CS601: Software Development for

Scientific Computing
Autumn 2024

Weekll: Intermediate C++, Structured Grids

Nikhil Hegde

this

« Implicit variable defined by the compiler for every
class
- E.g. MyVec *this;

* All member functions have this as an implicit
first argument

— E.q.
int MyVec: :GetVeclLen() const;
would actually be:

int MyVec: :GetVecLen(MyVec* this) const;

Overloading +=

e MyVec vil;
v1i+=3;
e MyVec& MyVec: :operator+=(double)

Overloading +=

e MyVec vil;
v1i+=3;
- MyVec& MyVec: :operator+=(double)
e MyVec v2;
v2+=V1;
- MyVec& MyVec: :operator+=(const MyVec& rhs)

— What if you make the return value above const?
Disallow: (v2+=v1)+=3;

Overloading +

e V1=V1+3: Single-argument constructors: allow implicit
vis=v > conversion from a particular type to initialize an object.

- const MyVec MyVec: :operator+(double val)
e V3=v1+Vv2;

1. const MyVec MyVec::operator+(const MyVec&
vec2) const;

OR

2. friend const MyVec operator+(const MyVec&
lhs, const MyVec& rhs);

v1=3+v1 Is compiler error! Why?

Operator Overloading - Guidelines

 If a binary operator accepts operands of different
types and is commutative, both orders should be

overloaded

« Consistency:
— If a class has ==, it should also have !=

— += and + should result in identical values

— define your copy assignment operator if you have
defined a copy constructor

Refer to demo example

Class Templates

MyVecA{

* data;
veclLen;

MyVec(){data=0;veclLen=0;}

What if user wants to have a MyVec class with integer data?

Class Templates

 Like function templates but for templating
classes

Refer to demo example

Standard Template Library (STL)

Large set of frequently used data structures and
algorithms
— Defined as parametrized data types and functions

— Types to represent complex numbers and strings,
algorithms to sort, get random numbers etc.

Convenient and bug free to use these libraries

E.g. vector, map, queue, pair, sort etc.

Use your own type only for efficiency
considerations - only if you are sure!

STL - Motivation

Coconut meat, raw

Nutritional value per 100 g (3.5 oz)

Energy 354 kcal (1,480 kJ)
Carbohydrates 1523 g
Sugars 623 g
Dietary fiber 90g
Fat 33.49¢g
Saturated 29.698
Monounsaturated 1.425 g!;I . . .
Real-world view === 3_2;:26 g ConS|de_r the n utrients (constituents)
source:wikipedia Toptopnar 0.039 g present in edible part of coconut.
oo o1o1g How would you capture the Real-
e i world view in a Program?
Methionine 0062 g
Cystine 0066 g
Phenylalanine 0169 g
Tyrosine 0.103 g . . .
Ui 02029 VeCctor<pair<string, float> > constituents;
Arginine 0.546
Higtidine 0.0??3
Alanine 0170g
Aspartic acid 0.325¢g
Glutamic acid 0.761g
Glycine 0.158 g
Proline 0.138¢g
Serine 0172 g
Vitamins Quantity %DVt

10

Container

Holder of a collection of objects
S an object itself

Different types:

— seqguence container

— associative container (ordered/unordered)
— container adapter

11

Sequence Container

* Provide fast sequential access to elements

 Factors to consider:

— Cost to add/delete an element
— Cost to perform non-sequential access to elements

container name | comments

vector Flexible array, fast random access

string Like vector. Meant for sequence of characters

list/slist doubly/singly linked list. Sequential access to
elements (bidirectional/unidirectional).

deque Double-ended queue. Fast random access, Fast
append

array Intended as replacement for ‘C’-style arrays. Fixed-
sized.

12

Container Adapter

* Provide an interface to sequence containers
- stack, queue, priority queue

13

Assoclative Container

* Implement sorted data structures for efficient
searching (O(log n)) complexity.
— Set, map, multiset, multimap

container name | comments

set Collection of unique sorted keys. Implemented as
class template

map Collection of key-value pairs sorted by unique keys.

Implemented as class template

14

Unordered Assoclative Container

* Implement hashed data structures for efficient
searching (O(1) best-case, O(n) worst-case
complexity).

- unordered _set, unordered _map,
unordered multiset, unordered multimap

15

Matrix Algebra and Efficient
Computation

 Pic source: the Parallel Computing Laboratory at U.C. Berkeley: A
Research Agenda Based on the Berkeley View (2008)

2 = . B = . EIN:
= .2 5 : o) = 2 5
sz 8 2 22298z 8 ¢
T3 LEE L SR >E2 228 ¢
Motif =~ v T = Motif a - > v T =
1 Finite State Mach. 9 N-Body
2 Combinational 10 MapReduce .

