
1

CS601: Software Development for

Scientific Computing
Autumn 2023

Week11: Intermediate C++, Structured Grids

Nikhil Hegde

References and Const

• We saw reference variables earlier

• Closely related to pointers:

– Directly name another object of the same type.

– A pointer is defined using the * (dereference operator)

symbol. A reference is defined using the & (address of

operator) symbol. Furthermore, unlike in pointer

definitions, a reference must be defined/initialized with

the object that it names (cannot be changed later).

Nikhil Hegde 2

References

Nikhil Hegde 3

int n=10;

int &re=n; //re must be initialized

int* ptr; //ptr need not be initialized here

ptr=&n //ptr now initialized (now pointing to n)

int x=20;

ptr=&x; //ptr now pointing to x

re=x; //doesn’t do what you think. Re still points to
n but the value of n is changed..

printf(“%p %p\n”,&re, &n); // re and n are naming the
same box in memory. Hence, they have the same address.

• A type qualifier

• The type is a constant (cannot be modified).

• const is the keyword

• Example:

const int x=10; //equivalent to: int const x=10;
//x is a constant integer. Hence, cannot be
//modified.

const

In what memory segment does x gets stored?

• Needs to be initialized at the time of definition

• Can’t modify after definition

• const int x=10;
 x=20; //compiler would throw an error

• int const x=10;
 x=10; //can’t even assign the same value

• int const y; //uninitialized const variable y. Useless.

Const Properties

10

x

Can’t alter the content of this box

/*ptrCX is a pointer to a constant integer. So, can’t
modify what ptrCX points to.*/
const int* ptrCX; //or equivalently:
int const* ptrCX;

int const x=10;
ptrCX = &x;
*ptrCX = 20; //Error

Const Example1 (error)

10

x

Addr: 1234

Can’t alter the content of this box

using ptrCX or x

1234

ptrCX

/*cptrX is a constant pointer to an integer. So, can’t
point to anything else after initialized.*/
int x=10, y=20;
int *const cptrX=&x;
cptrX = &y; //Error

Const Example2 (error)

10

x

Addr: 1234

1234

cptrX

Can’t alter the

content of this box
20

y

Addr: 5678

/*cptrXC is a constant pointer to a constant integer. So,
can’t point to anything else after initialized. Also,
can’t modify what cptrXC points to.*/

const int x=10, y=20;
const int *const cptrXC=&x;
int const *const cptrXC2=&x; //equivalent to prev. defn.
cptrXC = &y; //Error
*cptrXC = 40; //Error

Const Example3 (error)

10

x

Addr: 1234

Can’t alter the content of

this box using cptrCX or x
1234

cptrXC

Can’t alter the

content of this box

/*p2x is a pointer to an integer. So, we can use p2x to
alter the contents of the memory location that it points
to. However, the memory location contains read-only data -
cannot be altered. */

const int x=10;
const int *p1x=&x;
int *p2x=&x; //warning
*p2x = 20; //goes through. Might crash depending on memory
location accessed

Const Example4 (warning)

10

x

Addr: 1234

Can’t alter the content

of this box using p1x

or x. Can alter using

p2x.

1234

p1x

1234

p2x

/*p1x is a pointer to a constant integer. So, we can’t use
p1x to alter the content of the memory location that it
points to. However, the memory location it points to can
be altered (through some other means e.g. using x)*/

int x=10;
const int *p1x=&x;

Const Example5 (no warning, no

error)

10

x

Addr: 1234

1234

p1x

Can’t alter the content

of this box using p1x.

Can alter using x.

/*p1x is a constant pointer to an integer. So, we can use
p1x to alter the contents of the memory location that it
points to (and we can’t let p1x point to something else
other than x). However, the memory location contains read-
only data - cannot be altered. */

const int x=10;
int *const p1x=&x;//warning
*p1x = 20; //goes through. Might crash depending on memory
location accessed

Const Example6 (warning)

10

x

Addr: 1234

Can’t alter the content

of this box using x.

Can alter using p1x.

1234

p1x

Can’t alter the

content of this box

/*p1x is a constant pointer to a constant integer. So, we
can’t use p1x to alter the content of the memory location
that it points to. However, the memory location it points
to can be altered (through some other means e.g. using
x)*/

int x=10;
const int *const p1x=&x;

Const Example7 (no warning, no

error)

10

x

Addr: 1234

1234

p1x

Can’t alter the content

of this box using p1x.

Can alter using x.

