
1

CS601: Software Development for

Scientific Computing
Autumn 2022

Week8: Intermediate C++ (object orientation)

Nikhil Hegde

Course progress so far:

• Computational thinking
– Data representation (IEEE 754)

– System Architecture (cache hierarchy, pipelined logic)

– Language considerations (C/C++ features)

• Patterns / Motifs in Scientific Computing
– Dense matrix computations, Sparse matrix computations, FFT

• Tools
– Git, make, overview of compiler tool chain.

Nikhil Hegde 2

Course in the next 7 weeks:

• Computational thinking
– Data representation (IEEE 754, Object-oriented design)

– System Architecture (cache hierarchy, pipelined logic)

– Language considerations (C/C++ features Generic programming etc.)

• Patterns / Motifs in Scientific Computing
– Dense matrix computations, Sparse matrix computations, FFT

– N-body problems, Structured and Unstructured grids

• Tools
– Git, make, overview of compiler tool chain.

– Doxygen, gdb, valgrind, gprof

Nikhil Hegde 3

Recap: Object Orientation: Why?

Nikhil Hegde 4

• Improve costs

• Improve development process and

• Enforce good design

© Nikhil Hegde 2020

Header file (myvec.h)

Nikhil Hegde 5

Header file (myvec.h)

• Declare the class

Nikhil Hegde 6

Keyword

Class name

Class declaration closing scope

Class declaration opening scope

Header file (myvec.h)

Nikhil Hegde 7

Declaring attributes

Header file (myvec.h)

Nikhil Hegde 8

Declaring operations

Specifying access control

Defining the class (myvec.h and

myvec.cpp)

Nikhil Hegde 9

Scope resolution operator

Constructor: no return type.

Destructor: no parameters, no return type.

Defining the class (myvec.h
and myvec.cpp)

Nikhil Hegde 10

Using an object

Nikhil Hegde 11

Recap: Polymorphism and

Destructors

• declare base class destructors as virtual if using

base class in a polymorphic way

Nikhil Hegde 12

file Fruit.h
#include<string>

class Fruit {
protected:

string commonName;
public:

Fruit(string name);
virtual string GetName();
virtual ~Fruit();

};

...
Fruit* item1 = new Mango(“Mango”,
“Alphonso”);
...
delete item1; //calls Mango::~Mango()
first and then Fruit::~Fruit()

Exercise

• https://forms.gle/xzd83oioSmdyTBn86

Nikhil Hegde, IIT

Dharwad

Object Oriented Programming

with C++

13

https://forms.gle/xzd83oioSmdyTBn86

Recap: Abstract base classes

• A class can have a virtual method without a
definition – pure virtual functions

• E.g

Nikhil Hegde, IIT Dharwad Object Oriented Programming with C++ 14

class Fruit {
protected:

string commonName;
float weight;
float energyPerUnitWeight; //in kCals / 100g

public:
Fruit(string name, float weight);
virtual string GetName();
virtual ~Fruit();
virtual void Energy() = 0;

};

Energy is ‘pure’ –
no implementation

Recap: Defining pure virtual function

Nikhil Hegde, IIT Dharwad Object Oriented Programming with C++ 15

Fruit

Apple

extends

class Apple : public Fruit {
vector<pair<string, float> > constituents;

public:
Apple(string name, float weight);
virtual ~Apple();
. . .
void Energy() {
energyPerUnitWeight = ComputeEnergy(weight, constituents);
}

}; Pure virtual method
defined in derived class.

Base class attribute

Recap: Defining pure virtual function

Nikhil Hegde, IIT Dharwad Object Oriented Programming with C++ 16

Fruit

CoconutApple

extends extends

class Coconut : public Fruit {
vector<pair<string, float> > constituents;

public:
Coconut(string name, float weight);
virtual ~Coconut();
. . .
void Energy() {
float effWeight = GetEdibleContentWeight();
energyPerUnitWeight = ComputeEnergy(effWeight, constituents);
}

}; Computation is different from that of Apple’s method

Recap: Abstract base classes..