11 Backtrack/B&B
12 Graphical Models
13 Unstructured Grid
Temperature Chart of Need |DB = database

7 Spectral (FFT) Hot | Warm | Med | Cool ML = machine learning
8 Dynamic Prog HPC = High Perf. Comp.

Figure 4. Temperature Chart of the 13 Motifs. It shows their importance to each of the original
six application areas and then how important each one 1s to the five compelling applications of
Section 3.1. More details on the motifs can be found mn (Asanovic, Bodik et al. 2006).

3 Gr@h Traversal
A N I I .
] /4 Structured Grid |
B emse AT
6 Sparse Mafrix

1 Next.. 0

Discretization

« Cannot store/represent infinitely many
continuous values

— To model turbulent features of flow through a pipe,

say, | am interested in velocity and pressure at all
points in a region of interest
1. Represent region of interest as a mesh of small discrete
cells - discretization spacing
2. Solve equations for each cell

Example: diameter of the pipe = 5cm
length=2.5cm
discretization spacing = 0.1mm
(volume of cylinder = mr2h)

Exercise: how many variables do you need to declare? 17

Discretization

 All problems with ‘continuous’ quantities don't

require discretization
— Most often they do.

* When discretization is done:
— How refined is your discretization depends on certain

parameters: step-size, cell shape and size. E.qg.
« Size of the largest cell (PDEs in FEM),
« Step size in ODEs

— Accuracy of the solution is of prime concern
 Discretization always gives an approximate solution. Why?

* Errors may creep in. Must provide an estimate of error.

18

Accuracy

Discretization error

— |s because of the way discretization is done

— E.g. use more number of rays to minimize discretization
error in ray tracing

Solution error

— The equation to be solved influences solution error

— E.g. use more number of iterations in PDEs to minimize
solution error

Accuracy of the solution depends on both solution
and discretization errors

Accuracy also depends on cell shape

19

Cell Shape

. 2D: A

triangle guadrilateral

« 3D: triangular or quadrilateral faced. E.qg.

Tetrahedron: 4 vertices, 4 edges, 4/\ faces
oo [Pt Pyramid: 5 vertices, 8 edges, 4 /\ and 1 [face

-~ Triangular prism: 6 vertices, 9 edges, 2/\ and 3] faces
< ﬂ Hexahedron: 8 vertices, 12 edges, 6 [faces

Triangular Prism

Hexahedron

source: wikipedia

20

Error Estimate

* You will have to deal with errors in the presence of

discretization
— Providing error estimate is necessary

e Apriori error estimate

— Gives insight on whether a discretization strategy is
suitable or not

— Depends on discretization parameter

— Properties of the (unknown) exact solution

— Error is bound by: Ch? where, C depends on exact
solution, h is discretization parameter, and p is a fixed
exponent. Assumption: exact solution is differentiable,
typically, p+1 times.

21

Error Estimate

e Aposteriori error estimate
— |Is estimation of the error in computed (Approximate)
solution and does not depend on information about
exact solution
— E.g. Sleipner-A oll rig disaster

22

Exercise

— does increasing mesh size always yield same
or better accuracy?

— does decreasing cell size always yield same
or better accuracy?

— How does changing mesh size affect
computational cost?

— How does changing cell size affect
computational cost?

23

Structured Grids

« Have regular connectivity between cells

— 1.e. every cell is connected to a predictable number of
neighbor cells

« Quadrilateral (in 2D) and Hexahedra (in 3D) are
most common type of cells

« Simplest grid is a rectangular region with
uniformly divided rectangular cells (in 2D).

24

credits: nanohub.org

Structured Grids — Problem
Statement

« Gliven:
— A geometry
— A partial differential equation
— Initial and boundary conditions

« Goal:
— Discretize into a grid of cells

— Approximate the PDE on the grid
— Solve the PDE on the grid

25

PDES

consider a function u = u(x, t) satisfying the
Second-order PDE:
62

0xdt =G,

WhereA—G are given functions. This is a PDE of type:

Parabolic: if B - 4AC = 0
Elliptic: if B2 - 4AC < 0
Hyperbolic: if B4- 4AC > 0

26

Notation and Terminology

ou

= d,u
0°u

9xdy axyu
ou

5; = O, tusually denotes time.

