

 CS601: Software Development for Scientific Computing
Maximum Points: 40 End-semester examination 16/11/2023, 9:30AM to 11:30AM (2 hours)

Instructions: This exam has two parts. Part I is open-book, open-notes (printed/written), Calculator allowed. No

other electronic devices allowed. Part II is take-home. The submission instructions for part II are the same as in

programming assignments. State your assumptions (if any) clearly.

Part I (36 points):

1. Suppose that 𝑢 = 𝑢(𝑥, 𝑦) satisfies Laplace’s equation 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 in the square region 0 < 𝑥, 𝑦 < 1.

Assuming a mesh size of ℎ = 1/3 use the Jacobi iteration, with starting values 𝑢𝑖𝑗
0 = 0 to perform two

iterations. The boundary data are as given below (assume horizontal=x-axis and vertical=y-axis): (10 points)

0.0000 0.2500 0.7500 1.0000

0.4000 u12 u22 0.8000

0.8000 u11 u21 0.4000

0.0000 0.7500 0.2500 0.0000

a) You must show the values of 𝑢𝑖𝑗
1 and 𝑢𝑖𝑗

2 . b) Show the values of 𝑢𝑖𝑗
1 and 𝑢𝑖𝑗

2 with Gauss-seidel iteration. c) The

computation involves y-point stencil in (a) and z-point stencil in (b). What are the values of y and z?

2. Matrix A has a special structure: any element of the matrix, 𝑎𝑖𝑗, can be expressed using elements of two vectors

p, q, as: 𝑎𝑖𝑗 = (𝑝𝑗 − 𝑞𝑖)
2

, 𝑝𝑗 , 𝑞𝑖 denote the jth and ith elements of vectors 𝑝 and 𝑞 respectively.

Design an algorithm to do matrix-vector multiplication Ax=y. Design an Ο(𝑁) algorithm to do this.
Hint:

 𝑎𝑖𝑗 = (𝑝𝑗 − 𝑞𝑖)
2

= 𝑞𝑖
2 − 2𝑝𝑗𝑞𝑖 + 𝑝𝑗

2

𝑦𝑖 = (∑ 𝑥𝑗)𝑞𝑖
2 −

𝑁

𝑗=1

2𝑞𝑖(∑ 𝑝𝑗𝑥𝑗) + (∑ 𝑝𝑗
2 𝑥𝑗)

𝑁

𝑗=1

𝑁

𝑗=1

You must write a pseudocode showing line numbers and explain the number of computational steps with the help
of line numbers. (6 points)

3. Shown below are the implementations of two possible ways of allocating a matrix. Which one (left or right)
would you prefer for efficiency and why? No points awarded without explanation. (4 points)

B = (double **)malloc(m*sizeof(double *));

if (B == NULL) return NULL;

for (i = 0; i < m; i++) {

 B[i] = (double *)malloc(n*sizeof(double));

 if (B[i] == NULL) { free(B); return NULL; }

}

B = (double **)malloc(m*sizeof(double *));

if (B == NULL) return NULL;

B[0] = (double *)malloc(m*n*sizeof(double));

if (B[0] == NULL) { free(B); return NULL; }

/* now set the other pointers */

for (i = 1; i < m; i++)

B[i] = B[0] + i*n;

4. Shown below are two functions: one that uses function templates and one that doesn’t. In a slight deviation
from the template function example discussed in the class, the MultiplyBy template function shown here
parametrizes a data element (in class we saw parametrizing of data types). Assume that there are no compilation
or other errors. Which one would execute faster and why? No points awarded without explanation. (4 points)

5. Answer the questions a) to h) w.r.t. the code snippet shown. Assume that you have answered the previous
question correctly while answering a question. (12 points)

Part II – take home: (4 points) Visit the discussion forum to receive the question paper and instructions.

int Multiply(int x, int m) {
return x * m;

}

template <int m>
int MultiplyBy(int x) {

return x * m;
}

//example usage.
int a, b;
a = Multiply(1000000,8);
b = MultiplyBy<8>(1000000);

