CS601: Software Development for Scientific Computing Autumn 2022

Week6: Motifs – Matrix Computations with Dense and Sparse Matrices

Last week..

- Three fundamental ways to multiply two matrices
 - Comprising of dot products, linear combination of the left matrix columns, outer product updates
 - Commonly occurring algorithmic patterns / kernels :

Dot product, AXPY and GAXPY, outer product, matrix-vector product, matrix-matrix product

- Linear algebra software (BLAS, LAPACK)
 - BLAS routines and categorization
- Algorithmic costs
 - Arithmetic cost
 - Data movement cost
- Computational intensity (examples: axpy, matvec, matmul)

Last week - Communication Cost

- loop k=1 to n: read C(i,j) into fast memory and update in fast memory
- End of loop k=1 to n: write C(i,j) back to slow memory
- Reading column j of B

- n² words read: each row of A read once for each i.
- Assume that row i of A stays in fast memory during j=2, ... J=n
- Reading a row i of A

 n^2 words read and n^2 words written (each entry of C read/written to memory once). = 2 n^2 words read/written

total cost = $3 n^2 + n^3$ (if the cache size is n+n+1)

- Suppose there is space in fast memory to hold only one column of B (in addition to one row of A and 1 element of C), then every column of B is read from slow memory to fast memory once in inner two loops.
- Each column of B read n times including outer i loop = n³ words read

Last week – Computational Intensity of Matmul (ijk)

- Words moved = $n^3 + 3n^2 = n^3 + O(n^2)$
- Number of arithmetic operations = $2n^3$ (from slide 35)
- computational intensity q≈2n³/n³ = 2. (computation to communication ratio)

Same as q for matrix-vector?

What if the fast memory has more space ? more than just two columns + one element space?

• Can we do better?

Last week - Blocked Matrix Multiply

 C1
 C2
 C3
 C4
 =
 C1
 C2
 C3
 C4
 +
 A
 *
 B1
 B2
 B3
 B4
 • For N=4: $\begin{vmatrix} Cj \\ = \begin{vmatrix} Cj \\ + \end{vmatrix} = \begin{vmatrix} A \\ * \end{vmatrix} = \begin{vmatrix} Bj \\ Bj \\ = \begin{vmatrix} Cj \\ + \sum \\ k=1 \end{vmatrix} * - \begin{vmatrix} n \\ + \sum \\ k=1 \end{vmatrix}$ A(:,k) Bj(k,:)for j=1 to N //Read entire Bj into fast memory //Read entire Cj into fast memory for k=1 to n

source: http://people.eecs.berkeley.edu/~demmel/cs267/lecture02.html

//Read column k of A into fast memory

Cj=Cj + A(*,k) * Bj(k,*)

Nikhil Heade //Write Cj back to slow memory

Last week – Computational Intensity

for j=1 to N
//Read entire Bj into fast memory
//Read entire Cj into fast memory
for k=1 to n
//Read column k of A into fast memory
C(*,j)=C(*,j) + A(*,k)*Bj(k,*) //outer-product
//Write Cj back to slow memory
• Number of arithmetic operations =
$$2n^3$$

• Number of arithmetic operations = $2n^3$
• n^2 words read: each column
of B read once.
Nn² words read: each
column of A read N times
2n² words read:
read/write each entry of C
to memory once.

•
$$q = 2n^3/(N+3)n^2 = 2n/N$$
. Good!

Blocked Matrix Multiply - General

- $A, B, C \in \mathbb{R}^{n \times n}$
- We wish to update C block-by-block: $C_{ij} = C_{ij} + \sum_{k=1}^{p} A_{ik}B_{kj}$
 - Assume that blocks of A, B, and C fit in cache. C_{ij} is roughly n/q by n/r, A_{ij} is roughly n/q by n/p, B_{ij} is roughly n/p by n/r.
 - But how to choose block parameters *p*, *q*, *r* such that assumption holds for a cache of size *M*?
 - i.e. given the constraint that $\frac{n}{q} \times \frac{n}{r} + \frac{n}{q} \times \frac{n}{p} + \frac{n}{p} \times \frac{n}{r} \le M$

