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this 

• Implicit variable defined by the compiler for every 

class 

– E.g. MyVec *this; 

• All member functions have this as an implicit 

first argument 

– E.g.  

int MyVec::GetVecLen() const;  

  would actually be:  

int MyVec::GetVecLen(MyVec* this) const; 
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Overloading += 

• MyVec v1; 

  v1+=3; 

• MyVec& MyVec::operator+=(double)  
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Overloading += 

• MyVec v1; 

  v1+=3; 

– MyVec& MyVec::operator+=(double) 

• MyVec v2; 

  v2+=v1; 

– MyVec& MyVec::operator+=(const MyVec& rhs) 

– What if you make the return value above const?  
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Disallow:  (v2+=v1)+=3; 



Overloading + 

• v1=v1+3;  

– const MyVec MyVec::operator+(double val) 

• v3=v1+v2;  

1. const MyVec MyVec::operator+(const MyVec& 
vec2) const; 

    OR 

2. friend const MyVec operator+(const MyVec& 
lhs, const MyVec& rhs); 
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v1=3+v1 is compiler error! Why? 

Single-argument constructors: allow implicit 

conversion from a particular type to initialize an object. 



Operator Overloading - Guidelines 

• If a binary operator accepts operands of different 

types and is commutative, both orders should be 

overloaded 

• Consistency: 
– If a class has ==, it should also have != 

– += and + should result in identical values 

– define your copy assignment operator if you have 

defined a copy constructor 

Refer to demo example 
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Class Templates 
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What if user wants to have a MyVec class with integer data? 



Class Templates 

• Like function templates but for templating 

classes 

 

 

Refer to demo example 
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Standard Template Library (STL) 

• Large set of frequently used data structures and 

algorithms 

– Defined as parametrized data types and functions 

– Types to represent complex numbers and strings, 

algorithms to sort, get random numbers  etc. 

• Convenient and bug free to use these libraries 

•  E.g. vector, map, queue, pair, sort etc. 

• Use your own type only for efficiency 

considerations - only if you are sure! 
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STL - Motivation 
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Real-world view 
source:wikipedia 

Consider the nutrients (constituents) 

present in edible part of coconut. 

How would you capture the Real-

world view in a Program?  

vector<pair<string, float> > constituents; 



Container 

• Holder of a collection of objects 

• Is an object itself 

• Different types:  

– sequence container  

– associative container (ordered/unordered)  

– container adapter  
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Sequence Container 

• Provide fast sequential access to elements 

• Factors to consider: 
– Cost to add/delete an element 

– Cost to perform non-sequential access to elements 
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container name comments 

vector Flexible array, fast random access 

string Like vector. Meant for sequence of characters  

list/slist doubly/singly linked list. Sequential access to 

elements (bidirectional/unidirectional). 

deque Double-ended queue. Fast random access, Fast 

append 

array Intended as replacement for „C‟-style arrays. Fixed-

sized. 



Container Adapter 

• Provide an interface to sequence containers 

– stack, queue, priority_queue 
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Associative Container 

• Implement sorted data structures for efficient 

searching (O(log n)) complexity. 

– Set, map, multiset, multimap 
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container name comments 

set Collection of unique sorted keys. Implemented as 

class template 

map Collection of key-value pairs sorted by unique keys. 

Implemented as class template 



Unordered Associative Container 

• Implement hashed data structures for efficient 

searching (O(1) best-case, O(n) worst-case 

complexity). 

– unordered_set, unordered_map, 
unordered_multiset, unordered_multimap 
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Matrix Algebra and Efficient 

Computation 
• Pic source: the Parallel Computing Laboratory at U.C. Berkeley: A 

Research Agenda Based on the Berkeley View (2008) 
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Next.. 