Laplace operator (L) : of a two-times
continuously differentiable scalar-valued function

u:R*" - R
Au =Y3_,0..u

27

PDESs

consider a function u = u(x, t) satisfying the
Second-order PDE.

62

A —I-B

°u ou ou
PPy Cﬁﬁ'Dﬁ‘l‘E&‘l‘Fl&—G,
WhereA—G are given functions. This is a PDE of type:
Parabolic: if B2 - 4AC = 0 Heat equation: d,u —Au = f
Elliptic: if B2- 4AC < 0 Poisson problem: —Au = f

Hyperbolic: if B2- 4AC > 0

Wave equation: d,’u —Au=f

28

Boundary and Initial Value Problems

* Boundary Value Problems

— PDE contains independent variables that are only spatial
In nature (do not contain time).

*¢p 9%
— E. 'ax2+ay2_0

* |nitial Value Problems

— PDE contains independent variables that are spatial and
temporal in nature.

29

Definitions (Laplace Equation and
Poisson Equation)

» Consider a region of interest R in, say, xy plane.

The following is a boundary value problem:
62

o) —I— — = f(x,y) ,where

fis a given functlon In R and
u = g ,where
the function g tells the value of function u at boundary of R

» if f = 0 everywhere, then Egn. (1) is Laplace’s Equation
» if f # 0 somewhere in R, then Eqn. (1) is Poisson’s Equation

30

Boundary Conditions and
Classification

 Essential / Dirichlet

— Value of the dependent variable is specified
— E.g. temperature at the edges of the rod are constant 0°
» Neumann / Natural

— Value of the dependent variable is specified as gradient of
the dependent variable T e.g. dT/dx.

 Mixed / Robin

— value of the dependent variable is specified as a function
of the gradient. E.g. -k (dTdx)x=L=hA(T—T)

31

Approximating PDEs

Finite Difference Method
* Suppose y = f(x)

— Forward difference approximation to the first-order
derivative of f w.r.t. x Is:
af (fx+6x)—f(x))
dx 6x
— Central difference approximation to the first-order
derivative of f w.r.t. x Is:
df ~ (f (x+6x)—f (x—5x))
dx 26x
— Central difference approximation to the second-order
derivative of f w.r.t. x Is:
a’f _ (f(x+8x)=2f(x)+f(x—6x))
ax® (6x)?

32

Structured Grids - Representation

« Because of regular connectivity between cells

— Cells can be identified with indices (x,y) or (X,y,z) and
neighboring cell info can be obtained.

— How about identifying a cell here?
Given: \
¢ = (“Xi") radius
n = (“Eta”) angle

Compute:

X = (% + 6) cos(mn)
1
y = (5 + f) sin(mn) 33

Structured Grids - Representation

« Assume that we have a grid.

e Task:

— Approximate Partial Differential Equations (PDES)

— Solve/Implement PDEs (turning PDEs into large set of
algebraic equations)

34

Mathematical Model of the Grid

 Partial Differential Equations (PDES):

— Navier-Stokes equations to model water, blood flow,
weather forecast, aerodynamics etc.

— Elasticity (Lame-Navier equations)
— Nutrient transport in blood flow

— Heat conduction: how heat conducts/diffuses through a
material given the temperature at boundaries?

— Mechanics: how does a mass reach from point p1 to point p2
In shortest time under gravitational forces?

35

Recall: Important PDEs

* Three important types (not a complete

categorization by any means):
— Poisson problem: —Au = f (elliptic)

— Heat equation: d,u — Au = f (parabolic. Here,

ou

ou = - = partial derivative w.r.t. time)

— Wave equation: d,’u — Au = f (Hyperbolic. Here,

- = second-order partial derivative w.r.t.

36

Application: Heat Equation

« Example: heat conduction through a rod

» X

Uu; Up

0 [

e u = u(x,t) Is the temperature of the metal bar at
distance x from one end and at time t

e Goal: find u

37

Initial and Boundary Conditions

Example: heat conduction through a rod

» X

Uu; Up

0 [

Metal bar has length [and the ends are held at constant
temperatures u, at the left and u, at the right

Temperature distribution at the initial time is known f(x),

38

Equations

« Example: heat conduction through a rod

» X
Uu; Up
0 [
ou 0°u
P e 0<x<l[t>0)

a 1S thermal diffusivity

(a constant if the material is homogeneous and isotropic.

copper = 1.14 cm?2s-1, aluminium = 0.86 cm2s1)

39

Equations

« Example: heat conduction through a rod

» X

Uu; Up
0 [
ou 0°u
il 0<x<l[t>0)

a 1S thermal diffusivity
(a constant if the material is homogeneous and isotropic.
copper = 1.14 cm2s, aluminium = 0.86 cm?2s1)

« Exercise: what kind of a PDE is this? (Poisson/Heat/Wave?)

