CS601: Software Development for

Scientific Computing
Autumn 2023

Weekl: Overview

Course Takeaways (intended)

 Non-CS majors:
1. Write code (mostly in C/C++) and

2. Develop software (not just write standalone code)
* Numerical software

« CS-Majors:
In addition to the above two:

3. Learn to face mathematical equations and
Implement them with confidence

Why C++ ?

C/C++/Fortran codes form the majority in
scientific computing codes

Catch a lot of errors early (e.g. at compile-time
rather than at run-time)

Has features for object-oriented software
development

Known to result in codes with better
performance

What Is this course about?

Software Development

-+

Scientific Computing

Software Development

+ Software development is the process of conceiving,
specifying, designing, programming, documenting,
testing, and bug fixing involved in creating and
maintaining applications, frameworks, or other
software components.

Software development is a process of writing and maintaining the
source code, but in a broader sense, it includes all that is involved
between the conception of the desired software through to the
final manifestation of the software, ...

- Wikipedia on “Software Development”

Scientific Computing

« Also called computational science

- Development of models to understand systems
(biological, physical, chemical, engineering,
humanities)

Collection of tools, techniques, and theories required to solve
on a computer mathematical models of problems in science and
engineering

This course NOT about..

« Software Engineering

« Systematic study of Techniques, Methodology, and
Tools to build correct software within time and
price budget (topics covered in CS305)

* People, Software life cycle and management etc.

 Scientific Computing
« Rigorous exploration of numerical methods, their
analysis, and theories

* Programming models (topics covered in C5410)

Who this course Is for?

* You are interested In scientific computing

* You are interested in high-performance
computing

* You want to build / add to a large software
system

Course Webpage

 https://hegden.qgithub.io/cs601

10

https://hegden.github.io/cs601

GitHub Discussions

* https://qgithub.com/IITDhCSE/cs60lautumn

23/discussions
A

Welcome to cs601autumn23 Discussions!

<® Announcements - Hegden

Q is:open] Sort by: Latest activity ~ Label ~ Filter: Open ~

Categories 4 Discussions

. S
I O View all discussions) Welcome to c5601_autumr_123 Discussions ! ‘ oo

Hegden announce d 1 minute a go in Announcements
< Announcemen ts
(3 General
Q@ Ideas

& Polls
2 QA

@ Showand el https://forms.gle/E6VjwfYZKt2J1V2u5

https://github.com/IITDhCSE/cs601autumn23/discussions
https://github.com/IITDhCSE/cs601autumn23/discussions

Let us try an exam question
(from this course) on ChatGPT

e Question:

Computing +/x2 + y?2 is a common problem. A common implementation strategy is as
follows:
double ComputeHypotenuse(double x, double y) {
return sgrt(x*x + y*y);

}

However, the above strategy is not robust. How would you implement a
robust code?

 https://chat.openai.com/share/bcf4d871-21cf-
4799-9275-1486345ce6dd

Takeaways:

 You still need to know the right questions to ask.

« Know if the answer provided makes sense. 12
Develop intuition

Let us dive into an example....

13

Example - Factorial

en!l =nx (n-1) x (n-2) x . . . x3x2x1
(n-1)! = (n-1) x (n-2) x . . . x3x2x1
therefore,

Definitionl: n! = n x (n-1)!

IS this definition complete?

 plug O to n and the equation breaks.

Definition2: _
n x (n-1)! when n>=1

n!l= -+
1 when n=0

14

—

Exercise 1

* Does this code implement the definition of
factorial correctly?

int fact(int n){
if(n==0)
return 1;

return n*fact(n-1);

15

Example - Factorial

—

Definition2: n x (n-1)! when n>=1

n!l=+
1 when n=0

~—

IS this definition complete?

* n! Is not defined for negative n

16

Solution - Factorial

int fact(int n){

if(n<0)
return ERROR;
if(n==0)
return 1;

return n*fact(n-1);

17

Exercise 2

* In how many flops does the code execute?

assume 1 flop = 1 step executing any arithmetic
operation

int fact(int n){

if(n<0)
return ERROR;
if(n==0)
return 1;

return n*fact(n-1);

18

Exercise 3

* Does the code yield correct results for any n?

int fact(int n){

if(n<0)
return ERROR;
if(n==0)
return 1;

return n*fact(n-1);

19

Who this course Is for?

* Anybody who wishes to develop

“computational thinking"

A skill necessary for everyone, not just computer
programmers

« An approach to problem solving, designing
systems, and understanding human behavior that
draws on concepts fundamental to computer
science.

20

Computational Thinking - Examples

How difficult is the problem to solve? And what is the
best way to solve?

Modularizing something in anticipation of multiple users
Prefetching and caching in anticipation of future use
Thinking recursively

Reformulating a seemingly difficult problem into one

which we know how to solve by reduction, embedding,
transformation, simulation

- Are approximate solutions accepted?
- False positives and False negatives allowed? eftc.