Discretization 

• Cannot store/represent infinitely many 

continuous values 

– To model turbulent features of flow through a pipe, 

say, I am interested in velocity and pressure at all 

points in a region of interest 

1. Represent region of interest as a mesh of small discrete 

cells - discretization spacing 

2. Solve equations for each cell 

 Example:  
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diameter of the pipe = 5cm   
length=2.5cm  
discretization spacing = 0.1mm 
(volume of cylinder = 𝜋𝑟2𝑕) 

Exercise: how many variables do you need to declare? 
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Discretization 

• All problems with „continuous‟ quantities don‟t 

require discretization 
– Most often they do. 

• When discretization is done: 
– How refined is your discretization depends on certain 

parameters: step-size, cell shape and size. E.g.  
• Size of the largest cell (PDEs in FEM), 

• Step size in ODEs  

– Accuracy of the solution is of prime concern 

• Discretization always gives an approximate solution. Why? 

• Errors may creep in. Must provide an estimate of error.  
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Accuracy 

• Discretization error 
– Is because of the way discretization is done 

– E.g. use more number of rays to minimize discretization 

error in ray tracing 

• Solution error 
– The equation to be solved influences solution error 

– E.g. use more number of iterations in PDEs to minimize 

solution error 

• Accuracy of the solution depends on both solution 

and discretization errors 

• Accuracy also depends on cell shape 
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Cell Shape 

• 2D: 

 

• 3D: triangular or quadrilateral faced. E.g. 
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triangle quadrilateral 

source: wikipedia 

Tetrahedron: 4 vertices, 4 edges, 4   faces 

Pyramid: 5 vertices, 8 edges, 4    and 1        face 

Triangular prism: 6 vertices, 9 edges, 2    and 3       faces 

Hexahedron: 8 vertices, 12 edges, 6        faces   
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Error Estimate 

• You will have to deal with errors in the presence of 

discretization 
– Providing error estimate is necessary 

• Apriori error estimate 
– Gives insight on whether a discretization strategy is 

suitable or not 

– Depends on discretization parameter 

– Properties of the (unknown) exact solution 

– Error is bound by: Chp  where, C depends on exact 

solution, h is discretization parameter, and p is a fixed 

exponent. Assumption: exact solution is differentiable, 

typically, p+1 times. 
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Error Estimate 

• Aposteriori error estimate 
– Is estimation of the error in computed (Approximate) 

solution and does not depend on information about 

exact solution 

– E.g. Sleipner-A oil rig disaster 
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Exercise 

– does increasing mesh size always yield same 

or better accuracy?  

 

– does decreasing cell size always yield same 

or better accuracy?  

 

– How does changing mesh size affect 

computational cost? 

 

– How does changing cell size affect 

computational cost? 
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Structured Grids 

• Have regular connectivity between cells 

– i.e. every cell is connected to a predictable number of 

neighbor cells 

• Quadrilateral (in 2D) and Hexahedra (in 3D) are 

most common type of cells 

• Simplest grid is a rectangular region with 

uniformly divided rectangular cells (in 2D).  
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credits: nanohub.org 
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Structured Grids – Problem 

Statement 
• Given: 

– A geometry 

– A partial differential equation 

– Initial and boundary conditions 

• Goal: 

– Discretize into a grid of cells 

– Approximate the PDE on the grid 

– Solve the PDE on the grid  

 

 
25 Nikhil Hegde 
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Notation and Terminology 

•
𝜕𝑢

𝜕𝑥
=  𝜕𝑥𝑢  

•
𝜕2𝑢

𝜕𝑥𝜕𝑦
=  𝜕𝑥𝑦𝑢 

•
𝜕𝑢

𝜕𝑡
=  𝜕𝑡𝑢, t usually denotes time. 

• Laplace operator (L) : of a two-times 

continuously differentiable scalar-valued function 

𝑢:ℝ𝑛 → ℝ   

   Δ𝑢 =  𝜕𝑘𝑘𝑢
𝑛
𝑘=1    
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Structured Grids - Representation 

• Because of regular connectivity between cells 

– Cells can be identified with indices (x,y) or  (x,y,z) and 

neighboring cell info can be obtained. 

