
1

CS601: Software Development for

Scientific Computing
Autumn 2024

Week11: Intermediate C++, Structured Grids

Nikhil Hegde

this

• Implicit variable defined by the compiler for every

class

– E.g. MyVec *this;

• All member functions have this as an implicit

first argument

– E.g.

int MyVec::GetVecLen() const;

 would actually be:

int MyVec::GetVecLen(MyVec* this) const;

Nikhil Hegde 2

Overloading +=

• MyVec v1;

 v1+=3;

• MyVec& MyVec::operator+=(double)

Nikhil Hegde 3

Overloading +=

• MyVec v1;

 v1+=3;

– MyVec& MyVec::operator+=(double)

• MyVec v2;

 v2+=v1;

– MyVec& MyVec::operator+=(const MyVec& rhs)

– What if you make the return value above const?

Nikhil Hegde 4

Disallow: (v2+=v1)+=3;

Overloading +

• v1=v1+3;

– const MyVec MyVec::operator+(double val)

• v3=v1+v2;

1. const MyVec MyVec::operator+(const MyVec&
vec2) const;

 OR

2. friend const MyVec operator+(const MyVec&
lhs, const MyVec& rhs);

Nikhil Hegde 5

v1=3+v1 is compiler error! Why?

Single-argument constructors: allow implicit

conversion from a particular type to initialize an object.

Operator Overloading - Guidelines

• If a binary operator accepts operands of different

types and is commutative, both orders should be

overloaded

• Consistency:
– If a class has ==, it should also have !=

– += and + should result in identical values

– define your copy assignment operator if you have

defined a copy constructor

Refer to demo example

Nikhil Hegde 6

Class Templates

Nikhil Hegde 7

What if user wants to have a MyVec class with integer data?

Class Templates

• Like function templates but for templating

classes

Refer to demo example

Nikhil Hegde 8

Standard Template Library (STL)

• Large set of frequently used data structures and

algorithms

– Defined as parametrized data types and functions

– Types to represent complex numbers and strings,

algorithms to sort, get random numbers etc.

• Convenient and bug free to use these libraries

• E.g. vector, map, queue, pair, sort etc.

• Use your own type only for efficiency

considerations - only if you are sure!

Nikhil Hegde 9

STL - Motivation

Nikhil Hegde 10

Real-world view
source:wikipedia

Consider the nutrients (constituents)

present in edible part of coconut.

How would you capture the Real-

world view in a Program?

vector<pair<string, float> > constituents;

Container

• Holder of a collection of objects

• Is an object itself

• Different types:

– sequence container

– associative container (ordered/unordered)

– container adapter

Nikhil Hegde 11

Sequence Container

• Provide fast sequential access to elements

• Factors to consider:
– Cost to add/delete an element

– Cost to perform non-sequential access to elements

Nikhil Hegde 12

container name comments

vector Flexible array, fast random access

string Like vector. Meant for sequence of characters

list/slist doubly/singly linked list. Sequential access to

elements (bidirectional/unidirectional).

deque Double-ended queue. Fast random access, Fast

append

array Intended as replacement for „C‟-style arrays. Fixed-

sized.

Container Adapter

• Provide an interface to sequence containers

– stack, queue, priority_queue

Nikhil Hegde 13

Associative Container

• Implement sorted data structures for efficient

searching (O(log n)) complexity.

– Set, map, multiset, multimap

Nikhil Hegde 14

container name comments

set Collection of unique sorted keys. Implemented as

class template

map Collection of key-value pairs sorted by unique keys.

Implemented as class template

Unordered Associative Container

• Implement hashed data structures for efficient

searching (O(1) best-case, O(n) worst-case

complexity).

– unordered_set, unordered_map,
unordered_multiset, unordered_multimap

Nikhil Hegde 15

Matrix Algebra and Efficient

Computation
• Pic source: the Parallel Computing Laboratory at U.C. Berkeley: A

Research Agenda Based on the Berkeley View (2008)

Nikhil Hegde 16
Next..

