde.pdf
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https://learn.lboro.ac.uk/archive/olmp/olmp_resources/pages/workbooks_1_50_jan2008/Workbook32/32_4_prblc_pde.pdf
https://learn.lboro.ac.uk/archive/olmp/olmp_resources/pages/workbooks_1_50_jan2008/Workbook32/32_4_prblc_pde.pdf
https://learn.lboro.ac.uk/archive/olmp/olmp_resources/pages/workbooks_1_50_jan2008/Workbook32/32_4_prblc_pde.pdf


PDEs - Recap

• consider a function 𝑢 = 𝑢(𝑥, 𝑡) satisfying the 

second-order PDE:

𝐴
𝜕2𝑢

𝜕𝑥2 +𝐵
𝜕2𝑢

𝜕𝑥𝜕𝑡 
+ 𝐶

𝜕2𝑢

𝜕𝑡2 + 𝐷
𝜕𝑢

𝜕𝑥
+ 𝐸

𝜕𝑢

𝜕𝑡
+ 𝐹𝑢 = 𝐺 ,

Where A-G are given functions. This is a PDE of type:

• Parabolic: if 𝐵2 –  4𝐴𝐶 =  0 

• Elliptic: if 𝐵2 –  4𝐴𝐶 <  0

• Hyperbolic: if 𝐵2 –  4𝐴𝐶 >  0
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Important PDEs - Recap

• Poisson problem: −Δ𝑢 = 𝑓 (elliptic, independent of 

time.)

• Heat equation: 𝜕𝑡𝑢 − Δ𝑢 = 𝑓 (parabolic. Here, 

𝜕𝑡𝑢 =
𝜕𝑢

𝜕𝑡
= partial derivative w.r.t. time)

• Wave equation: 𝜕𝑡
2𝑢 − Δ𝑢 = 𝑓 (Hyperbolic. Here, 

𝜕𝑡
2𝑢 =

𝜕2𝑢

𝜕𝑡𝜕𝑡
= second-order partial derivative w.r.t. time)

Nikhil Hegde 50

Laplace operator (L) : of a two-times continuously 

differentiable scalar-valued function 𝑢: ℝ𝑛 → ℝ

Δ𝑢 = σ𝑘=1
𝑛 𝜕𝑘𝑘𝑢



Boundary Conditions and 

Classification

• Essential / Dirichlet

– Value of the dependent variable is specified

– E.g. temperature at the edges of the rod are constant 0°

• Neumann / Natural

– Value of the dependent variable is specified as gradient of 

the dependent variable T e.g. 𝑑𝑇/𝑑𝑥. 

• Mixed / Robin

– value of the dependent variable is specified as a function 

of the gradient. E.g. −𝐾(𝑑𝑇𝑑𝑥)𝑥=𝐿=ℎ𝐴(𝑇−𝑇∞) 
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Boundary and Initial Value Problems

• Boundary Value Problems

– PDE contains independent variables that are only spatial 

in nature (do not contain time). 

– E.g.
𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑦2 = 0

• Initial Value Problems 

– PDE contains independent variables that are spatial and 

temporal in nature.

– E.g.
𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
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Definitions 

• Consider a region of interest 𝑅 in, say, 𝑥𝑦 plane. 

The following is a boundary-value problem:

 
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 𝑓(𝑥, 𝑦) ,where 

  𝑓 is a given function in 𝑅 and

  𝑢 = 𝑔 ,where

  the function 𝑔 tells the value of function 𝑢 at boundary of 𝑅

• if 𝑓 = 0 everywhere, then Eqn. (1) is Laplace’s Equation

• if 𝑓 ≠ 0 somewhere in 𝑅, then Eqn. (1) is Poisson’s Equation
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Exercise

• Consider the boundary-value problem:

𝑢𝑥𝑥 +  𝑢𝑦𝑦 =  0 in the square 0 <  𝑥 <  1, 0 <  𝑦 <  1

𝑢 =  𝑥2𝑦 on the boundary.

Is this Laplace equation or Poisson equation?
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Elliptic Equation – Numerical Solution

1. Approximate the derivatives of 
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 𝑓 𝑥, 𝑦  

using central differences

2. Choose step sizes 𝛿𝑥 and 𝛿𝑦 for x and y axis resp.

1. Both and x and y are independent variables here.

2. Choose 𝛿𝑥= 𝛿𝑦 = ℎ

3. Write difference equation for approximating the 

PDE above
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Elliptic Equation – Numerical Solution