40

Equations

« Example: heat conduction through a rod

» X

Uu; Up

0 [

o,u = alu as per the notation mentioned earlier

41

Equations

« Example: heat conduction through a rod

» X

0 [
o,u = alu

Can also be written as:
ou—alu =0

42

Equations

« Example: heat conduction through a rod

» X

Uu; Up

0 [

ou—alu=20,
Based on initial and boundary conditions:

u(O, t) — uL ,
u(l, t) — uR ,

u(x,0) = f(x)

43

Equations

e Summarizing:
1. du— alAu =0, 0<x<],t>0

2. u(0,t) =u;,t>0
3. u(l,t) =ugp,t>0
4 u(x,0)= f(x),0<x <1
e Solution:
u(x,t) = Ym=1 Bme_mzo‘”zt/ lzsin(@) :

where, B,, = 2/I folf(s) sin(

mms
l

) ds

44

Equations

e Summarizing:
1. du— alAu =0, 0<x<],t>0
2. u(0,t) =u;,t>0
3. u(l,t) =ugp,t>0
(2 But we are interested in a numerical solution

e Solution:

u(x,t) :Z,‘ﬁ:lee‘mZ“”Zt/lzsin(@) :

where, B,, = 2/1 folf(s) sin (mzts) ds

45

Approximating Partial Derivatives

* Suppose y = f(x)
— Forward difference approximation to the first-order
derivative of f w.r.t. x Is:
af _ (Fx+80)-f(x))
dx ox
— Central difference approximation to the first-order
derivative of f w.r.t. x Is:
ar - (f(x+68x)—f(x—6x))
dx 26X
— Central difference approximation to the second-order
derivative of f w.r.t. x Is:
d’f - (f(x+6x)=2f(x)+f(x—6x))
dx? (6x)*

46

Approximating Partial Derivatives

* In example heat application f = u = u(x,t) and
ou o*u

— = —
ot x>

— First, approximating g-’;:
ou _ (u(x,t+8t)—u(x,t))
at S5t

, Where 6t is a small increment in time

. : 0%u
— Next, approximating ——
0*u _ (u(x+6x,t)—2u(x,t)+u(x-8x,t))
ax? (6x)?
increment in space (along the length of the rod)

, Where 6x is a small

a7

Approximating Partial Derivatives

* Divide length [into J equal divisions: 6x = [/] (space
step)

* Choose an appropriate 4t (time step)

j=1j=2j=3 j=J-1j=]

t 20t n=2
ot n=1

Ox 20x x =1

Approximating Partial Derivatives

* Find sequence of numbers which approximate u at a

sequence of (x,t) points (i.e. at the intersection of horizontal and
vertical lines below)
j=1j=2j=3 j=J-1j=]

t| 26t n=~2
ot n =
_ _

Ox 20x X

X

« Approximate the exact solution u(j X éx,n X ét) using
the approximation for partial derivatives mentioned
earlier

Approximating Partial Derivatives

ou (u(x, t + 6t) — ul(x, t))
ot St

n+1 n
(u;" "—uj)

ot
where u"*! denotes taking j steps along x direction and
n + 1 steps along t direction

o 0*u (u(x+8x,t)—2ulx,t)+u(x—5x,t))
Similarly, Pl (%)
(Ujp1 =2 Uj+uj_;)

(6x)°

50

Approximating Partial Derivatives

ou o*u
Plugging into Frll (sl
() 20 4wy
st (5x)2

This Is also called as difference equation because you
are computing difference between successive values of
a function involving discrete variables.

51

Approximating Partial Derivatives

Simplifying:

1

=) +r(u]+1—2u +ui)

=rui_y + (1 —2r)u +ru]Jr1
ot
(6x)*

wherer = «

52

Approximating Partial Derivatives

visualizing,

n+1 _ n n n
uj " =ruisg + (1 = 2r)u +rujgg

i=1j=|2 j=3 =11 j=]

t | 20t—@ i o— n=>2
ot n=1
Ox 20x) x =1
x >

To compute the value of function at blue dot, you need 3 values indicated
by the red dots — 3-point stencil

53