Discretization

• Cannot store/represent infinitely many

continuous values

– To model turbulent features of flow through a pipe,

say, I am interested in velocity and pressure at all

points in a region of interest

1. Represent region of interest as a mesh of small discrete

cells - discretization spacing

2. Solve equations for each cell

 Example:

17

diameter of the pipe = 5cm
length=2.5cm
discretization spacing = 0.1mm
(volume of cylinder = 𝜋𝑟2𝑕)

Exercise: how many variables do you need to declare?
Nikhil Hegde

Discretization

• All problems with „continuous‟ quantities don‟t

require discretization
– Most often they do.

• When discretization is done:
– How refined is your discretization depends on certain

parameters: step-size, cell shape and size. E.g.
• Size of the largest cell (PDEs in FEM),

• Step size in ODEs

– Accuracy of the solution is of prime concern

• Discretization always gives an approximate solution. Why?

• Errors may creep in. Must provide an estimate of error.

18 Nikhil Hegde

Accuracy

• Discretization error
– Is because of the way discretization is done

– E.g. use more number of rays to minimize discretization

error in ray tracing

• Solution error
– The equation to be solved influences solution error

– E.g. use more number of iterations in PDEs to minimize

solution error

• Accuracy of the solution depends on both solution

and discretization errors

• Accuracy also depends on cell shape
19 Nikhil Hegde

Cell Shape

• 2D:

• 3D: triangular or quadrilateral faced. E.g.

20

triangle quadrilateral

source: wikipedia

Tetrahedron: 4 vertices, 4 edges, 4 faces

Pyramid: 5 vertices, 8 edges, 4 and 1 face

Triangular prism: 6 vertices, 9 edges, 2 and 3 faces

Hexahedron: 8 vertices, 12 edges, 6 faces

Nikhil Hegde

Error Estimate

• You will have to deal with errors in the presence of

discretization
– Providing error estimate is necessary

• Apriori error estimate
– Gives insight on whether a discretization strategy is

suitable or not

– Depends on discretization parameter

– Properties of the (unknown) exact solution

– Error is bound by: Chp where, C depends on exact

solution, h is discretization parameter, and p is a fixed

exponent. Assumption: exact solution is differentiable,

typically, p+1 times.
21 Nikhil Hegde

Error Estimate

• Aposteriori error estimate
– Is estimation of the error in computed (Approximate)

solution and does not depend on information about

exact solution

– E.g. Sleipner-A oil rig disaster

22 Nikhil Hegde

Exercise

– does increasing mesh size always yield same

or better accuracy?

– does decreasing cell size always yield same

or better accuracy?

– How does changing mesh size affect

computational cost?

– How does changing cell size affect

computational cost?

23 Nikhil Hegde

Structured Grids

• Have regular connectivity between cells

– i.e. every cell is connected to a predictable number of

neighbor cells

• Quadrilateral (in 2D) and Hexahedra (in 3D) are

most common type of cells

• Simplest grid is a rectangular region with

uniformly divided rectangular cells (in 2D).

24

credits: nanohub.org

Nikhil Hegde

Structured Grids – Problem

Statement
• Given:

– A geometry

– A partial differential equation

– Initial and boundary conditions

• Goal:

– Discretize into a grid of cells

– Approximate the PDE on the grid

– Solve the PDE on the grid

25 Nikhil Hegde

Nikhil Hegde 26

Notation and Terminology

•
𝜕𝑢

𝜕𝑥
= 𝜕𝑥𝑢

•
𝜕2𝑢

𝜕𝑥𝜕𝑦
= 𝜕𝑥𝑦𝑢

•
𝜕𝑢

𝜕𝑡
= 𝜕𝑡𝑢, t usually denotes time.

• Laplace operator (L) : of a two-times

continuously differentiable scalar-valued function

𝑢:ℝ𝑛 → ℝ

 Δ𝑢 = 𝜕𝑘𝑘𝑢
𝑛
𝑘=1

Nikhil Hegde 27

Nikhil Hegde 28

Nikhil Hegde 29

Nikhil Hegde 30

Nikhil Hegde 31

Nikhil Hegde 32

Structured Grids - Representation

• Because of regular connectivity between cells

– Cells can be identified with indices (x,y) or (x,y,z) and

neighboring cell info can be obtained.

