
1

CS601: Software Development for

Scientific Computing
Autumn 2022

Week6: Motifs – Matrix Computations with

Dense and Sparse Matrices

Nikhil Hegde

Last week..

• Three fundamental ways to multiply two matrices
– Comprising of dot products, linear combination of the left matrix

columns, outer product updates

• Commonly occurring algorithmic patterns / kernels :

Dot product, AXPY and GAXPY, outer product, matrix-vector

product, matrix-matrix product

• Linear algebra software (BLAS, LAPACK)
– BLAS routines and categorization

• Algorithmic costs
– Arithmetic cost

– Data movement cost

• Computational intensity (examples: axpy, matvec, matmul)
Nikhil Hegde 2

Last week - Communication Cost

3

• Reading column j of B

• Each column of B read n times including outer i loop = n3 words read

n2 words read and n2 words written (each

entry of C read/written to memory once).

= 2 n2 words read/written

for i=1 to n

• Reading a row i of A

for j=1 to n

for k=1 to n
C(i,j)=C(i,j) + A(i,k)*B(k,j)

//Assume A, B, C are all nxn

• Assume that row i of A stays in fast

memory during j=2, .. J=n

• n2 words read: each row of A read

once for each i.

• End of loop k=1 to n: write C(i,j)

back to slow memory

• loop k=1 to n: read C(i,j) into fast

memory and update in fast memory

• Suppose there is space in fast memory to hold only one

column of B (in addition to one row of A and 1 element

of C), then every column of B is read from slow memory

to fast memory once in inner two loops.

total cost = 3 n2 +n3 (if the cache size is

n+n+1)

Last week – Computational Intensity of

Matmul (ijk)

• Words moved = n3+3n2 = n3+O(n2)

• Number of arithmetic operations = 2n3 (from slide 35)

• computational intensity q≈2n3/n3 = 2. (computation to

communication ratio)

• Can we do better?

4

Same as q for matrix-vector?

What if the fast memory has more space ? more than just two

columns + one element space?

Last week - Blocked Matrix Multiply

• For N=4:

5Nikhil Hegde

for j=1 to N
//Read entire Bj into fast memory
//Read entire Cj into fast memory

for k=1 to n
//Read column k of A into fast memory
Cj=Cj + A(*,k) * Bj(k,*)
//Write Cj back to slow memory

source: http://people.eecs.berkeley.edu/~demmel/cs267/lecture02.html

http://people.eecs.berkeley.edu/~demmel/cs267/lecture02.html

Last week – Computational Intensity

• Number of arithmetic operations = 2𝑛3

• 𝒒 = 𝟐𝒏𝟑/ 𝑵 + 𝟑 𝒏𝟐 = 𝟐𝒏/𝑵. Good!

6Nikhil Hegde

for j=1 to N
//Read entire Bj into fast memory
//Read entire Cj into fast memory

for k=1 to n
//Read column k of A into fast memory
C(*,j)=C(*,j) + A(*,k)*Bj(k,*) //outer-product

//Write Cj back to slow memory

𝑛2 words read: each column

of B read once.

𝑁𝑛2 words read: each

column of A read N times

2𝑛2 words read:

read/write each entry of C

to memory once.

Blocked Matrix Multiply - General

• 𝐴, 𝐵, 𝐶 ∈ ℝ𝑛×𝑛

• We wish to update 𝐶 block-by-block: 𝐶𝑖𝑗 = 𝐶𝑖𝑗 + Σ𝑘=1
𝑝

𝐴𝑖𝑘𝐵𝑘𝑗
– Assume that blocks of A, B, and C fit in cache. 𝐶𝑖𝑗 is roughly n/q by

n/r, 𝐴𝑖𝑗 is roughly n/q by n/p, 𝐵𝑖𝑗 is roughly n/p by n/r.

– But how to choose block parameters 𝑝, 𝑞, 𝑟 such that assumption holds

for a cache of size 𝑀?