1. Approximate the derivatives of 
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 𝑓 𝑥, 𝑦  

using central differences

𝜕2𝑢

𝜕𝑥2
≈

𝑢 𝑥 + 𝛿𝑥, 𝑦 − 2𝑢 𝑥, 𝑦 + 𝑢 𝑥 − 𝛿𝑥, 𝑦

𝛿𝑥 2

𝜕2𝑢

𝜕𝑦2
≈

𝑢 𝑥, 𝑦 + 𝛿𝑦 − 2𝑢 𝑥, 𝑦 + 𝑢 𝑥, 𝑦 − 𝛿𝑦

𝛿𝑦 2

Where, 𝛿𝑥 and 𝛿𝑦 are step sizes along x and y direction resp.
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Elliptic Equation – Numerical Solution

• Substituting in 
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 𝑓 𝑥, 𝑦  :

𝑢 𝑥 + 𝛿𝑥, 𝑦 − 2𝑢 𝑥, 𝑦 + 𝑢 𝑥 − 𝛿𝑥, 𝑦

𝛿𝑥 2

            +

𝑢 𝑥, 𝑦 + 𝛿𝑦 − 2𝑢 𝑥, 𝑦 + 𝑢 𝑥, 𝑦 − 𝛿𝑦

𝛿𝑦 2

              =

𝑢 𝑥 + 𝛿𝑥, 𝑦 +  𝑢 𝑥, 𝑦 + 𝛿𝑦 − 4𝑢 𝑥, 𝑦 + 𝑢 𝑥 − 𝛿𝑥, 𝑦 +  𝑢 𝑥, 𝑦 − 𝛿𝑦

ℎ 2

    = 𝑓(𝑥, 𝑦)
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Elliptic Equation – Numerical Solution

• Representing 𝑢(𝑥, 𝑦)
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𝛿𝑦 

𝑗 = 1 

𝑖 = 1 𝑖 = 2 . . .

𝑥 − 𝛿𝑥 

𝒚

𝒙

𝑗 = 2

𝑥

𝑥 + 𝛿𝑥

𝑦 + 𝛿𝑦

𝑦 − 𝛿𝑦

𝑦

𝛿𝑥 𝛿𝑥 

𝛿𝑦 

𝒖(𝒙, 𝒚) Notation: ui,j



Elliptic Equation – Numerical Solution

• Representing 𝑢(𝑥 − 𝛿𝑥, 𝑦)
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𝛿𝑦 

𝑗 = 1 

𝑖 = 1 𝑖 = 2 . . .

𝑥 − 𝛿𝑥 

𝒚

𝒙

𝑗 = 2

𝑥

𝑥 + 𝛿𝑥

𝑦 + 𝛿𝑦

𝑦 − 𝛿𝑦

𝑦

𝛿𝑥 𝛿𝑥 

𝛿𝑦 

𝒖(𝒙 − 𝜹𝒙, 𝒚) Notation: ui-1,j



Elliptic Equation – Numerical Solution

• Representing 𝑢(𝑥 + 𝛿𝑥, 𝑦)
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𝛿𝑦 

𝑗 = 1 

𝑖 = 1 𝑖 = 2 . . .

𝑥 − 𝛿𝑥 

𝒚

𝒙

𝑗 = 2

𝑥

𝑥 + 𝛿𝑥

𝑦 + 𝛿𝑦

𝑦 − 𝛿𝑦

𝑦

𝛿𝑥 𝛿𝑥 

𝛿𝑦 

𝒖(𝒙 + 𝜹𝒙, 𝒚) Notation: ui+1,j



Elliptic Equation – Numerical Solution

• Representing 𝑢(𝑥, 𝑦 − 𝛿𝑦)
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𝛿𝑦 

𝑗 = 1 

𝑖 = 1 𝑖 = 2 . . .

𝑥 − 𝛿𝑥 

𝒚

𝒙

𝑗 = 2

𝑥

𝑥 + 𝛿𝑥

𝑦 + 𝛿𝑦

𝑦 − 𝛿𝑦

𝑦

𝛿𝑥 𝛿𝑥 

𝛿𝑦 

𝒖(𝒙, 𝒚 − 𝜹𝒚)

Notation: ui,j-1



Elliptic Equation – Numerical Solution

• Representing 𝑢(𝑥, 𝑦 + 𝛿𝑦)
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𝛿𝑦 

𝑗 = 1 

𝑖 = 1 𝑖 = 2 . . .