– How about identifying a cell here? 
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Given: 

𝜉 = (“Xi”) radius 

𝜂 = (“Eta”) angle 

 
Compute: 

x =  
1

2
+ 𝜉 cos 𝜋𝜂  

y =  
1

2
+ 𝜉 sin(𝜋𝜂) Nikhil Hegde 



Structured Grids - Representation 

• Assume that we have a grid.  

• Task: 

– Approximate Partial Differential Equations (PDEs) 

– Solve/Implement PDEs (turning PDEs into large set of 

algebraic equations) 
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Mathematical Model of the Grid 

• Partial Differential Equations (PDEs): 

– Navier-Stokes equations to model water, blood flow, 

weather forecast, aerodynamics etc. 

– Elasticity (Lame-Navier equations) 

– Nutrient transport in blood flow 

– Heat conduction: how heat conducts/diffuses through a 

material given the temperature at boundaries?  

– Mechanics: how does a mass reach from point p1 to point p2 

in shortest time under gravitational forces? 
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Recall: Important PDEs 

• Three important types (not a complete 

categorization by any means):  

– Poisson problem: −Δ𝑢 = 𝑓 (elliptic) 

– Heat equation: 𝜕𝑡𝑢 − Δ𝑢 = 𝑓 (parabolic. Here, 

𝜕𝑡𝑢 =
𝜕𝑢

𝜕𝑡
= partial derivative w.r.t. time) 

– Wave equation: 𝜕𝑡
2𝑢 − Δ𝑢 = 𝑓 (Hyperbolic. Here, 

𝜕𝑡
2𝑢 =

𝜕2𝑢

𝜕𝑡𝜕𝑡
= second-order partial derivative w.r.t. 

time) 
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Application: Heat Equation 

• Example: heat conduction through a rod 

 

 

 

• 𝑢 = 𝑢(𝑥, 𝑡) is the temperature of the metal bar at 

distance 𝑥 from one end and at time 𝑡 

• Goal: find 𝑢 
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𝑢𝐿 𝑢𝑅 

𝑥 

𝑙 0 



Initial and Boundary Conditions 

• Example: heat conduction through a rod 

 

 

 

• Metal bar has length  𝑙 and the ends are held at constant 

temperatures 𝑢𝐿 at the left and 𝑢𝑅 at the right 

• Temperature distribution at the initial time is known 𝑓(𝑥), 
with 𝑓 0 = 𝑢𝐿 and 𝑓 𝑙 = 𝑢𝑅  
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𝑢𝐿 𝑢𝑅 

𝑥 

𝑙 0 



Equations 

• Example: heat conduction through a rod 
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𝑢𝐿 𝑢𝑅 

𝑥 

𝑙 0 

𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
                     0 < 𝑥 < 𝑙, 𝑡 > 0    

    𝛼 is thermal diffusivity  

 (a constant if the material is homogeneous and isotropic. 

 copper = 1.14 cm2 s-1, aluminium = 0.86 cm2 s-1) 



Equations 

• Example: heat conduction through a rod 

 

 

 

 

 

 

 

• Exercise: what kind of a PDE is this? (Poisson/Heat/Wave?) 
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𝑢𝐿 𝑢𝑅 

𝑥 

𝑙 0 

𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
                     0 < 𝑥 < 𝑙, 𝑡 > 0    

    𝛼 is thermal diffusivity  

 (a constant if the material is homogeneous and isotropic. 

 copper = 1.14 cm2 s-1, aluminium = 0.86 cm2 s-1) 



Equations 

• Example: heat conduction through a rod 
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𝑢𝐿 𝑢𝑅 

𝑥 

𝑙 0 

𝜕𝑡𝑢 = 𝛼Δ𝑢   as per the notation mentioned earlier 



Equations 

• Example: heat conduction through a rod 
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𝑢𝐿 𝑢𝑅 

𝑥 

𝑙 0 

𝜕𝑡𝑢 = 𝛼Δ𝑢    

 

Can also be written as: 

𝜕𝑡𝑢 − 𝛼Δ𝑢 = 0 



Equations 

• Example: heat conduction through a rod 
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𝑢𝐿 𝑢𝑅 

