
1

CS601: Software Development for

Scientific Computing
Autumn 2023

Week1: Overview

2

Course Takeaways (intended)

• Non-CS majors:

1. Write code (mostly in C/C++) and

2. Develop software (not just write standalone code)

• Numerical software

• CS-Majors:

In addition to the above two:

3. Learn to face mathematical equations and

implement them with confidence

3

Why C++ ?

• C/C++/Fortran codes form the majority in

scientific computing codes

• Catch a lot of errors early (e.g. at compile-time

rather than at run-time)

• Has features for object-oriented software

development

• Known to result in codes with better

performance

4

What is this course about?

Software Development

Scientific Computing

+

5

Software Development

• Software development is the process of conceiving,
specifying, designing, programming, documenting,
testing, and bug fixing involved in creating and
maintaining applications, frameworks, or other
software components.

Software development is a process of writing and maintaining the
source code, but in a broader sense, it includes all that is involved
between the conception of the desired software through to the
final manifestation of the software, …

- Wikipedia on “Software Development”

6

Scientific Computing

• Also called computational science

– Development of models to understand systems
(biological, physical, chemical, engineering,
humanities)

Collection of tools, techniques, and theories required to solve
on a computer mathematical models of problems in science and
engineering

7

This course NOT about..

• Software Engineering

• Systematic study of Techniques, Methodology, and

Tools to build correct software within time and

price budget (topics covered in CS305)

• People, Software life cycle and management etc.

• Scientific Computing

• Rigorous exploration of numerical methods, their

analysis, and theories

• Programming models (topics covered in CS410)

8

Who this course is for?

• You are interested in scientific computing

• You are interested in high-performance

computing

• You want to build / add to a large software

system

Course Webpage

• https://hegden.github.io/cs601

10

https://hegden.github.io/cs601

GitHub Discussions

• https://github.com/IITDhCSE/cs601autumn

23/discussions

11
https://forms.gle/E6VjwfYZKt2J1V2u5

https://github.com/IITDhCSE/cs601autumn23/discussions
https://github.com/IITDhCSE/cs601autumn23/discussions

Let us try an exam question

(from this course) on ChatGPT
• Question:
Computing 𝑥2 + 𝑦2 is a common problem. A common implementation strategy is as

follows:

double ComputeHypotenuse(double x, double y) {

return sqrt(x*x + y*y);

}

 However, the above strategy is not robust. How would you implement a
robust code?

• https://chat.openai.com/share/bcf4d871-21cf-

4799-9275-1486345ce6dd

12

Takeaways:

• You still need to know the right questions to ask.

• Know if the answer provided makes sense.

 Develop intuition

Let us dive into an example….

13

• n! = n x (n-1) x (n-2) x . . . x 3 x 2 x 1

 (n–1)! = (n-1) x (n-2) x . . . x 3 x 2 x 1

 therefore,

 Definition1: n! = n x (n-1)!

 is this definition complete?

• plug 0 to n and the equation breaks.

Example - Factorial

n x (n-1)! when n>=1

1 when n=0
n!=

Definition2:

14

15

Exercise 1

• Does this code implement the definition of

factorial correctly?

int fact(int n){
if(n==0)

 return 1;

return n*fact(n-1);

}

Definition2:

is this definition complete?

• n! is not defined for negative n

Example - Factorial

n x (n-1)! when n>=1

1 when n=0
n!=

16

17

Solution - Factorial

int fact(int n){
 if(n<0)
 return ERROR;

if(n==0)
 return 1;

return n*fact(n-1);

}

18

Exercise 2

• In how many flops does the code execute?

assume 1 flop = 1 step executing any arithmetic

operation

int fact(int n){
 if(n<0)
 return ERROR;

if(n==0)
 return 1;

return n*fact(n-1);

}

19

Exercise 3

• Does the code yield correct results for any n?

int fact(int n){
 if(n<0)
 return ERROR;

if(n==0)
 return 1;

return n*fact(n-1);

}

20

Who this course is for?

• Anybody who wishes to develop

“computational thinking”
• A skill necessary for everyone, not just computer

programmers

• An approach to problem solving, designing

systems, and understanding human behavior that

draws on concepts fundamental to computer

science.

21

Computational Thinking - Examples

• How difficult is the problem to solve? And what is the
best way to solve?

• Modularizing something in anticipation of multiple users

• Prefetching and caching in anticipation of future use

• Thinking recursively

• Reformulating a seemingly difficult problem into one
which we know how to solve by reduction, embedding,
transformation, simulation

– Are approximate solutions accepted?

– False positives and False negatives allowed? etc.