– How about identifying a cell here?

33

Given:

𝜉 = (“Xi”) radius

𝜂 = (“Eta”) angle

Compute:

x =
1

2
+ 𝜉 cos 𝜋𝜂

y =
1

2
+ 𝜉 sin(𝜋𝜂) Nikhil Hegde

Structured Grids - Representation

• Assume that we have a grid.

• Task:

– Approximate Partial Differential Equations (PDEs)

– Solve/Implement PDEs (turning PDEs into large set of

algebraic equations)

34 Nikhil Hegde

Mathematical Model of the Grid

• Partial Differential Equations (PDEs):

– Navier-Stokes equations to model water, blood flow,

weather forecast, aerodynamics etc.

– Elasticity (Lame-Navier equations)

– Nutrient transport in blood flow

– Heat conduction: how heat conducts/diffuses through a

material given the temperature at boundaries?

– Mechanics: how does a mass reach from point p1 to point p2

in shortest time under gravitational forces?

Nikhil Hegde 35

Recall: Important PDEs

• Three important types (not a complete

categorization by any means):

– Poisson problem: −Δ𝑢 = 𝑓 (elliptic)

– Heat equation: 𝜕𝑡𝑢 − Δ𝑢 = 𝑓 (parabolic. Here,

𝜕𝑡𝑢 =
𝜕𝑢

𝜕𝑡
= partial derivative w.r.t. time)

– Wave equation: 𝜕𝑡
2𝑢 − Δ𝑢 = 𝑓 (Hyperbolic. Here,

𝜕𝑡
2𝑢 =

𝜕2𝑢

𝜕𝑡𝜕𝑡
= second-order partial derivative w.r.t.

time)

Nikhil Hegde 36

Application: Heat Equation

• Example: heat conduction through a rod

• 𝑢 = 𝑢(𝑥, 𝑡) is the temperature of the metal bar at

distance 𝑥 from one end and at time 𝑡

• Goal: find 𝑢

Nikhil Hegde 37

𝑢𝐿 𝑢𝑅

𝑥

𝑙 0

Initial and Boundary Conditions

• Example: heat conduction through a rod

• Metal bar has length 𝑙 and the ends are held at constant

temperatures 𝑢𝐿 at the left and 𝑢𝑅 at the right

• Temperature distribution at the initial time is known 𝑓(𝑥),
with 𝑓 0 = 𝑢𝐿 and 𝑓 𝑙 = 𝑢𝑅

Nikhil Hegde 38

𝑢𝐿 𝑢𝑅

𝑥

𝑙 0

Equations

• Example: heat conduction through a rod

Nikhil Hegde 39

𝑢𝐿 𝑢𝑅

𝑥

𝑙 0

𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
 0 < 𝑥 < 𝑙, 𝑡 > 0

 𝛼 is thermal diffusivity

 (a constant if the material is homogeneous and isotropic.

 copper = 1.14 cm2 s-1, aluminium = 0.86 cm2 s-1)

Equations

• Example: heat conduction through a rod

• Exercise: what kind of a PDE is this? (Poisson/Heat/Wave?)

Nikhil Hegde 40

𝑢𝐿 𝑢𝑅

𝑥

𝑙 0

𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
 0 < 𝑥 < 𝑙, 𝑡 > 0

 𝛼 is thermal diffusivity

 (a constant if the material is homogeneous and isotropic.

 copper = 1.14 cm2 s-1, aluminium = 0.86 cm2 s-1)

Equations

• Example: heat conduction through a rod

Nikhil Hegde 41

𝑢𝐿 𝑢𝑅

𝑥

𝑙 0

𝜕𝑡𝑢 = 𝛼Δ𝑢 as per the notation mentioned earlier

Equations

• Example: heat conduction through a rod

Nikhil Hegde 42

𝑢𝐿 𝑢𝑅

𝑥

𝑙 0

𝜕𝑡𝑢 = 𝛼Δ𝑢

Can also be written as:

