CS601: Software Development for Scientific Computing

Programming Assignment 1 - Makefiles, Matrix Multiplication, and Library Functions
Due: 13/9/2023

The objective of this assignment is to gain a hands-on experience with:
1. A build-tool such as Make
2. Exploring different optimization flags that can be provided with compiler
3. Reading the documentation of and using library functions
(a) Use of BLAS library functions

(b) Use of intrinsics for x86 architecture

1 Version Control Systems and Git

You will use GitHub and git, a version control system, to get started with and submit all assignments. Please
read the guidel at Github about version control and git. Another resource is |herel

1.1 Git - setup and submission instructions

You have provided us your GitHub accounts earlier. This is the account you should use to create and submit
all of your assignments this semester. The Git setup and submission instructions remain the same for all
assignments. Please replace the assignment number in the examples with the number of the assignment you
are submitting.

1. Create a Git repository for the assignment.
(a) Log in to your Github account.

(b) Visit the Github repository Discussion page to find the link for the assignment cs601PA1. Click the
link. This will create a repository on Github for the assignment (you will follow a similar procedure
for all future assignments). Make sure that the repository is called ‘IITDhCSE/CS601PA1-<your
GitHub username here>’.

(¢) Clone the repository to develop your assignment. Cloning a repository creates a local copy.
Change your directory to whichever directory you want to create your local copy in, and type:
> git clone git@github.com:IITDhCSE/CS601PAl-<your GitHub username here>.git CS601PA1
This will create a subdirectory called CS601PA1, where you will work on your code.
In this command: git clone copies a repository.
git@github.com: IITDhCSE/CS601PAl-<your GitHub username here>.git tells git where the
server (remote copy) of your code is.
CS601PA1 tells git to place the code in a local directory named CS601PA1
If you change to directory CS601PA1 and list the contents, you should see the files you will need
for this assignment:
> cd CS601PA1

> 1s
And you should see all of the files required to get started with this assignment.

Sometimes, you may see an error accessing the repository and the clone command may fail to
recognize the existance of a repository. One of the reasons could be setting up access credentials:


https://guides.github.com/
https://git-scm.com/book/en/v2

Setting up SSH key with GitHub Set up a public SSH key in your GitHub account (if you
haven’t already). To do this, first generate a new ssh key:

> ssh-keygen

Hit enter three times (to accept the default location, then to set and confirm an empty passphrase).
This will create two files: /.ssh/id rsa (your private key) and /.ssh/id rsa.pub (your public
key) Then print out your public key:

> cat /.ssh/id_rsa.pub
And copy it to the clipboard. Then follow steps at: https://help.github.com /en/articles/adding-
a-new-ssh-key-to-your-github-account

2. As you develop your code, you can commit a local version of your changes (just to make sure that you
can back up if you break something) by typing:

> git add <file name that you want to commit>
> git commit -m ‘)< describe your changes>”’

git add <filename> tells git to “stage” a file for committing. Staging files is useful if you want to
make changes to several files at once and treat them as one logical change to your code. You need to
call git add every time you want to commit a file that you have changed.

git commit tells git to save a new version of your code including all the changes you staged with git
add. Note that until you execute git commit, none of your changes will have a version associated
with them. You can save/commit the changes many times. It is a good habit committing often. It is
very reasonable if you commit every ten minutes (or more often).

Do not type git add * because you will likely add unnecessary files to the repository. When your
repository has many unnecessary files, committing becomes slower. If the unnecessary files are large
(such as executables or core files), committing can take several minutes and your assignments may be
considered late.

3. The changes you saved by executing git commit in the previous step are local to your development
environment i.e. they are saved in a local repository. To copy your changes back to Github (to make
sure they are saved if your computer crashes, or if you want to continue developing your code from
another machine, or you want to make your code visible to a collaborator), type

> git push
If you do not push, the teaching staff cannot see your solutions.

4. you will use git’s “tagging” functionality to submit assignments. Rather than using any submission
system, you will use git to tag which version of the code you want to grade. To tag the latest version
of the code, type:

> git tag -a <tagname> -m ‘’<describe the tag>’’

This will attach a tag with name <tagname> to your latest commit. Once you have a version of your
program that you want to submit, when you run the following commands:

> git tag —a cs60lpalsubmission —m "Turnin PA1"
> git push —tags

it would associate your source code files with a release tag name cs601palsubmission and push it to the
remote server. The grading system will check out the source code version with appropriate tag name
and grade that. If you want to update your submission (and tell the grading system to ignore any
previous submissions), you would type:

> git tag —a —f cs60lpalsubmission —m "Turnin PA1"
> git push —f —tags


https://help.github.com/en/articles/adding-a-new-ssh-key-to-your-github-account
https://help.github.com/en/articles/adding-a-new-ssh-key-to-your-github-account

to indicate:

> git tag -a -f cs60lpalsubmission -m "Turnin PA1" overwrites the tag named “cs601palsubmission”
on the local repository.

git push -f -tags, pushes the updates and overwrites the tag on the remote repository (on Github).

These commands will overwrite any other tag named cs601palsubmission with one for the current
commit. Please be careful about the following rules:

(a) For each assignment, you should tag only one version with the name cs601palsubmission. It
is your responsibility to tag the correct one. You CANNOT request regrading if the grading
program retrieves the version that you do not want to submit.

(b) After tagging a version cs601palsubmission, any modifications you make to your program WILL
NOT BE GRADED (unless you update the tag, as described above).

(¢) The grading program starts retrieving soon after the submission deadline of each assignment. If
your repository has no version tagged cs601lpalsubmission, it is considered that you are late.