• Using abstraction and decomposition in tackling large
problem

• …

22

Computational Thinking – 2 As

• Abstractions

– Our “mental” tools

– Includes: choosing right abstractions, operating at

multiple layers of abstractions, and defining relationships

among layers

• Automation

– Our “metal” tools that amplify the power of “mental” tools

– Is mechanizing our abstractions, layers, and relationships

• Need precise and exact notations / models for the “computer”

below (“computer” can be human or machine)

23

Computing - 2 As Combined

• Computing is the automation of our abstractions

• Provides us the ability to scale

– Make infeasible problems feasible

• E.g. SHA-1 not safe anymore

– Improve the answer’s precision

• E.g. capture the image of a black-hole

Summary: choose the right abstraction and

computer

24

Computational Thinking – applied to

the factorial exercise

• Need to be precise (formulating)

– recall: n! = 1 for n=0, not defined for negative n

• Choosing right abstractions

– recall: use of recursion, correct data type

• Ability to define the complexity

– recall: flop calculation

• What else?

25

Computational Thinking – applied to

the factorial exercise

• Need to be precise (formulating)

– recall: n! = 1 for n=0, not defined for negative n

• Choosing right abstractions

– recall: use of recursion, correct data type

• Ability to define the complexity

– recall: flop calculation

• Choose the right “computer” for mechanizing the

abstractions chosen

General Approach to Solving a

Computational Problem

1. Problem statement: more precise this is, the easier it

is to design and implement

2. Solution Algorithm: exactly how is the problem going

to be solved

3. Implementation: breaking the algorithm into

manageable pieces and putting it all together to solve

the problem using a language of choice.

4. Verification: checking that the implementation solves

the original problem.

– For numerical software this is often most difficult step, because

you don’t know the correct answer.

26

Scientific Software - Characteristics

• The answer is not a typical yes/no, red/blue/green

• The answer varies continuously. Think of computing the

value of pi = 3.141592…

• Uses approximations. Think of discretization

• Employs efficient kernels

– Kernels are core operations that are executed very frequently

• Should be able to adapt to change.

– Writing everything from scratch is not an option

• Deals with large-scale problems

– Lot of input/output data or both

– Computationally hard

27

28

Toward Scientific Software

• Necessary Skills:

– Understanding the mathematical problem

– Understanding numerics

– Designing algorithms and data structures

– Selecting language and using libraries and tools

– Verify the correctness of the results

– Quick learning of new programming languages

29

Exercise

Compute root(s) of:

x = cos x; x ϵ ℝ

roots, also called zeros, is the value of the

argument/input to the function when the function output
vanishes i.e. becomes zero

30

Mathematical Problem

• let 𝑦 = 𝑓 𝑥

 𝑓 𝑥 = cos 𝑥 − 𝑥

• At x = xn , the value of y is 𝑓 𝑥𝑛 . The coordinates of the

point are (xn , 𝑓 𝑥𝑛) = known point.

• From calculus: derivative of a function of single variable

at a chosen input value, when it exists, is the slope of

the tangent to the graph at that input value.

– 𝑓′ 𝑥𝑛 is the slope of the line that is tangent to 𝑓 𝑥 at xn

credit: wikipedia

(xn , 𝑓 𝑥𝑛)

31

Mathematical Problem

• From high-school math: point-slope formula for equation

of a line

• Substituting with:

– (xn , 𝑓 𝑥𝑛) = known point

– 𝑓′ 𝑥𝑛 = slope

Equation of the tangent line to graph of 𝒇 𝒙 at xn :

 y – 𝑓 𝑥𝑛 = 𝑓′ 𝑥𝑛 (x − xn)

y − y1 = m(x − x1),

 given the slope m and any known point (x1, y1)

32

Mathematical Problem

• Interested in finding roots i.e. value of x at y=0 i.e. at
point (xnp1, 0).

• Substituting in the equation of the tangent line,

 y – 𝑓 𝑥𝑛 = 𝑓′ 𝑥𝑛 (x − xn)

 = −𝑓 𝑥𝑛 = 𝑓′ 𝑥𝑛 (xnp1
− xn)

 = 𝒙𝒏𝒑𝟏 = 𝒙𝒏 − 𝒇 𝒙𝒏 / 𝒇′ 𝒙𝒏

33

Mathematical Problem

• Visualizing

 (source: https://en.wikipedia.org/wiki/Newton’s_method) :

The function f is shown in blue and the tangent line is in

red. We see that xn + 1 is a better approximation than xn

for the root x of the function f.

https://en.wikipedia.org/wiki/Newton’s_method

34

Mathematical Problem

𝒙𝟐 = 𝒙𝟏 − 𝒇 𝒙𝟏 / 𝒇′ 𝒙𝟏

𝒙𝟑 = 𝒙𝟐 − 𝒇 𝒙𝟐 / 𝒇′ 𝒙𝟐

𝒙𝟒 = 𝒙𝟑 − 𝒇 𝒙𝟑 / 𝒇′ 𝒙𝟑

. . .

35

Numerical Analysis

Talk to domain experts

• Choosing the initial value of x

• Does the method converge ?

• What is an acceptable approximation?

• etc.