Blocked Matrix Multiply - General

• Maximize $\frac{2n^3}{qrp}$ subject to $\frac{n}{q} \times \frac{n}{r} + \frac{n}{q} \times \frac{n}{p} + \frac{n}{p} \times \frac{n}{r} \le M$

$$-q_{opt} = p_{opt} = r_{opt} \approx \sqrt{\frac{3n^2}{M}}$$

- Each block should roughly be a square matrix and occupy one third of the cache size
- Can we design algorithms that are independent of cache size?

Recursive Matrix Multiply

- Cache-oblivious algorithm
 - No matter what the size of the cache is, the algorithm performs at a near-optimal level
- Divide-conquer approach

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

- Apply the formula recursively to $A_{11}B_{11}$ etc. – Works neat when n is a power of 2.
- What layout format is preferred for this algorithm?
 - Row-major or Col-major? Neither.

Recursive Matrix Multiply

Cache-oblivious Data structure

[]	l	2	5	6	17	18	21	22	
1 3	3	4	7	8	19	20	23	24	
9)	10	13	14	25	26	29	30	
1	1	12	15	16	27	28	31	32	
3	3	34	37	38	49	50	53	54	•
3	5	36	39	40	51	52	55	56	
4	1	42	45	46	57	58	61	62	
4	3	44	47	48	59	60	63	64	

- Matrix entries are stored in the order shown
 - E.g. row-major would have 1-8 in the first row, followed by 9-16 in the second and so on.

Summary- matmul

 Unblocked Matrix Multiplication - Loop Orderings and Properties

Loop Order	Inner Loop	Inner Two Loops	Inner Loop Data Access					
ijk	dot	Vector x Matrix	A by row, B by column					
jki	saxpy	gaxpy	A by column, C by column					
kji	saxpy	Outer product	A by column, C by column					
(3 more rows here)								

Ref: Matrix Computations, 4th Ed., Golub and Van Loan

- Blocked matrix multiplication
 - Column blocking, row blocking, tiling
- Recursive matrix multiplication
 - Divide-conquer, Strassen's
- Many more?

Efficiency Considerations for a High-Performing Implementation

- Cache details (size)
- Data movement overhead
- Storage layout
- Parallel and 'special' functional Units (e.g. Vector units and fused multiply-add)

Parallel Functional Units

- IBM's RS/6000 and Fused Multiply Add (FMA)
 - Fuses multiply and an add into one functional unit (c=c+a*b)
 - The functional unit consists of 3 independent subunits : Pipelining
 - Example: Suppose the FMA unit takes 3 cycles to complete,

```
sum=0.0
for (i=0;i<n;i+=4) how many cycles do you need to
  sum1=sum1+a[i]*b[i] execute this code snippet?
  sum2=sum2+a[i+1]*b[i+1]
  sum3=sum3+a[i+2]*b[i+2]
  sum4=sum4+a[i+3]*b[i+3]</pre>
```

Matrix Structure and Efficiency

- Sparse Matrices
 - E.g. banded matrices
 - Diagonal
 - Tridiagonal etc.
- Symmetric Matrices

Admit optimizations w.r.t.

- Storage
- Computation

Sparse Matrices - Motivation

 Matrix Multiplication with Upper Triangular Matrices (C=C+AB)

The result, A*B, is also upper triangular.