• i.e. given the constraint that
𝑛

𝑞
×

𝑛

𝑟
+

𝑛

𝑞
×

𝑛

𝑝
+

𝑛

𝑝
×

𝑛

𝑟
≤ 𝑀

7Nikhil Hegde

𝐶11 𝐶12 . . 𝐶1𝑟
𝐶21 𝐶22 . . 𝐶2𝑟

:
𝐶𝑞1 𝐶𝑞2 . . 𝐶𝑞𝑟

𝐴 𝐵

𝐴11 𝐴12 . . 𝐴1𝑝
𝐴21 𝐴22 . . 𝐴2𝑝

:
𝐴𝑞1 𝐴𝑞2 . . 𝐴𝑞𝑝

𝐵11 𝐵12 . . 𝐵1𝑟
𝐵21 𝐵22 . . 𝐵2𝑟

:
𝐵𝑝1 𝐵𝑝2 . . 𝐵𝑝𝑟

𝐶

p
r

q
p

q
r

Blocked Matrix Multiply - General

• Maximize
2𝑛3

𝑞𝑟𝑝
subject to

𝑛

𝑞
×

𝑛

𝑟
+

𝑛

𝑞
×

𝑛

𝑝
+

𝑛

𝑝
×

𝑛

𝑟
≤ 𝑀

– 𝑞𝑜𝑝𝑡 = 𝑝𝑜𝑝𝑡 = 𝑟𝑜𝑝𝑡 ≈
3𝑛2

𝑀

• Each block should roughly be a square matrix and occupy

one third of the cache size

• Can we design algorithms that are independent of cache

size?

8Nikhil Hegde

Recursive Matrix Multiply

• Cache-oblivious algorithm

– No matter what the size of the cache is, the algorithm performs at a

near-optimal level

• Divide-conquer approach

• Apply the formula recursively to 𝐴11𝐵11 etc.

– Works neat when n is a power of 2.

• What layout format is preferred for this algorithm?

– Row-major or Col-major?

9Nikhil Hegde

𝐴11 𝐴12
𝐴21 𝐴22

×
𝐵11 𝐵12
𝐵21 𝐵22

=
𝐴11𝐵11 + 𝐴12𝐵21 𝐴11𝐵12 + 𝐴12𝐵22
𝐴21𝐵11 + 𝐴22𝐵21 𝐴21𝐵12 + 𝐴22𝐵22

Neither.

Recursive Matrix Multiply

• Cache-oblivious Data structure

• Matrix entries are stored in the order shown

– E.g. row-major would have 1-8 in the first row, followed by 9-16 in the

second and so on.

10Nikhil Hegde

Summary- matmul

Loop Order Inner Loop Inner Two

Loops

Inner Loop Data Access

i j k dot Vector x Matrix A by row, B by column

j k i saxpy gaxpy A by column, C by column

k j i saxpy Outer product A by column, C by column

.. (3 more rows here..)

Nikhil Hegde 11

Ref: Matrix Computations, 4th Ed., Golub and Van Loan

• Unblocked Matrix Multiplication - Loop Orderings and

Properties

• Blocked matrix multiplication

• Column blocking, row blocking, tiling

• Recursive matrix multiplication

• Divide-conquer, Strassen’s

• Many more?

Efficiency Considerations for a High-

Performing Implementation

• Cache details (size)

• Data movement overhead

• Storage layout

• Parallel and ‘special’ functional Units (e.g. Vector units and

fused multiply-add)

12Nikhil Hegde

Parallel Functional Units

• IBM’s RS/6000 and Fused Multiply Add (FMA)

– Fuses multiply and an add into one functional unit (c=c+a*b)

– The functional unit consists of 3 independent subunits : Pipelining

– Example: Suppose the FMA unit takes 3 cycles to complete,

15Nikhil Hegde

sum=0.0
for (i=0;i<n;i++)
sum=sum+a[i]*b[i]

sum=0.0
for (i=0;i<n;i+=4)

sum1=sum1+a[i]*b[i]
sum2=sum2+a[i+1]*b[i+1]
sum3=sum3+a[i+2]*b[i+2]
sum4=sum4+a[i+3]*b[i+3]

how many cycles do you need to

execute this code snippet?

how many cycles do you need to

execute this code snippet?

Matrix Structure and Efficiency

• Sparse Matrices

– E.g. banded matrices

– Diagonal

– Tridiagonal etc.

• Symmetric Matrices

16Nikhil Hegde

• Storage

• Computation

Admit optimizations w.r.t.

Sparse Matrices - Motivation

• Matrix Multiplication with Upper Triangular Matrices

(C=C+AB)

17Nikhil Hegde

a11 a12 a13

0 a22 a23

0 0 a33

A

b11 b12 b13

0 b22 b23

0 0 b33

B

a11b11 a11b12+a12 b22 a11b13+a12 b23 + a13 b13

0 a22b22 a22b23+a23 b33

0 0 a33b33

AB
The result, A*B, is also upper triangular.

=

The non-zero elements appear to be like the result of inner-product

Sparse Matrices - Motivation

• C=C+AB when A, B, C are upper triangular

• Cost = Σ𝑖=1
𝑁 Σ𝑗=𝑖

𝑁 2 𝑗 − 𝑖 + 1 flops (why 2?)