Can’t alter the

content of this box

Const and References - Summary

• Allow for compiler optimizations

– pass-by-reference: allows for passing large objects to

a function call

• Tell us immediately (by looking at the interface)

that a parameter is read-only

Nikhil Hegde 13

Templating Functions and Classes

• Provide a recipe for generating multiple

versions of the function/class based on the

data type of the data on which the

function/class operates upon

• Demo:

Nikhil Hegde 14

Computing Dot Product (in Week3)

Nikhil Hegde 18

What if user wants to compute dot product with integers?

Computing Dot Product (in Week3)

Nikhil Hegde 19

Computing Dot Product (in Week11)

Nikhil Hegde 20

Should we put this code in a .h file or .cpp file?

Computing Dot Product (in Week11)

Nikhil Hegde 21

Computing Dot Product (in Week11)

Nikhil Hegde 22

Computing Dot Product (in Week11)

Nikhil Hegde 23

The above also works when scprod is a template function.

Type resolution must be unambiguous

Class MyVec (in Week10)

Nikhil Hegde 24

What if user wants to have a MyVec class with integer data?

Class Templates

• Like function templates but for templating

classes

Refer to demo example for class and function templates

Nikhil Hegde 25

Standard Template Library (STL)

• Large set of frequently used data structures and

algorithms

– Defined as parametrized data types and functions

– Types to represent complex numbers and strings,

algorithms to sort, get random numbers etc.

• Convenient and bug free to use these libraries

• E.g. vector, map, queue, pair, sort etc.

• Use your own type only for efficiency

considerations - only if you are sure!

Nikhil Hegde 26

STL - Motivation

Nikhil Hegde 27

Real-world view
source:wikipedia

Consider the nutrients (constituents)

present in edible part of coconut.

How would you capture the Real-

world view in a Program?

vector<pair<string, float> > constituents;

Container

• Holder of a collection of objects

• Is an object itself

• Different types:

– sequence container

– associative container (ordered/unordered)

– container adapter

Nikhil Hegde 28

Sequence Container

• Provide fast sequential access to elements

• Factors to consider:
– Cost to add/delete an element

– Cost to perform non-sequential access to elements

Nikhil Hegde 29

container name comments

vector Flexible array, fast random access

string Like vector. Meant for sequence of characters

list/slist doubly/singly linked list. Sequential access to

elements (bidirectional/unidirectional).

deque Double-ended queue. Fast random access, Fast

append

array Intended as replacement for ‘C’-style arrays. Fixed-

sized.

Container Adapter

• Provide an interface to sequence containers

– stack, queue, priority_queue

Nikhil Hegde 30

Associative Container

• Implement sorted data structures for efficient

searching (O(log n)) complexity.

– Set, map, multiset, multimap

Nikhil Hegde 31

container name comments

set Collection of unique sorted keys. Implemented as

class template

map Collection of key-value pairs sorted by unique keys.

Implemented as class template

Unordered Associative Container

• Implement hashed data structures for efficient

searching (O(1) best-case, O(n) worst-case

complexity).

– unordered_set, unordered_map,
unordered_multiset, unordered_multimap

Nikhil Hegde 32

Recap: Returning References-

Example1

• How can we assign one object to another?
Apple a1(“Apple”, 1.2); //constructor Apple::Apple(string, float)
 //is invoked

Apple a2; //constructor Apple::Apple() is invoked.
a2 = a1 //object a1 is assigned to a2;assignment operator is invoked

Nikhil Hegde 33

Apple& Apple::operator=(const Apple& rhs) {
 commonName = rhs.commonName;
 weight = rhs.weight;
 energyPerUnitWeight = rhs.energyPerUnitWeight;
 constituents = rhs.constituents;
 return *this;
 }

Called Copy Assignment Operator

Apple& Apple::operator=(const Apple& rhs)

What is Move Assignment Operator?

this

• Implicit variable defined by the compiler for every

class

– E.g. MyVec *this;

• All member functions have this as an implicit

first argument

– E.g.

int MyVec::GetVecLen() const;

 would actually be:

int MyVec::GetVecLen(MyVec* this) const;

Nikhil Hegde 34

Overloading +=

• MyVec v1;

 v1+=3;

• MyVec& MyVec::operator+=(double)

Nikhil Hegde 35

Overloading +=

• MyVec v1;

 v1+=3;

– MyVec& MyVec::operator+=(double)

• MyVec v2;

 v2+=v1;

– MyVec& MyVec::operator+=(const MyVec& rhs)

– What if you make the return value above const?