𝑥 

𝑙 0 

𝜕𝑡𝑢 − 𝛼Δ𝑢 = 0 , 

 

Based on initial and boundary conditions: 

 
𝑢 0, 𝑡 = 𝑢𝐿 , 
𝑢 𝑙, 𝑡 = 𝑢𝑅 , 

𝑢(𝑥, 0)  =  𝑓(𝑥)  



Equations 

• Summarizing: 

1. 𝜕𝑡𝑢 − 𝛼Δ𝑢 = 0, 0<x<l, t>0 

2. 𝑢 0, 𝑡 = 𝑢𝐿, 𝑡 > 0  

3. 𝑢 𝑙, 𝑡 = 𝑢𝑅 , 𝑡 > 0 

4. 𝑢 𝑥, 0 =  𝑓 𝑥 , 0 < 𝑥 < 𝑙 
 

• Solution: 

𝑢 𝑥, 𝑡 =  𝐵𝑚𝑒
−𝑚2𝛼𝜋2𝑡/𝑙2sin (

𝑚𝜋𝑥

𝑙
)∞

𝑚=1 , 

   where, 𝐵𝑚 = 2/𝑙  𝑓 𝑠 sin
𝑚𝜋𝑠

𝑙
𝑑𝑠

𝑙

0
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Equations 

• Summarizing: 

1. 𝜕𝑡𝑢 − 𝛼Δ𝑢 = 0, 0<x<l, t>0 

2. 𝑢 0, 𝑡 = 𝑢𝐿, 𝑡 > 0  

3. 𝑢 𝑙, 𝑡 = 𝑢𝑅 , 𝑡 > 0 

4. 𝑢 𝑥, 0 =  𝑓 𝑥 , 0 < 𝑥 < 𝑙 
 

• Solution: 

𝑢 𝑥, 𝑡 =  𝐵𝑚𝑒
−𝑚2𝛼𝜋2𝑡/𝑙2sin (

𝑚𝜋𝑥

𝑙
)∞

𝑚=1 , 

   where, 𝐵𝑚 = 2/𝑙  𝑓 𝑠 sin
𝑚𝜋𝑠

𝑙
𝑑𝑠

𝑙

0
 

Nikhil Hegde 45 

But we are interested in a numerical solution 



Approximating Partial Derivatives 

• Suppose 𝑦 = 𝑓(𝑥)  
– Forward difference approximation to the first-order 

derivative of 𝑓 w.r.t. 𝑥  is: 

   
𝑑𝑓

𝑑𝑥
≈

𝑓 𝑥+𝛿𝑥 −𝑓 𝑥

𝛿𝑥
  

– Central difference approximation to the first-order 

derivative of 𝑓 w.r.t. 𝑥  is: 

   
𝑑𝑓

𝑑𝑥
≈

𝑓 𝑥+𝛿𝑥 −𝑓 𝑥−𝛿𝑥

2𝛿𝑥
  

– Central difference approximation to the second-order 

derivative of 𝑓 w.r.t. 𝑥  is: 

   
𝑑2𝑓

𝑑𝑥2
≈

𝑓 𝑥+𝛿𝑥 −2𝑓 𝑥 +𝑓 𝑥−𝛿𝑥

𝛿𝑥 2   
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Approximating Partial Derivatives 

• In example heat application 𝑓 = 𝑢 = 𝑢(𝑥, 𝑡) and 
𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
  

– First, approximating 
𝜕𝑢

𝜕𝑡
: 

 
𝜕𝑢

𝜕𝑡
≈

𝑢 𝑥,𝑡+𝛿𝑡 −𝑢 𝑥,𝑡

𝛿𝑡
, where 𝛿𝑡 is a small increment in time  

– Next, approximating 
𝜕2𝑢

𝜕𝑥2
 : 