(d) The grading program checks every student’s repository 120 hours after the submission deadline.
If a version tagged submission is found, the grading program retrieves and grades that version.

(e) The grading program uses only the version tagged cs601palsubmission. It does NOT choose the
higher score before and after the submission deadline. If a later version has the cs601palsubmission
tag, this later version will be graded with the late discount. Thus, you should tag a late version
with cs601palsubmission only if you are confident that the new score, with the late discount, is
higher.

(f) The time of submission is the time when you push the code to the repository, not the time when
the grading program retrieves your code. If you push the code after the deadline, it is late. Even
though you push before the grading program starts retrieving your program, it is still considered
late.

(g) You should push at least fifteen minutes before the deadline. Give yourself some time to accom-
modate unexpected situations (such as slow networks).

(h) You are encouraged to tag partially working programs for submission early. In case anything
occurs (for example, your computer is broken), you may receive some points. Please remember
to tag improved version as you make progress.

Do not submit any binaries. Your git repo should only contain source files; no products of compilation
(.0, .exe, a.out etc.).

Do not send your code for grading. The only acceptable way for grading is to tag your
repository.

Under absolutely no circumstance will the teaching staff (instructors and teaching assistants) debug
your programs without your presence. Such email is ALWAYS ignored. If you need help, go to office
hours, or post on the discussion forum.

1.2 Intel vector extensions

Refer toloverview| and Intel compiler specific documentationﬂ With g++ compiler, you may use the following
compiler flags -02 -ftree-vectorize -fopt-info-vec-missed to know a detailed report about all the for
loops that were not vectorized.

Example: __m256 m2 = _mm256_load_ps((b+k*n+j)) ;, this line defines a variable m2 of type __m256. The
variable’s value is loaded from memory at address b+k*n+j (read: b[k][j|, where b is a const float [1[]
of size n). Furthermore, 256bits or 8 float numbers are loaded into the __m2 variable. Suffix __ps denotes

1The concepts and API naming conventions are generic


https://www.intel.com/content/dam/develop/external/us/en/documents/intro-to-intel-avx-183287.pdf
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/intrinsics.html

packed, single-precision. You can have scalar, double-precision and other options as well. For complete list,
refer to the documentation.

Credits to Marcus Holm(marcus.holm@it.uu.se) for an excellent overview here| (Read Sections 1 to 3)

2 Problem Statements

1. The starter file for this part of the assignment contains matmul.cpp that implements a C++ program
for computing the product of two matrices as follows: C=C+A*B, where C, A, and B are square matrices
of size N. The product A*B is computed and updated to matrix C, which is zero initialized. A simple
matrix-multiplication consists of 3 nested loops (referred to as ijk loop) shown in the below pseudocode:

for i=0 to N-1

for j=0 to N-1
for k=0 to N-1
Cij = Cij + @ik * bij

Gzy, bzy, and cgy are elements of matrices A, B, and C respectively with = and y are suitable indices in
the range [0, N — 1]. You must reorganize the source code as per the folder-based arrangement (inc,
src etc.) discussed in class. You may add new files.

(a) Implement different versions of matrix multiplication function corresponding to every possible loop
ordering and tabulate in your report the execution times and throughputs. Edit the Makefile
given to you so that a single command make matmul_schedule builds separate targets for each
of the loop orderings and executes them with a matrix size of 2048x2048. You may edit the
file provided as per your wish. However, you must include conditional compilation for compiling
different versions of matmul implementations.

(b) Consider the ijk implementation of matmul. Build this version with a) no optimizations, b)
-01, ¢) -02 d) -03 e) -04. Tabulate in your report the execution times and throughputs for
different optimization levels. Edit the Makefile given to you so that a single command make
matmul_optlevel builds multiple targets with names matmul_ox, where x is the optimization
level. For each of the target built, the make command should also execute them with a matrix
size of 2048x2048. You need not edit the matmul.cpp file provided for this part.

(c) Read about and use library functions from BLAS library for performing matmul. You must
implement two versions: a) using the available function for performing dot-product b) using
sgemm. Tabulate in your report the execution times and throughputs. Discuss your observations.

2. The starter files for this part of the assignment are matvec.cpp, timeutils.cpp, and timeutils.h.
Read about and use the function calls / intrinsics for SSE3 (128-bit vector register extension) on x86
architecture. You will have to implement matrix-vector product using intrinsics. Hint: think of loop
unrolling code that we discussed in class. Your implementation in the matvec_intrinsics() function
should make calls to functions that look like e.g., _mm_load_ps() etc.. The resulting implementation
would be equivalent to unrolling the inner loop 4 times. Edit the matvec.cpp file to implement this
part of the assignment. Discuss your observations. Also edit Makefile so that after building the
required target, you execute the target.

3. Bonus: Implement a version of matmul_intrinsics for executing matrix multiplication using SSE3.

you need to make sure that the code compiles fine and executes on the hip server.

2.1 What you need to submit
Reorganized source code structure.
e (for problem statement 1:) Modified matmul.cpp and additional source code files that you may have.

e (for problem statement 2:) Modified matvec.cpp that contains different versions of matvec.


https://hegden.github.io/cs601/homeworks/marcusholm.pdf

e (for problem statement 2 and 3:) A brief report that contains the details as described previously.

You must tag your source code and submit as described earlier. The tag name to be used is: cs601palsubmission.
All tag names are case-sensitive..



	Version Control Systems and Git
	Git - setup and submission instructions
	Intel vector extensions

	Problem Statements
	What you need to submit