Nikhil Hegde 36

Disallow: (v2+=v1)+=3;

Overloading +

• v1=v1+3;

– const MyVec MyVec::operator+(double val)

• v3=v1+v2;

1. const MyVec MyVec::operator+(const MyVec&
vec2) const;

 OR

2. friend const MyVec operator+(const MyVec&
lhs, const MyVec& rhs);

Nikhil Hegde 37

v1=3+v1 is compiler error! Why?

Single-argument constructors: allow implicit

conversion from a particular type to initialize an object.

Operator Overloading - Guidelines

• If a binary operator accepts operands of different

types and is commutative, both orders should be

overloaded

• Consistency:
– If a class has ==, it should also have !=

– += and + should result in identical values

– define your copy assignment operator if you have

defined a copy constructor

Nikhil Hegde 38

Matrix Algebra and Efficient

Computation
• Pic source: the Parallel Computing Laboratory at U.C. Berkeley: A

Research Agenda Based on the Berkeley View (2008)

Nikhil Hegde 39
Next..

Discretization

• Cannot store/represent infinitely many

continuous values

– To model turbulent features of flow through a pipe,

say, I am interested in velocity and pressure at all

points in a region of interest

1. Represent region of interest as a mesh of small discrete

cells - discretization spacing

2. Solve equations for each cell

 Example:

40

diameter of the pipe = 5cm
length=2.5cm
discretization spacing = 0.1mm
(volume of cylinder = 𝜋𝑟2ℎ)

Exercise: how many variables do you need to declare?
Nikhil Hegde

Discretization

• All problems with ‘continuous’ quantities don’t

require discretization
– Most often they do.

• When discretization is done:
– How refined is your discretization depends on certain

parameters: step-size, cell shape and size. E.g.
• Size of the largest cell (PDEs in FEM),

• Step size in ODEs

– Accuracy of the solution is of prime concern

• Discretization always gives an approximate solution. Why?

• Errors may creep in. Must provide an estimate of error.

41Nikhil Hegde

Accuracy

• Discretization error
– Is because of the way discretization is done

– E.g. use more number of rays to minimize discretization

error in ray tracing

• Solution error
– The equation to be solved influences solution error

– E.g. use more number of iterations in PDEs to minimize

solution error

• Accuracy of the solution depends on both solution

and discretization errors

• Accuracy also depends on cell shape
42Nikhil Hegde

Cell Shape

• 2D:

• 3D: triangular or quadrilateral faced. E.g.

43

triangle quadrilateral

source: wikipedia

Tetrahedron: 4 vertices, 4 edges, 4 faces

Pyramid: 5 vertices, 8 edges, 4 and 1 face

Triangular prism: 6 vertices, 9 edges, 2 and 3 faces

Hexahedron: 8 vertices, 12 edges, 6 faces

Nikhil Hegde

	Slide 1: CS601: Software Development for Scientific Computing Autumn 2023
	Slide 2: References and Const
	Slide 3: References
	Slide 4: const
	Slide 5: Const Properties
	Slide 6: Const Example1 (error)
	Slide 7: Const Example2 (error)
	Slide 8: Const Example3 (error)
	Slide 9: Const Example4 (warning)
	Slide 10: Const Example5 (no warning, no error)
	Slide 11: Const Example6 (warning)
	Slide 12: Const Example7 (no warning, no error)
	Slide 13: Const and References - Summary
	Slide 14: Templating Functions and Classes
	Slide 18: Computing Dot Product (in Week3)
	Slide 19: Computing Dot Product (in Week3)
	Slide 20: Computing Dot Product (in Week11)
	Slide 21: Computing Dot Product (in Week11)
	Slide 22: Computing Dot Product (in Week11)
	Slide 23: Computing Dot Product (in Week11)
	Slide 24: Class MyVec (in Week10)
	Slide 25: Class Templates
	Slide 26: Standard Template Library (STL)
	Slide 27: STL - Motivation
	Slide 28: Container
	Slide 29: Sequence Container
	Slide 30: Container Adapter
	Slide 31: Associative Container
	Slide 32: Unordered Associative Container
	Slide 33: Recap: Returning References- Example1
	Slide 34: this
	Slide 35: Overloading +=
	Slide 36: Overloading +=
	Slide 37: Overloading +
	Slide 38: Operator Overloading - Guidelines
	Slide 39: Matrix Algebra and Efficient Computation
	Slide 40: Discretization
	Slide 41: Discretization
	Slide 42: Accuracy
	Slide 43: Cell Shape
	Slide 44: Error Estimate
	Slide 45: Error Estimate
	Slide 46: Exercise
	Slide 47: Structured Grids
	Slide 48: Structured Grids – Problem Statement