𝜕𝑡𝑢 − 𝛼Δ𝑢 = 0

Equations

• Example: heat conduction through a rod

Nikhil Hegde 43

𝑢𝐿 𝑢𝑅

𝑥

𝑙 0

𝜕𝑡𝑢 − 𝛼Δ𝑢 = 0 ,

Based on initial and boundary conditions:

𝑢 0, 𝑡 = 𝑢𝐿 ,
𝑢 𝑙, 𝑡 = 𝑢𝑅 ,

𝑢(𝑥, 0) = 𝑓(𝑥)

Equations

• Summarizing:

1. 𝜕𝑡𝑢 − 𝛼Δ𝑢 = 0, 0<x<l, t>0

2. 𝑢 0, 𝑡 = 𝑢𝐿, 𝑡 > 0

3. 𝑢 𝑙, 𝑡 = 𝑢𝑅 , 𝑡 > 0

4. 𝑢 𝑥, 0 = 𝑓 𝑥 , 0 < 𝑥 < 𝑙

• Solution:

𝑢 𝑥, 𝑡 = 𝐵𝑚𝑒
−𝑚2𝛼𝜋2𝑡/𝑙2sin (

𝑚𝜋𝑥

𝑙
)∞

𝑚=1 ,

 where, 𝐵𝑚 = 2/𝑙 𝑓 𝑠 sin
𝑚𝜋𝑠

𝑙
𝑑𝑠

𝑙

0

Nikhil Hegde 44

Equations

• Summarizing:

1. 𝜕𝑡𝑢 − 𝛼Δ𝑢 = 0, 0<x<l, t>0

2. 𝑢 0, 𝑡 = 𝑢𝐿, 𝑡 > 0

3. 𝑢 𝑙, 𝑡 = 𝑢𝑅 , 𝑡 > 0

4. 𝑢 𝑥, 0 = 𝑓 𝑥 , 0 < 𝑥 < 𝑙

• Solution:

𝑢 𝑥, 𝑡 = 𝐵𝑚𝑒
−𝑚2𝛼𝜋2𝑡/𝑙2sin (

𝑚𝜋𝑥

𝑙
)∞

𝑚=1 ,

 where, 𝐵𝑚 = 2/𝑙 𝑓 𝑠 sin
𝑚𝜋𝑠

𝑙
𝑑𝑠

𝑙

0

Nikhil Hegde 45

But we are interested in a numerical solution

Approximating Partial Derivatives

• Suppose 𝑦 = 𝑓(𝑥)
– Forward difference approximation to the first-order

derivative of 𝑓 w.r.t. 𝑥 is:

𝑑𝑓

𝑑𝑥
≈

𝑓 𝑥+𝛿𝑥 −𝑓 𝑥

𝛿𝑥

– Central difference approximation to the first-order

derivative of 𝑓 w.r.t. 𝑥 is:

𝑑𝑓

𝑑𝑥
≈

𝑓 𝑥+𝛿𝑥 −𝑓 𝑥−𝛿𝑥

2𝛿𝑥

– Central difference approximation to the second-order

derivative of 𝑓 w.r.t. 𝑥 is:

𝑑2𝑓

𝑑𝑥2
≈

𝑓 𝑥+𝛿𝑥 −2𝑓 𝑥 +𝑓 𝑥−𝛿𝑥

𝛿𝑥 2

Nikhil Hegde 46

Approximating Partial Derivatives

• In example heat application 𝑓 = 𝑢 = 𝑢(𝑥, 𝑡) and
𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2

– First, approximating
𝜕𝑢

𝜕𝑡
:

𝜕𝑢

𝜕𝑡
≈

𝑢 𝑥,𝑡+𝛿𝑡 −𝑢 𝑥,𝑡

𝛿𝑡
, where 𝛿𝑡 is a small increment in time

– Next, approximating
𝜕2𝑢

𝜕𝑥2
 :