Using abstraction and decomposition in tackling large
problem

21

Computational Thinking — 2 As

 Abstractions
— Our "mental” tools

— Includes: choosing right abstractions, operating at
multiple layers of abstractions, and defining relationships
among layers

« Automation
— Our "metal” tools that amplify the power of "mental” tools

— |Is mechanizing our abstractions, layers, and relationships

* Need precise and exact notations / models for the “computer”
below (“computer” can be human or machine)

22

Computing - 2 As Combined

« Computing is the automation of our abstractions

* Provides us the abllity to scale

— Make infeasible problems feasible
« E.g. SHA-1 not safe anymore

— Improve the answer’s precision
« E.g. capture the image of a black-hole

Summary: choose the right abstraction and
computer

23

Computational Thinking — applied to
the factorial exercise

Need to be precise (formulating)
— recall: n! =1 for n=0, not defined for negative n

Choosing right abstractions
— recall: use of recursion, correct data type

Ability to define the complexity
— recall: flop calculation

What else?

24

Computational Thinking — applied to
the factorial exercise

Need to be precise (formulating)
— recall: n! =1 for n=0, not defined for negative n

Choosing right abstractions
— recall: use of recursion, correct data type

Ability to define the complexity
— recall: flop calculation

Choose the right “computer” for mechanizing the
abstractions chosen

25

General Approach to Solving a
Computational Problem

. Problem statement: more precise this is, the easier it
IS to design and implement

. Solution Algorithm: exactly how is the problem going
to be solved

. Implementation: breaking the algorithm into
manageable pieces and putting it all together to solve
the problem using a language of choice.

. Verification: checking that the implementation solves
the original problem.

— For numerical software this is often most difficult step, because
you don’t know the correct answer.

26

Scientific Software - Characteristics

The answer is not a typical yes/no, red/blue/green

The answer varies continuously. Think of computing the
value of pi = 3.141592...

Uses approximations. Think of discretization
Employs efficient kernels
— Kernels are core operations that are executed very frequently

Should be able to adapt to change.
— Writing everything from scratch is not an option

Deals with large-scale problems
— Lot of input/output data or both
— Computationally hard

27

Toward Scientific Software

* Necessary Skills:
— Understanding the mathematical problem
— Understanding numerics
— Designing algorithms and data structures
— Selecting language and using libraries and tools
— Verify the correctness of the results
— Quick learning of new programming languages

28

Exercise

Compute root(s) of:
X = cos X; X €R

roots, also called zeros, Is the value of the
argument/input to the function when the function output
vanishes i.e. becomes zero

29

Mathematical Problem

* lety = f(x)
f(x) =cos(x) —x

« Atx=x_,the value ofyis f(x,). The coordinates of the
point are (x,, f(x,)) = known point.

* From calculus: derivative of a function of single variable
at a chosen input value, when it exists, is the slope of
the tangent to the graph at that input value.

- f'(x,) is the slope of the line that is tangent to f(x) at x,,

(Xq, f(x,))

30

credit: wikipedia

Mathematical Problem

* From high-school math: point-slope formula for equation
of a line

y =y, = m(X —Xy),
given the slope m and any known point (x;, y,)

« Substituting with:
— (x,, f(x,)) = known point
- f'(x,) = slope
Equation of the tangent line to graph of f(x) at x,,:

y_f(xn) = f,(xn)(x_ Xn)

31

Mathematical Problem

Interested in finding roots i.e. value of x at y=0i.e. at
point (x,,1, 0).
Substituting in the equation of the tangent line,

y_f(xn) = f,(xn)(x _Xn)

_f(xn) = f,(xn) (anl o Xn)

xnpl = Xp — f(xn) /f’(xn)

32

Mathematical Problem

* Visualizing
(source_: https://en.wikipedia.org/wiki/Newton's_method) :

¥
A

— Eunktion

FT T T T T T T T T T T 1711 Tangente
The function f is shown in blue and the tangent line is in

red. We see that x,, , , IS a better approximation than x
for the root x of the function f.

33

https://en.wikipedia.org/wiki/Newton’s_method

Mathematical Problem

X, =%, — fx) [f(xy)
x3 =%, — f(x) [f'(x)
Xy =x3— f(x3)/ f'(x3)

34

Numerical Analysis

Talk to domain experts

Choosing the initial value of x

Does the method converge ?

What is an acceptable approximation?
* etc.