36

Designing Algorithms and Data

Structures

• Start with x1

𝒙𝟐 = 𝒙𝟏 − 𝒇 𝒙𝟏 / 𝒇′ 𝒙𝟏

𝒙𝟑 = 𝒙𝟐 − 𝒇 𝒙𝟐 / 𝒇′ 𝒙𝟐

𝒙𝟒 = 𝒙𝟑 − 𝒇 𝒙𝟑 / 𝒇′ 𝒙𝟑

. . .

• Repeat for up to maxIterations

• Check for xn+1 – xn to be “sufficiently small”

• Choose appropriate data types for x

37

Selecting libraries and tools

• E.g. use the math library in C++ (cmath)

38

Verify the correctness of results

• Compare with ‘gold’ code / benchmark

• Compare with empirical data

39

Scientific Software - Examples

Economics
 - ad-placement

Entertainment

 - Toy Story, Shrek rendered using data-center nodes

40

Scientific Software - Examples

Biology
 - Shotgun algorithm expedites sequencing

 of human genome

 - Analyzing fMRI data

Credit: Wikipedia

Credit: Wikipedia

Chemistry

 - optimization and search algorithms to

identify best chemicals for improving

reaction conditions to improve yields

Credit: University of Minnesota

41

Scientific Software - Examples

Geology
 - Modeling the Earth’s surface to the core

Credit: Wikipedia

Astronomy
 - kd-trees help analyze very large multi-

 dimensional data sets

Credit: Kaggle.comEngineering

 - Boeing 777 tested via computer

 simulation (not via wind tunnel)

42

Recap: Toward Scientific Software

 Physical process

 Mathematical model

 Algorithm

 Software program

 Simulation results

43

Scientific Software - Motifs

1. Finite State Machines

2. Combinatorial

3. Graph Traversal

4. Structured Grid

5. Dense Matrix

6. Sparse Matrix

7. FFT

8. Dynamic Programming

9. N-Body (/ particle)

10. MapReduce

11. Backtrack / B&B

12. Graphical Models

13. Unstructured Grid

44

Real Numbers ℝ

• Most scientific software deal with Real numbers.

Our toy code dealt with Reals

– Numerical software is scientific software dealing with

Real numbers

• Real numbers include rational numbers (integers

and fractions), irrational numbers (pi etc.)

• Used to represent values of continuous quantity

such as time, mass, velocity, height, density etc.

– Infinitely many values possible

– But computers have limited memory. So, have to use

approximations.

45

Representing Real Numbers

• Real numbers are stored as floating point numbers
(floating point system is a scheme to represent real numbers)

• E.g. floating point numbers:
– 𝜋 = 3.14159,

– 6.03*1023

– 1.60217733*10-19

mantissa

(number ranges from:

1 to b OR 1/b to 1)

base

(e.g. base 10, 8, 2, 16)

exponent

General format: ±x × be

	Slide 1: CS601: Software Development for Scientific Computing Autumn 2023
	Slide 2: Course Takeaways (intended)
	Slide 3: Why C++ ?
	Slide 4: What is this course about?
	Slide 5: Software Development
	Slide 6: Scientific Computing
	Slide 7: This course NOT about..
	Slide 8: Who this course is for?
	Slide 10: Course Webpage
	Slide 11: GitHub Discussions
	Slide 12: Let us try an exam question (from this course) on ChatGPT
	Slide 13: Let us dive into an example….
	Slide 14: Example - Factorial
	Slide 15: Exercise 1
	Slide 16: Example - Factorial
	Slide 17: Solution - Factorial
	Slide 18: Exercise 2
	Slide 19: Exercise 3
	Slide 20: Who this course is for?
	Slide 21: Computational Thinking - Examples
	Slide 22: Computational Thinking – 2 As
	Slide 23: Computing - 2 As Combined
	Slide 24: Computational Thinking – applied to the factorial exercise
	Slide 25: Computational Thinking – applied to the factorial exercise
	Slide 26: General Approach to Solving a Computational Problem
	Slide 27: Scientific Software - Characteristics
	Slide 28: Toward Scientific Software
	Slide 29: Exercise
	Slide 30: Mathematical Problem
	Slide 31: Mathematical Problem
	Slide 32: Mathematical Problem
	Slide 33: Mathematical Problem
	Slide 34: Mathematical Problem
	Slide 35: Numerical Analysis
	Slide 36: Designing Algorithms and Data Structures
	Slide 37: Selecting libraries and tools
	Slide 38: Verify the correctness of results
	Slide 39: Scientific Software - Examples
	Slide 40: Scientific Software - Examples
	Slide 41: Scientific Software - Examples
	Slide 42: Recap: Toward Scientific Software
	Slide 43: Scientific Software - Motifs
	Slide 44: Real Numbers double-struck cap R
	Slide 45: Representing Real Numbers
	Slide 46: 3-digit Calculator
	Slide 47: Floating Point System - Terminology
	Slide 48: IEEE 754 Floating Point System
	Slide 49: IEEE 754 Floating Point Arithmetic
	Slide 50: IEEE 754 Floating Point Arithmetic
	Slide 51: IEEE 754 Floating Point Arithmetic