 
𝜕2𝑢

𝜕𝑥2
≈

𝑢 𝑥+𝛿𝑥,𝑡 −2𝑢 𝑥,𝑡 +𝑢 𝑥−𝛿𝑥,𝑡

𝛿𝑥 2 , where 𝛿𝑥 is a small 

increment in space (along the length of the rod)  
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Approximating Partial Derivatives 

• Divide length 𝑙 into 𝐽 equal divisions: 𝛿𝑥 =  𝑙/𝐽 (space 

step) 

• Choose an appropriate 𝛿𝑡 (time step)  
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2𝛿t 
𝛿t  

𝑛 = 2 
𝑛 = 1  

j=1 j=2  j=3    j=J-1  j=J 

𝛿𝑥 2𝛿𝑥                            𝑥 = 𝑙  

𝑡 

𝑥 



Approximating Partial Derivatives 

• Find sequence of numbers which approximate 𝑢 at a 

sequence of (𝑥, 𝑡) points (i.e. at the intersection of horizontal and 

vertical lines below) 

 

 

 

 

 

 

• Approximate the exact solution 𝑢 𝑗 × 𝛿𝑥, 𝑛 × 𝛿𝑡  using 

the approximation for partial derivatives mentioned 

earlier 
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2𝛿t 
𝛿t  

𝑛 = 2 
𝑛 = 1  

j=1 j=2  j=3    j=J-1  j=J 

𝛿𝑥 2𝛿𝑥                            𝑥 = 𝑙  

𝑡 

𝑥 



Approximating Partial Derivatives 

𝜕𝑢

𝜕𝑡
≈

𝑢 𝑥, 𝑡 + 𝛿𝑡 − 𝑢 𝑥, 𝑡

𝛿𝑡
 

   = 
(𝑢𝑗

𝑛+1−𝑢𝑗
𝑛)

𝛿𝑡
 

where uj
n+1 denotes taking 𝑗 steps along 𝑥 direction and 

𝑛 + 1 steps along 𝑡 direction  

Similarly, 
𝜕2𝑢

𝜕𝑥2
≈

𝑢 𝑥+𝛿𝑥,𝑡 −2𝑢 𝑥,𝑡 +𝑢 𝑥−𝛿𝑥,𝑡

𝛿𝑥 2   

  = 
(𝑢𝑗+1

𝑛 −2 𝑢𝑗
𝑛+𝑢𝑗−1

𝑛 )

𝛿𝑥 2
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Approximating Partial Derivatives 

Plugging into 
𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
  : 

 

 
 

This is also called as difference equation because you 

are computing difference between successive values of 

a function involving discrete variables.   
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(𝑢𝑗
𝑛+1−𝑢𝑗

𝑛)

𝛿𝑡
= 𝛼

(𝑢𝑗+1
𝑛 −2 𝑢𝑗

𝑛 + 𝑢𝑗−1
𝑛 )

𝛿𝑥 2
 



Approximating Partial Derivatives 

Simplifying: 
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𝑢𝑗
𝑛+1 = 𝑢𝑗

𝑛 + 𝑟(𝑢𝑗+1
𝑛 −2 𝑢𝑗

𝑛 + 𝑢𝑗−1
𝑛 )

= 𝑟𝑢𝑗−1
𝑛 + 1 − 2𝑟 𝑢𝑗

𝑛 + 𝑟𝑢𝑗+1
𝑛 ,  

𝑤𝑕𝑒𝑟𝑒 𝑟 = 𝛼
𝛿𝑡

𝛿𝑥 2
 



Approximating Partial Derivatives 

visualizing,  
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2𝛿t 
𝛿t  

𝑛 = 2 
𝑛 = 1  

j=1 j=2  j=3    j=J-1  j=J 

𝛿𝑥 2𝛿𝑥                            𝑥 = 𝑙  

𝑡 

𝑥 
To compute the value of function at blue dot, you need 3 values indicated 

by the red dots – 3-point stencil 

𝑢𝑗
𝑛+1 = 𝑟𝑢𝑗−1

𝑛 + 1 − 2𝑟 𝑢𝑗
𝑛 + 𝑟𝑢𝑗+1

𝑛  


