CS601: Software Development for

Scientific Computing
Autumn 2022

Week6: Motifs — Matrix Computations with
Dense and Sparse Matrices

Nikhil Hegde

Last week..

Three fundamental ways to multiply two matrices
— Comprising of dot products, linear combination of the left matrix
columns, outer product updates

Commonly occurring algorithmic patterns / kernels :

Dot product, AXPY and GAXPY, outer product, matrix-vector
product, matrix-matrix product

Linear algebra software (BLAS, LAPACK)
— BLAS routines and categorization

Algorithmic costs
— Arithmetic cost

— Data movement cost

Computational intensity (examples: axpy, matvec, matmul)
2

Last week - Communication Cost

//Assume A, B, C are all nxn

for i=1 to n
for j=1 to n
for k=1 to n
C(l,J)iiﬁa,J) +|A(L, k) B(K,3)

loop k=1 to n: read C(i,j) into fast
memory and update in fast memory

End of loop k=1 to n: write C(i,))
back to slow memory

Reading column j of B

) 2 "
Pl words read: each row of A read

once for each i.

Assume that row i of A stays in fast
memory during j=2, .. J=n

Reading a row i of A

n? words read and n?words written (each

— entry of C read/written to memory once).

= 2 n2 words read/written

total cost = 3 n? +n3 (if the cache size is
n+n+1)

Suppose there is space in fast memory to hold only one
column of B (in addition to one row of A and 1 element
of C), then every column of B is read from slow memory

to fast memory once in inner two loops.

Each column of B read ntimes including outer i loop = n3words read

Last week — Computational Intensity of
Matmul (ijk)

* Words moved = n3+3n? = n3+0O(n?)
« Number of arithmetic operations = 2n® (from slide 35)

« computational intensity g=2n3/n3 = 2. (computation to
communication ratio)

Same as g for matrix-vector?

What if the fast memory has more space ? more than just two
columns + one element space?

« Can we do better?

Last week - Blocked Matrix Multiply

For N=4: 1l ca

C3

C4

for j=1 to N

//Read entire Bj into fast memory
//Read entire Cj into fast memory

for k=1 to n

//Read column k of A into fast memory
Cj=Cj + A(*,k) * Bj(k,*)
//Write Cj back to slow memory

C1

c2

C3

C4

El

E2| B3 E4

A(:k)

source: http://people.eecs.berkeley.edu/~demmel/cs267/lecture02.html

Bj(k,:)

http://people.eecs.berkeley.edu/~demmel/cs267/lecture02.html

Last week — Computational Intensity

for j=1 tO.N o n2 words read: each column
//Read entire Bj into fast memor‘y_’ofBread once.

//Read entire Cj into fast memory
for k=1 to n Nn? words read: each

. o .
//Read column k of A into fast memory column of Aread N times

C(*,73)=C(*,j) + A(*,k)*Bj(k,*) //outer-product
//Write Cj back to slow memory .
3 2n? words read:

« Number of arithmetic operations = 2n3 read/write each entry of C
t .
. q=2n3/(N+3)n? = 2n/N.Good! 0

Blocked Matrix Multiply - General

C A B
Ci1 Cr2 Cir Ay App A1p By, Bi By
Cz1 Co Cor A1 Ay Azp B;; Ba» By,
qu CCIZ qu Aql qu qu _Bpl BPZ Bpr-
é ' op T

e A B,C e R

* We wish to update C block-by-block: C;; = C;; + Zp_, AiBy;
— Assume that blocks of A, B, and C fit in cache. C;; is roughly n/q by
n/r, A;; is roughly n/q by n/p, B;; is roughly n/p by n/r.

— But how to choose block parameters p, g, r such that assumption holds
for a cache of size M?

* i.e. giventhe constraintthat = x = + = x= +=x =< M
¢ r q"p pr

Blocked Matrix Multiply - General

. . 2n3 : n. . m . n.n n_n
Maximize — subjectto - X - +—-X—- +=X-< M
qrp a r q p Dp T

3n?