• Cannot create objects from abstract base classes.
But may need constructors. Why?

Fruit item1; //not allowed. Fruit::Energy() is pure virtual

• Can create pointers to abstract base classes and use
them in polymorphic way

Fruit* item1 = new Apple(“Apple”, 0.24);
cout<<item1->Energy()<<“Kcals per 100 g”<<endl;

• Often used to create interfaces

Nikhil Hegde, IIT Dharwad Object Oriented Programming with C++ 17

Recap: Friend functions

• Can access private and protected members

Nikhil Hegde, IIT Dharwad Object Oriented Programming with C++ 18

class Coconut {
vector<pair<string, float> > constituents;

public:
...
friend float ComputeEnergy(float wt, Coconut* c);

};

float ComputeEnergy(float weight, Coconut* c) {
//get a set of items, for each item, get its weight and
//energy_per_g. multiply both. Sum the product of all items...
//read from c->constituents to get the set of items.
}

The non-member function ComputeEnergy can access private
attribute constituent of Coconut class

Exercise

• https://forms.gle/JwVF8zSj9Trp4qLx5

Nikhil Hegde, IIT Dharwad Object Oriented Programming with C++ 19

https://forms.gle/JwVF8zSj9Trp4qLx5

Operator overloading

• How can we assign one object to another?
Apple a1(“Apple”, 1.2); //constructor Apple::Apple(string, float)

//is invoked

Nikhil Hegde 20

{
commonName = rhs.commonName;
weight = rhs.weight;
energyPerUnitWeight = rhs.energyPerUnitWeight;
constituents = rhs.constituents;
return *this;
}

Called Copy Assignment Operator

Apple a2; //constructor Apple::Apple() is invoked.

a2=a1 //a1 is assigned to a2. assignment operator invoked

Apple& Apple::operator=(const Apple& rhs)

Operator overloading []

Nikhil Hegde 21

Operator overloading - usage

Nikhil Hegde 22

Copying Objects

Apple a1(“Apple_red”, 0.2);

Nikhil Hegde 23

{
commonName = rhs.commonName;
weight = rhs.weight;
energyPerUnitWeight = rhs.energyPerUnitWeight;

}

Apple a2 = a1; //calls copy constructor

Apple::Apple(const Apple& rhs)

Copy constructor – another example

• Not necessary to define the copy constructor.

Compiler defines one for us.

Nikhil Hegde 24

Nikhil Hegde 25

Nikhil Hegde 26

If you don’t define a copy constructor, in some cases, e.g.,

for class MyVec, the program aborts. Why in this case?

const and references

Nikhil Hegde 27

Nikhil Hegde 28

Define the copy constructor. Now you need to make

changes to other methods (const) as well.

Const and References - Summary

• Allow for compiler optimizations

– pass-by-reference: allows for passing large objects to

a function call

• Tell us immediately (by looking at the interface)

that a parameter is read-only

Nikhil Hegde 29

Detour: References and Const

• We saw reference variables earlier (week 2)

– Closely related to pointers:

– Directly name another object of the same type.

– Recall:

• A pointer is defined using the * (dereference operator)

symbol.

• A reference is defined using the & (address of operator)

symbol. Furthermore, unlike in pointer definitions, a reference

must be defined/initialized with the object that it names

(cannot be changed later).

Nikhil Hegde 30

References

Nikhil Hegde 31

int n=10;

int &re=n; //re must be initialized

int* ptr; //ptr need not be initialized here

ptr=&n //ptr now initialized (now pointing to n)

int x=20;

ptr=&x; //ptr now pointing to x

re=&x; //is illegal. Cannot change what re names.

printf(“%p %p\n”,&re, &n); // re and n are naming the
same box in memory. Hence, they have the same address.

• A type qualifier

• The type is a constant (cannot be modified).

• const is the keyword

• Example:

const int x=10;

Quick tour: const

In what memory segment does x gets stored?