𝜕2𝑢

𝜕𝑥2
≈

𝑢 𝑥+𝛿𝑥,𝑡 −2𝑢 𝑥,𝑡 +𝑢 𝑥−𝛿𝑥,𝑡

𝛿𝑥 2 , where 𝛿𝑥 is a small

increment in space (along the length of the rod)

Nikhil Hegde 47

Approximating Partial Derivatives

• Divide length 𝑙 into 𝐽 equal divisions: 𝛿𝑥 = 𝑙/𝐽 (space

step)

• Choose an appropriate 𝛿𝑡 (time step)

Nikhil Hegde 48

2𝛿t
𝛿t

𝑛 = 2
𝑛 = 1

j=1 j=2 j=3 j=J-1 j=J

𝛿𝑥 2𝛿𝑥 𝑥 = 𝑙

𝑡

𝑥

Approximating Partial Derivatives

• Find sequence of numbers which approximate 𝑢 at a

sequence of (𝑥, 𝑡) points (i.e. at the intersection of horizontal and

vertical lines below)

• Approximate the exact solution 𝑢 𝑗 × 𝛿𝑥, 𝑛 × 𝛿𝑡 using

the approximation for partial derivatives mentioned

earlier
Nikhil Hegde 49

2𝛿t
𝛿t

𝑛 = 2
𝑛 = 1

j=1 j=2 j=3 j=J-1 j=J

𝛿𝑥 2𝛿𝑥 𝑥 = 𝑙

𝑡

𝑥

Approximating Partial Derivatives

𝜕𝑢

𝜕𝑡
≈

𝑢 𝑥, 𝑡 + 𝛿𝑡 − 𝑢 𝑥, 𝑡

𝛿𝑡

 =
(𝑢𝑗

𝑛+1−𝑢𝑗
𝑛)

𝛿𝑡

where uj
n+1 denotes taking 𝑗 steps along 𝑥 direction and

𝑛 + 1 steps along 𝑡 direction

Similarly,
𝜕2𝑢

𝜕𝑥2
≈

𝑢 𝑥+𝛿𝑥,𝑡 −2𝑢 𝑥,𝑡 +𝑢 𝑥−𝛿𝑥,𝑡

𝛿𝑥 2

 =
(𝑢𝑗+1

𝑛 −2 𝑢𝑗
𝑛+𝑢𝑗−1

𝑛)

𝛿𝑥 2

Nikhil Hegde 50

Approximating Partial Derivatives

Plugging into
𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
 :

This is also called as difference equation because you

are computing difference between successive values of

a function involving discrete variables.

Nikhil Hegde 51

(𝑢𝑗
𝑛+1−𝑢𝑗

𝑛)

𝛿𝑡
= 𝛼

(𝑢𝑗+1
𝑛 −2 𝑢𝑗

𝑛 + 𝑢𝑗−1
𝑛)

𝛿𝑥 2

Approximating Partial Derivatives

Simplifying:

Nikhil Hegde 52

𝑢𝑗
𝑛+1 = 𝑢𝑗

𝑛 + 𝑟(𝑢𝑗+1
𝑛 −2 𝑢𝑗

𝑛 + 𝑢𝑗−1
𝑛)

= 𝑟𝑢𝑗−1
𝑛 + 1 − 2𝑟 𝑢𝑗

𝑛 + 𝑟𝑢𝑗+1
𝑛 ,

𝑤𝑕𝑒𝑟𝑒 𝑟 = 𝛼
𝛿𝑡

𝛿𝑥 2

Approximating Partial Derivatives

visualizing,

Nikhil Hegde 53

2𝛿t
𝛿t

𝑛 = 2
𝑛 = 1

j=1 j=2 j=3 j=J-1 j=J

𝛿𝑥 2𝛿𝑥 𝑥 = 𝑙

𝑡

𝑥
To compute the value of function at blue dot, you need 3 values indicated

by the red dots – 3-point stencil

𝑢𝑗
𝑛+1 = 𝑟𝑢𝑗−1

𝑛 + 1 − 2𝑟 𝑢𝑗
𝑛 + 𝑟𝑢𝑗+1

𝑛