• Using Σ𝑖=1
𝑁 𝑖 ≈

𝑛2

2
and Σ𝑖=1

𝑁 𝑖2 ≈
𝑛3

3

• Σ𝑖=1
𝑁 Σ𝑗=𝑖

𝑁 2 𝑗 − 𝑖 + 1 ≈
𝑛3

3
, 1/3rd the number of flops

required for dense matrix-matrix multiplication

Nikhil Hegde 18

for i=1 to N

for j=i to N

for k=i to j

C[i][j] = C[i][j] + A[i][k]*B[k][j]

Sparse Matrices

• Have lots of zeros (a large fraction)

• Representation

– Many formats available

– Compressed Sparse Row (CSR)

19Nikhil Hegde

vector<vector<double>> val;
vector<vector<int>> ind;

double *val;
int *ind;
int *rowstart;

Two Vector of Vectors: Implementation:Three arrays:

Sparse Matrices - Example

• Using Arrays

20Nikhil Hegde

double *val; //size= NNZ
int *ind; //size=NNZ
int *rowstart; //size=M=Number of rowsa11 a12 0 0 a15 0 0 0 a19

0 a22 0 0 a25 0 a27 0 0

0 a32 a33 a34 0 a36 0 0 a39

a41 0 0 a44 0 0 a47 0 0

0 a52 0 a54 a55 0 0 0 a59

0 a62 a63 0 0 0 a67 a68 a69

A

a11 a12 a15 a19 a22 a25 a27 a32 a33 a34 a36 a39 a41 a44 a47 a52 a54 a55 a59 a62 a63 a67 a68 a69

val:

1 2 5 9 2 5 7 2 3 4 6 9 1 4 7 2 4 5 9 2 3 7 8 9

ind:

0 4 7 12 15 19

rowstart:

Sparse Matrices: y=y+Ax

• Using arrays

• Does the above code reuse y, x, and val ? (we want our

code to reuse as much data elements as possible while they are in

fast memory):

– y?

– x?

– val?

Nikhil Hegde 22

for i=0 to numRows

for j=rowstart[i] to rowstart[i+1]-1

y[i] = y[i] + val[j]*x[ind[j]]

Yes. Read and written in close succession.

Possible. Depends on how data is scattered in val.

Less likely for a sparse matrix.

Sparse Matrices: y=y+Ax

• Optimization strategies:

– Unroll the j loop // we need to know the number of non-zeros per row

– Move y[i] outside the loop //Possible only if y is not aliased.

– Eliminate ind[i] and thereby the indirect access to elements of x.

Indirect access is not good because we cannot predict the

pattern of data access in x. //We need to know the column numbers

– Reuse elements of x //The elements of a should be e.g. located

closely

Nikhil Hegde 23

for i=0 to numRows

for j=rowstart[i] to rowstart[i+1]-1

y[i] = y[i] + val[j]*x[ind[j]]

Sparse Matrices

• Further reading:

Refer to Lecture 15 (Spring 2018) at

https://inst.eecs.berkeley.edu/~cs267/archives.html

Nikhil Hegde 24

https://inst.eecs.berkeley.edu/~cs267/archives.html

Banded Matrices

• Special case of sparse matrices, characterized by two

numbers:

– Lower bandwidth p, and upper bandwidth q

– aij = 0 if i > j+p

– aij = 0 if j > i+q

– E.g. p=1, q=2

for a 8x5 matrix

(x represents non-zero

element)

25Nikhil Hegde

Banded Matrices - Representation

• Optimizing storage (specific to banded matrices)

26Nikhil Hegde

a11 a12 a13 0 0

a21 a22 a23 a24 0

0 a32 a33 a34 a35

0 0 a43 a44 a45

0 0 0 a54 a55

0 0 0 0 a65

0 0 0 0 0

0 0 0 0 0

A

* * a13 a24 a35

* a12 a23 a34 a45

a11 a22 a33 a44 a55

a21 a32 a43 a54 a65

Aband

Aij=Aband(i-j+q+1, j)

E.g. A44 = Aband34

Banded Matrices: y= y + Aband x

• A=Aband: optimizing computation and storage

• Cost? 2n(p+q+1) time! Much lesser than 2N2 time required

for regular y=y+Ax (assuming p and q are much smaller than n)

27Nikhil Hegde

for j=1 to n

alpha1=max(1, j-q)

alpha2=min(n, j+p)

beta1=max(1, q+2-j)

for i=alpha1 to alpha2

y[i]=y[i] + Aband(beta1+i-alpha1,j)*x[j]