//equivalent to: int const x=10;

//x is a constant integer. Hence, cannot be modified.

• Needs to be initialized at the time of definition

• Can’t modify after definition

• const int x=10;
x=20; //compiler would throw an error

• int const x=10;
x=10; //can’t even assign the same value

• int const y; //uninitialized const variable y. Useless.

Const Properties

10

x

Can’t alter the content of this box

const int* ptrCX; //or equivalently:
int const* ptrCX;

Const Example1 (error)

10

x

Addr: 1234

Can’t alter the content of this box

using ptrCX or x

1234

ptrCX

/*ptrCX is a pointer to a constant integer. So,
can’t modify what ptrCX points to.*/

int const x=10;
ptrCX = &x;
*ptrCX = 20; //Error

/*cptrX is a constant pointer to an integer. So, can’t
point to anything else after initialized.*/
int x=10, y=20;
int *const cptrX=&x;
cptrX = &y; //Error

Const Example2 (error)

10

x

Addr: 1234

1234

cptrX

Can’t alter the

content of this box
20

y

Addr: 5678

/*cptrXC is a constant pointer to a constant integer. So,
can’t point to anything else after initialized. Also,
can’t modify what cptrXC points to.*/

const int x=10, y=20;
const int *const cptrXC=&x;
int const *const cptrXC2=&x; //equivalent to prev. defn.
cptrXC = &y; //Error
*cptrXC = 40; //Error

Const Example3 (error)

10

x

Addr: 1234

Can’t alter the content of

this box using cptrCX or x
1234

cptrXC

Can’t alter the

content of this box

/*p2x is a pointer to an integer. So, we can use p2x to
alter the contents of the memory location that it points
to. However, the memory location contains read-only data -
cannot be altered. */

const int x=10;
const int *p1x=&x;
int *p2x=&x; //warning
*p2x = 20; //goes through. Might crash depending on memory
location accessed

Const Example4 (warning)

10

x

Addr: 1234

Can’t alter the content

of this box using p1x

or x. Can alter using

p2x.

1234

p1x

1234

p2x

/*p1x is a pointer to a constant integer. So, we can’t use
p1x to alter the content of the memory location that it
points to. However, the memory location it points to can
be altered (through some other means e.g. using x)*/

int x=10;
const int *p1x=&x;

Const Example5 (no warning, no

error)

10

x

Addr: 1234

1234

p1x

Can’t alter the content

of this box using p1x.

Can alter using x.

/*p1x is a constant pointer to an integer. So, we can use
p1x to alter the contents of the memory location that it
points to (and we can’t let p1x point to something else
other than x). However, the memory location contains read-
only data - cannot be altered. */

const int x=10;
int *const p1x=&x;//warning
*p1x = 20; //goes through. Might crash depending on memory
location accessed

Const Example6 (warning)

10

x

Addr: 1234

Can’t alter the content

of this box using x.

Can alter using p1x.

1234

p1x

Can’t alter the

content of this box

/*p1x is a constant pointer to a constant integer. So, we
can’t use p1x to alter the content of the memory location
that it points to. However, the memory location it points
to can be altered (through some other means e.g. using
x)*/

int x=10;
const int *const p1x=&x;

Const Example7 (no warning, no

error)

10

x

Addr: 1234

1234

p1x

Can’t alter the content

of this box using p1x.

Can alter using x.

Can’t alter the

content of this box

Standard Template Library (STL)

• Set of frequently used data structures and
algorithms

• Defined as parametrized data types and functions

• E.g.
• vector, map, queue, pair, sort etc.

Nikhil Hegde, IIT Dharwad Object Oriented Programming with C++ 41

Vectors

• An array that expands and shrinks automatically
• Parametrized data structure

• E.g.
• std::vector<int> integers;
//empty array that can hold integer numbers

• std::vector<Fruit> fruits(10);
//array of 10 elements of type Fruit. The 10 objects are
initialized by //invoking default constructor

• Recall that
class Coconut {
vector<pair<string, float> > constituents;
...