𝑥 − 𝛿𝑥 

𝒚

𝒙

𝑗 = 2

𝑥

𝑥 + 𝛿𝑥

𝑦 + 𝛿𝑦

𝑦 − 𝛿𝑦

𝑦

𝛿𝑥 𝛿𝑥 

𝛿𝑦 

𝒖(𝒙, 𝒚 + 𝜹𝒚)

Notation: ui,j+1



Elliptic Equation – Numerical Solution

• Rewriting:

𝑢 𝑥 + 𝛿𝑥, 𝑦 +  𝑢 𝑥, 𝑦 + 𝛿𝑦 − 4𝑢 𝑥, 𝑦 + 𝑢 𝑥 − 𝛿𝑥, 𝑦 +  𝑢 𝑥, 𝑦 − 𝛿𝑦

ℎ 2

    = 𝑓(𝑥, 𝑦)

ui+1,j + ui,j+1 - 4ui,j + ui-1,j + ui,j-1 =  fi,j
   h2

Nikhil Hegde 63𝑖

𝑗 5-point stencil
ui,j



Elliptic Equation – Computing Stencil

• Consider the boundary-value problem:

𝑢𝑥𝑥 +  𝑢𝑦𝑦  =  0 in the square 0 <  𝑥 <  1, 0 <  𝑦 <  1

𝑢 =  𝑥2𝑦 on the boundary, ℎ = 1/3
 

ui+1,j + ui,j+1 - 4ui,j + ui-1,j + ui,j-1 =  0

   h2
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𝑖

𝑗

u01u00 u20 u30

u11u01 u21 u31

u12u02 u22 u32

u13u03 u23 u33

𝑖

𝑗

00 0 0

u110 u21 1/3

u120 u22 2/3

1/90 4/9 1



Elliptic Equation – Computing Stencil

• Computing u11
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𝑖

𝑗

00 0 0

u110 u21 1/3

u120 u22 2/3

1/90 4/9 1

u21 + u12 - 4u11 + u01 + u10 =  0

u21 + u12 - 4u11 + 0 + 0 =  0

(ui+1,j + ui,j+1 - 4ui,j + ui-1,j + ui,j-1 = 0) 



Elliptic Equation – Computing Stencil

• Computing u21
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𝑖

𝑗

00 0 0

u110 u21 1/3

u120 u22 2/3

1/90 4/9 1

u31 + u22 - 4u21 + u11 + u20 =  0

1/3 + u22 - 4u21 + U11 + 0 =  0

(ui+1,j + ui,j+1 - 4ui,j + ui-1,j + ui,j-1 = 0) 



Elliptic Equation – Computing Stencil

• Computing u12
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𝑖

𝑗

00 0 0

u110 u21 1/3

u120 u22 2/3

1/90 4/9 1

u22 + u13 - 4u12 + u02 + u11 =  0

u22 + 1/9 - 4u12 + 0 + u11 =  0

(ui+1,j + ui,j+1 - 4ui,j + ui-1,j + ui,j-1 = 0) 



Elliptic Equation – Computing Stencil

• Computing u22
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𝑖

𝑗

00 0 0

u110 u21 1/3

u120 u22 2/3

1/90 4/9 1

u32 + u23 - 4u22 + u12 + u21 =  0

2/3 + 4/9 - 4u22 + u12 + u21 = 0

(ui+1,j + ui,j+1 - 4ui,j + ui-1,j + ui,j-1 = 0) 



Elliptic Equation – Computing Stencil

• System of Equations
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𝑖

𝑗

0

0

0 0

u110 u21 1/3

u120 u22 2/3

1/90 4/9 1

2/3 + 4/9 - 4u22 + u12 + u21 = 0

(ui+1,j + ui,j+1 - 4ui,j + ui-1,j + ui,j-1 = 0) 

u22 + 1/9 - 4u12 + 0 + u11 =  0

1/3 + u22 - 4u21 + u11 + 0 =  0

u21 + u12 - 4u11 + 0 + 0 =  0

CenterRight Top Left Bottom



Elliptic Equation – Computing Stencil

• Computing System of Equations:
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2/3 + 4/9 - 4u22 + u12 + u21 = 0

u22 + 1/9 - 4u12 + 0 + u11 =  0

1/3 + u22 - 4u21 + u11 + 0 =  0

u21 + u12 - 4u11 + 0 + 0 =  0

−4 1 1 0
1 − 4 0 1
1 0 − 4 1
0 1 1 − 4

𝑢11

𝑢21

𝑢12

𝑢22

=

0
−1/3
−1/9

−10/9

Matrix A has only coefficients

Ax=B

A            x    =      B 1
1  -4   1

1



Elliptic Equation – Computing Stencil

• Consider the boundary-value problem (here 𝑢𝑥𝑥 denotes 𝜕2𝑢/𝜕𝑥2):

𝑢𝑥𝑥 +  𝑢𝑦𝑦  =  0 in the square 0 <  𝑥 <  1, 0 <  𝑦 <  1

𝑢 =  𝑥2𝑦 on the boundary, 𝒉 = 𝟏/𝟓
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𝑖