= Qopt = Popt = Topt [y,

Each block should roughly be a square matrix and occupy
one third of the cache size

Can we design algorithms that are independent of cache
size?

Recursive Matrix Multiply

Cache-oblivious algorithm

— No matter what the size of the cache is, the algorithm performs at a
near-optimal level

Divide-conquer approach

Agy A12] 9 [Bn B12] _ [A11311 + A12B31 A11Bip A12322]
A1 Azz)l I1Bai Bzzl 1A21Bi1 +ApBry ApiBip + AzpBo

Apply the formula recursively to A, B, etc.
— Works neat when n is a power of 2.

What layout format is preferred for this algorithm?
— Row-major or Col-major? Neither.

Recursive Matrix Multiply

e Cache-oblivious Data structure

1 2 5 6 17 18 21 22
i 4 7 8§ 19 20 23 24
9 10 13 14 25 26 29 30
11 12 15 16 27 28 31 32
33 34 37 38 49 50 53 54
35 36 39 40 51 52 55 56
41 42 45 46 57 58 61 62
43 44 47 48 59 60 63 64

 Matrix entries are stored in the order shown

— E.g. row-major would have 1-8 in the first row, followed by 9-16 in the
second and so on.

10

Summary- matmul

* Unblocked Matrix Multiplication - Loop Orderings and

Properties
Loop Order | Inner Loop | Inner Two Inner Loop Data Access
Loops
1K dot Vector x Matrix A by row, B by column
jKi saxpy gaxpy A by column, C by column
Kji saxpy Outer product A by column, C by column
.. (3 more rows here..)

Ref: Matrix Computations, 4" Ed., Golub and Van Loan

* Blocked matrix multiplication
« Column blocking, row blocking, tiling
« Recursive matrix multiplication
* Divide-conquer, Strassen’s
 Many more?

11

Efficiency Considerations for a High-
Performing Implementation

« Cache detalils (size)
« Data movement overhead
« Storage layout

« Parallel and ‘special’ functional Units (e.g. Vector units and
fused multiply-add)

12

Parallel Functional Units

+ IBM’s RS/6000 and Fused Multiply Add (FMA)
— Fuses multiply and an add into one functional unit (c=c+a*b)
— The functional unit consists of 3 independent subunits : Pipelining

— Example: Suppose the FMA unit takes 3 cycles to complete,
sum=0.0
for (i=0;i<n;i++)
sum=sum+a[i]*b[i]

how many cycles do you need to
execute this code snippet?

sum=0.09

for (i=0;i<n;i+=4) how many cycles do you need to
suml=suml+a[i]*b[i] execute this code snippet?
sum2=sum2+a[i+1]*b[i+1]
sum3=sum3+a[i+2]*b[i+2]
sum4=sum4+a[i+3]*b[i+3]

15

Matrix Structure and Efficiency

« Sparse Matrices Admit| optimizations w.r.t.
— E.g. banded matrices
9 e Storage
— Diagonal

— Tridiagonal etc. » Computation

¢ Symmetric Matrices

16

Sparse Matrices - Motivation

« Matrix Multiplication with Upper Triangular Matrices

(C=C+AB)
di di3
d) d)3
0 ass
A

The result, A*B, is also upper triangular.

|O o C)"

o O

12

22

0

ay304,%ay; by,
35,05,
0

AB

ay;bq3+a;, bys+ a3 by
a,,0,3+a,3 b33

33033

The non-zero elements appear to be like the result of inner-product

17

Sparse Matrices - Motivation

C=C+AB when A, B, C are upper triangular
for i=1 to N

for j=1 to N
for k=1 to j
C[i][J] = C[i][3] + A[i][k]*B[k][]]
Cost =%, 2L,2(j — i + 1) flops why 22

2 Tl3

N . _TNn" N :2 _1°

l=

Using X

N <N .. n3 d
Yi=1%j=;2(— i+ 1) = —, 1/3" the number of flops
required for dense matrix-matrix multiplication