Nikhil Hegde, IIT Dharwad Object Oriented Programming with C++ 42

Type for a pair of any types (type1, type2)

Vectors – adding elements

Nikhil Hegde, IIT Dharwad Object Oriented Programming with C++ 43

Real-world view
source:wikipedia

Vectors – adding elements

Nikhil Hegde, IIT Dharwad Object Oriented Programming with C++ 44

#include<vector> in Fruit.h

int main() {
Coconut* c;
c=Coconut(“Coconut”,1.2)
//..

}

Coconut::Coconut(string name, float weight) : Fruit(name, weight) {
constituents.push_back(make_pair(“sugars”,6.23));
constituents.push_back(make_pair(“fiber”,9));
//...

}

Object creation and initialization

Vectors – adding elements

Nikhil Hegde, IIT Dharwad Object Oriented Programming with C++ 45

Fruit part of the object:
commonName = “Coconut”
Weight = 1.2
energyPerUnitWeight = 3.6
vptr = ...

Coconut part of the object:
constituents = {
<sugars,6.23>,
<fiber, 9>,
<saturated_fat, 29.69>,
<water, 47g>,

}

Object layout in memory

Vectors – operations

Nikhil Hegde, IIT Dharwad Object Oriented Programming with C++ 46

Reading elements:
constituents.push_back(make_pair(“sugars”,6.23))
pair<string, float> tmpVal = constituents[0];

Removing elements:
constituents.push_back(make_pair(“fiber”,9))
constituents.pop_back();

Finding number of elements:
cout<<constituents.size()<<endl;

declaration: vector<pair<string, float> > constituents;

Vectors – operations

Nikhil Hegde, IIT Dharwad Object Oriented Programming with C++ 47

declaration: vector<pair<string, float> > constituents;

Element-wise inspection (iterating over vector elements):

vector<pair<string, float>::iterator it;
for(it=constituents.begin(); it!=constituents.end(); it++) {

pair<string, float> elem = *it;
cout<<elem.first<<“,”<<elem.second<<endl;
//can also use cout<<it->first<<“,”<<it->second<<endl;

}

Reference: http://www.cplusplus.com/reference/vector/vector/

sort

Nikhil Hegde, IIT Dharwad Object Oriented Programming with C++ 48

• Sort fruits by their weight / energy / name

bool comp(Fruit* obj1, Fruit* obj2) {
if(obj1->GetWeight() < obj2->GetWeight())

return true;
return false;

} int main() {
Apple* a1=new Apple(“Apple”,0.24);
Orange* o=new Orange(“Orange”,0.15);
Mango* m=new Mango(“Mango”,0.35);
Apple* a2=new Apple(“Apple”,0.2);
vector<Fruit*> fruits;
fruits.push_back(a1);
fruits.push_back(o);
fruits.push_back(m);
fruits.push_back(a2);
sort(fruits.begin(),fruits.end(),comp);

}

#include<algorithm>

Exceptions

• Preferred way to handle logic and runtime errors
• Unhandled exceptions stop program execution. Handle

exceptions and recover from errors.

• Clean separation between error detection and handling.

• Where to use? often in public functions
• no control over arguments passed

• Are there performance penalties?
• Mostly not. ‘exceptions’: memory-constrained devices,

real-time performance requirements

Nikhil Hegde, IIT Dharwad Object Oriented Programming with C++ 49

Exceptions

Nikhil Hegde, IIT Dharwad Object Oriented Programming with C++ 50

Fruit::Fruit(string name, float wt) {
if(wt < 0)

throw std::invalid_argument(“Invalid weight”);
}
...

}

int main() {
try {

Apple* a = new Apple(“Apple_gala”,-0.4);
}catch(const std::invalid_argument& ia) {

cerr<<ia.what()<<endl;
}

}
reference: http://www.cplusplus.com/doc/tutorial/exceptions/

• E.g.

keywords