35

Designing Algorithms and Data
Structures

« Start with x;

X, =% — f(x) [f(xy)
X3 =%, — f(xy)] f(x;)
Xy =x3— f(x3) /] f(x3)

« Repeat for up to maxIterations
* Checkfor x,,, - x,to be “sufficiently small”
« Choose appropriate data types for x

36

Selecting libraries and tools

« E.g. use the math library in C++ (cmath)

37

Verify the correctness of results

« Compare with ‘gold’ code / benchmark
« Compare with empirical data

38

Scientific Software - Examples

Entertainment
- Toy Story, Shrek rendered using data-center nodes

Economics
- ad-placement

39

Scientific Software - Examples

Biology PN
- Shotgun algorithm expedites sequencing
of human genome

- Analyzing fMRI data

Chemistry

- optimization and search algorithms to
identify best chemicals for improving
reaction conditions to improve yields

Credit: University of Minnesota

Scientific Software - Examples

Geology
- Modeling the Earth’s surface to the core

Credit: Wikipedia

Astronomy
- kd-trees help analyze very large multi-
dimensional data sets

E n g I n e e rl n g Credit: Kaggle.com

- Boeing 777 tested via computer

simulation (not via wind tunnel) "

Recap: Toward Scientific Software

Physical process

Mathematical model

Algorithm

|

Software program

l

Simulation results

42

N O O R wbdPE

Scientific Software - Motifs

=

noun

1. a decorative image or design, especially a repeated one forming a pattern.
"the colourful hand-painted motifs which adsrnaicwboars”

Similar: design pattern decoration figure shape logo monogram W

2. a dommant or recurring idea in an artistic work.
"SUBCiSUGan is a recurring motif in the book”

Finite State Machines 8. Dynamic Programming

Combinatorial 9. N-Body (/ particle)

Graph Traversal 10. MapReduce

Structured C_E'”d 11. Backtrack / B&B
Dense Matrix

Sparse Matrix 12. Graphical Models
FFT 13. Unstructured Grid

43

Real Numbers R

 Most scientific software deal with Real numbers.

Our toy code dealt with Reals
— Numerical software is scientific software dealing with
Real numbers

 Real numbers include rational numbers (integers
and fractions), Irrational numbers (pi etc.)

« Used to represent values of continuous guantity
such as time, mass, velocity, height, density etc.

— Infinitely many values possible

— But computers have limited memory. So, have to use
approximations. a4

Representing Real Numbers

 Real numbers are stored as floating point numbers
(floating point system is a scheme to represent real numbers)

« E.g. floating point numbers:

- m = 3.14159,
— 6.03*10%3
— 1.60217733*101°

exponent

General format: *x X b€
/

mantissa base

(number ranges from: (e.g. base 10, 8, 2, 16)
ltob OR 1/bto1l)

45

	Slide 1: CS601: Software Development for Scientific Computing Autumn 2023
	Slide 2: Course Takeaways (intended)
	Slide 3: Why C++ ?
	Slide 4: What is this course about?
	Slide 5: Software Development
	Slide 6: Scientific Computing
	Slide 7: This course NOT about..
	Slide 8: Who this course is for?
	Slide 10: Course Webpage
	Slide 11: GitHub Discussions
	Slide 12: Let us try an exam question (from this course) on ChatGPT
	Slide 13: Let us dive into an example….
	Slide 14: Example - Factorial
	Slide 15: Exercise 1
	Slide 16: Example - Factorial
	Slide 17: Solution - Factorial
	Slide 18: Exercise 2
	Slide 19: Exercise 3
	Slide 20: Who this course is for?
	Slide 21: Computational Thinking - Examples
	Slide 22: Computational Thinking – 2 As
	Slide 23: Computing - 2 As Combined
	Slide 24: Computational Thinking – applied to the factorial exercise
	Slide 25: Computational Thinking – applied to the factorial exercise
	Slide 26: General Approach to Solving a Computational Problem
	Slide 27: Scientific Software - Characteristics
	Slide 28: Toward Scientific Software
	Slide 29: Exercise
	Slide 30: Mathematical Problem
	Slide 31: Mathematical Problem
	Slide 32: Mathematical Problem
	Slide 33: Mathematical Problem
	Slide 34: Mathematical Problem
	Slide 35: Numerical Analysis
	Slide 36: Designing Algorithms and Data Structures
	Slide 37: Selecting libraries and tools
	Slide 38: Verify the correctness of results
	Slide 39: Scientific Software - Examples
	Slide 40: Scientific Software - Examples
	Slide 41: Scientific Software - Examples
	Slide 42: Recap: Toward Scientific Software
	Slide 43: Scientific Software - Motifs
	Slide 44: Real Numbers double-struck cap R
	Slide 45: Representing Real Numbers
	Slide 46: 3-digit Calculator
	Slide 47: Floating Point System - Terminology
	Slide 48: IEEE 754 Floating Point System
	Slide 49: IEEE 754 Floating Point Arithmetic
	Slide 50: IEEE 754 Floating Point Arithmetic
	Slide 51: IEEE 754 Floating Point Arithmetic