𝑗

u01u00 u20 u30

u11u01 u21 u31

u12u02 u22 u32

u13u03 u23 u33

u40 u50

u41 u51

u42 u52

u43 u53u43 u53u33 u43 u53

u14u04 u24 u34 u44 u54

u15u05 u25 u35 u45 u55



Elliptic Equation – Computing Stencil

• Computing stencil (boundary values are all given): 16 

unknowns (u11 to u44), So, 16 equations.
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𝑖

𝑗

u01u00 u20 u30

u11u01 u21 u31

u12u02 u22 u32

u13u03 u23 u33

u40 u50

u41 u51

u42 u52

u43 u53u43 u53u33 u43 u53

u14u04 u24 u34 u44 u54

u15u05 u25 u35 u45 u55



Elliptic Equation – Computing Stencil
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-4 1 0 0 1

1 -4 1 0 0 1

0 1 -4 1 0 0 1

0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

• Lot of Zeros!

• Five non-zero bands

• Top-left to bottom-right diagonals

• Main diagonal is all -4 (from center of the stencil)

• What about others?



Elliptic Equation – Computing Stencil
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-4 1 0 0 1

1 -4 1 0 0 1

0 1 -4 1 0 0 1

0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

• Lot of Zeros!

• Five non-zero bands

• Top-left to bottom-right diagonals

• Main diagonal is all -4 (from center of the stencil)

• What about others?

Left



Elliptic Equation – Computing Stencil
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-4 1 0 0 1

1 -4 1 0 0 1

0 1 -4 1 0 0 1

0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

• Lot of Zeros!

• Five non-zero bands

• Top-left to bottom-right diagonals

• Main diagonal is all -4 (from center of the stencil)

• What about others?

Right 



Elliptic Equation – Computing Stencil
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-4 1 0 0 1

1 -4 1 0 0 1

0 1 -4 1 0 0 1

0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

• Lot of Zeros!

• Five non-zero bands

• Top-left to bottom-right diagonals

• Main diagonal is all -4 (from center of the stencil)

• What about others?

Bottom



Elliptic Equation – Computing Stencil
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-4 1 0 0 1

1 -4 1 0 0 1

0 1 -4 1 0 0 1

0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

• Lot of Zeros!

• Five non-zero bands

• Top-left to bottom-right diagonals

• Main diagonal is all -4 (from center of the stencil)

• What about others?

Top



Computing Stencil – Iterative Methods

• Jacobi and Gauss-Seidel

– Start with an initial guess for the unknowns u0
ij

– Improve the guess u1
ij

– Iterate: derive the new guess, un+1
ij , from old guess 

un
ij

• Solution (Jacobi):

– Approximate the value of the center with old values 

of (left, right, top, bottom)  
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Background – Jacobi Iteration

• Goal: find solution to system of equations 

represented by AX=B

• Approach: find sequence of approximations X0 
X1 X2 . . . Xn , which gradually approach X.
– X0 is called initial guess, Xi’s called iterates

• Method:
– Split A into A=L+D+U e.g.
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−4 1 1 0
1 − 4 0 1
1 0 − 4 1
0 1 1 − 4

=

0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0

 + 

−4 0 0 0
0 − 4 0 0
0 0 − 4 0
0 0 0 − 4

 + 

0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0

L D U



Background – Jacobi Iteration

• Compute: AX=B is (L+D+U)X=B
 DX = -(L+U)X+B

 DX(k+1)= -(L+U)Xk+B  (iterate step) 

  X(k+1)= D-1 (-(L+U)Xk) + D-1B

(As long as D has no zeros in the diagonal X(k+1) is obtained)

• E.g. 

−4 0 0 0
0 − 4 0 0
0 0 − 4 0
0 0 0 − 4

𝑢11

𝑢21

𝑢12

𝑢22

 = -

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

𝑢11

𝑢21

𝑢12

𝑢22

 + 

0
−1/3
−1/9

−10/9

, 

uij ‘s value in (1)st iteration is computed based on uij values 

computed in (0)th iteration 
80Nikhil Hegde
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Background – Jacobi Iteration

• E.g. 

−4 0 0 0
0 − 4 0 0
0 0 − 4 0
0 0 0 − 4

𝑢11

𝑢21

𝑢12

𝑢22

 = -

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

𝑢11

𝑢21

𝑢12

𝑢22

 + 

0
−1/3
−1/9

−10/9

, 

uij ‘s value in (k+1)st iteration is computed based on uij 
values computed in (k)th iteration

• Center’s value is updated. Why?
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kk+1

𝑖

𝑗 5-point stencil
ui,j



Computing Stencil – Recap

• Jacobi and Gauss-Seidel (Solution approach)

– Start with an initial guess for the unknowns u0
ij

– Improve the guess u1
ij

– Iterate: derive the new guess, un+1
ij , from old guess 

un
ij

• Solution (Jacobi):

– Approximate the value of the center with old values 

of (left, right, top, bottom)  
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