The non-zero elements appear to be like the result of *inner-product* Nikhil Hegde

Sparse Matrices - Motivation

 C=C+AB when A, B, C are upper triangular for i=1 to N

for j=i to N

for k=i to j

C[i][j] = C[i][j] + A[i][k]*B[k][j]

- Cost = $\sum_{i=1}^{N} \sum_{j=i}^{N} 2(j i + 1)$ flops (why 2?)
- Using $\sum_{i=1}^{N} i \approx \frac{n^2}{2}$ and $\sum_{i=1}^{N} i^2 \approx \frac{n^3}{3}$
- $\sum_{i=1}^{N} \sum_{j=i}^{N} 2(j-i+1) \approx \frac{n^3}{3}$, 1/3rd the number of flops required for dense matrix-matrix multiplication

Sparse Matrices

• Have lots of zeros (a large fraction)

X	х	0	0	х	0	0	0	Х
o	х	0	0	х	0	х	0	0
o	х	х	X	0	х	0	0	х
x	0	0	х	0	0	х	0	0
o	х	0	х	X	0	0	0	х
0	х	X	0	0	0	х	X	X

- Representation
 - Many formats available
 - Compressed Sparse Row (CSR)

Implementation:Three arrays:
double *val;
int *ind;
int *rowstart;

Nikhil Hegde

Sparse Matrices - Example

• Using Arrays

				Α				
a ₁₁	a ₁₂	0	0	a ₁₅	0	0	0	a ₁₉
0	a ₂₂	0	0	a ₂₅	0	a ₂₇	0	0
0	a ₃₂	a ₃₃	a ₃₄	0	a ₃₆	0	0	a ₃₉
a ₄₁	0	0	a ₄₄	0	0	a ₄₇	0	0
0	a ₅₂	0	a ₅₄	a ₅₅	0	0	0	a ₅₉
0	a ₆₂	a ₆₃	0	0	0	a ₆₇	a ₆₈	a ₆₉

double *val; //size= NNZ
int *ind; //size=NNZ
int *rowstart; //size=M=Number of rows

val:

ind:

Sparse Matrices: y=y+Ax

Using arrays

for i=0 to numRows
for j=rowstart[i] to rowstart[i+1]-1
 y[i] = y[i] + val[j]*x[ind[j]]

- Does the above code reuse y, x, and val ? (we want our code to reuse as much data elements as possible while they are in fast memory):
 - y? Yes. Read and written in close succession.
 - x? Possible. Depends on how data is scattered in val.
 - val? Less likely for a sparse matrix.

Sparse Matrices: y=y+Ax

• Optimization strategies:

for i=0 to numRows
for j=rowstart[i] to rowstart[i+1]-1
 y[i] = y[i] + val[j]*x[ind[j]]

- Unroll the j loop // we need to know the number of non-zeros per row
- Move y[i] outside the loop //Possible only if y is not aliased.
- Eliminate ind[i] and thereby the indirect access to elements of x.
 Indirect access is not good because we cannot predict the pattern of data access in x. //We need to know the column numbers
- Reuse elements of x //The elements of a should be e.g. located closely

Sparse Matrices

• Further reading:

Refer to Lecture 15 (Spring 2018) at https://inst.eecs.berkeley.edu/~cs267/archives.html

Banded Matrices

- Special case of sparse matrices, characterized by two numbers:
 - Lower bandwidth p, and upper bandwidth q

_	$a_{\mathtt{i}\mathtt{j}}$	=	0	if	i	>	j+p	
—	$a_{\mathtt{i}\mathtt{j}}$	=	0	if	j	>	i+q	
_	E.g		p=	1,	q=	2		
	for	a	8	x5	ma	tr	ix	
(×	k re	pr	es	ent	S	no	n-zer	סי
el	leme	nt)					

x	X	X	0	0
х	X	X	X	0
0	х	X	X	X
0	0	х	X	X
0	0	0	х	X
0	0	0	0	х
0	0	0	0	0
0	0	0	0	0

Banded Matrices - Representation

Optimizing storage (specific to banded matrices)

Banded Matrices: y= y + Aband x

A=Aband: optimizing computation and storage

```
for j=1 to n
alpha1=max(1, j-q)
alpha2=min(n, j+p)
beta1=max(1, q+2-j)
for i=alpha1 to alpha2
    y[i]=y[i] + Aband(beta1+i-alpha1,j)*x[j]
```

 Cost? 2n(p+q+1) time! Much lesser than 2N² time required for regular y=y+Ax (assuming p and q are much smaller than n)