18

Sparse Matrices

« Have lots of zeros (a large fraction)

0

oM O = oM =
(=T A T =

o o o = o o
- = - = T =

[S = T = T = T = R =
|<;;-r: = oo m o :n:|

0 X
0 X
X 0
0 0
0 Z.
X, 0

|l:l (] o (] (o} <

* Representation
— Many formats available
— Compressed Sparse Row (CSR)
Implementation: Three arrays:
double *val;
int *ind;
int *rowstart;

Sparse Matrices - Example

° USing Arrays double *val; //size= NNZ
A int *ind; //size=NNZ
int *rowstart; //size=M=Number of rows

a;; a, 0 0 a0 O O
O a, 0 0 a0 a,, 0 O
O a3 a3 azy 0 a5 0 O
az; 0 0 a;,0 0 O a5, 0 O

0 a, 0 ag ags 0 0 0 ag

0 a5 a3 0 0 0 ag ag g

dyq d17dqg5d19dyy dy5|dy7/d3y d33|d34d36A39/dg1| 44|47 A52|A54|A55(d59|A62|F63|A67(|F68(A60

1

O
=
wn
+
Q
=
+

: l
¢ 0 4 70 |12¢ |15¢ |10@ 20

Sparse Matrices: y=y+AX

Using arrays
for 1=0 to numRows
for j=rowstart[i] to rowstart[i+1l]-1

y[i] = y[1] + val[j]*x[ind[]]]

Does the above code reuse vy, X, and val ? (we want our
code to reuse as much data elements as possible while they are in

fast memory):.
— y? Yes. Read and written in close succession.
— X? Possible. Depends on how data is scattered in val.

— val? Less likely for a sparse matrix.

22

Sparse Matrices: y=y+AX

« Optimization strategies:
for 1i=0 to numRows
for j=rowstart[i] to rowstart[i+1l]-1

y[i] = y[1] + val[j]*x[ind[]]]

— Unroll the j loop // we need to know the number of non-zeros per row
— Move yJi] outside the loop //Possible only if y is not aliased.

— Eliminate ind[i] and thereby the indirect access to elements of x.
Indirect access is not good because we cannot predict the
pattern of data access in X. //We need to know the column numbers

— Reuse elements of x //The elements of a should be e.g. located
closely

23

Sparse Matrices

* Further reading:

Refer to Lecture 15 (Spring 2018) at
https://inst.eecs.berkeley.edu/~cs267/archives.html

24

https://inst.eecs.berkeley.edu/~cs267/archives.html

Banded Matrices

« Special case of sparse matrices, characterized by two
numbers:
— Lower bandwidth p, and upper bandwidth q
- 333 = 0 if 1 > J4p — —

X X X, 0 0

- a;; = @ if j > i+q X X X X o
- E.g. p=1, g=2 0 X X X X
for a 8x5 matrix o 0 X X X
(x represents non-zero 0 0 0o X X
element) o0 0o 0o X
0 0 0 0 0

0 0 0 0 0

25

Banded Matrices - Representation

« Optimizing storage (specific to banded matrices)

0
* *
0 i3 24 935
*
ase a1y a3 d34 A5
ae E> a1 922 ds3 a4 55
3 d21 d3; A3 ds4 65
55
a
65
Aband
0
0

Aj=Aband(i-j+q+1,))
E.g. A,,_Aband,,

26

Banded Matrices: y=y + Aband X

« A=Aband: optimizing computation and storage

for j=1 to n
alphal=max(1l, j-q)
alpha2=min(n, j+p)
betal=max(1l, g+2-7j)
for i=alphal to alpha2
y[i]=y[i] + Aband(betal+i-alphal,j)*x[j]

« Cost? 2n(p+g+1) time! Much lesser than 2N? time required
for regular y:y+Ax (assuming p and g are much smaller than n)

27

