CS601: Software Development for

Scientific Computing
Autumn 2022

Week5: Motifs — Matrix Computations with
Dense Matrices

Nikhil Hegde

Last week..

 Demo of make program

* Motif — Matrix Computation with Dense Matrices
— Matrix Representation (2D arrays on stack and heap)
— Matrix storage format (row-major and column-major)

— Visualizing performance gap with different layouts
(demo)

— Understanding the performance gap:
* Memory hierarchy

« Performance API (demo)

Matrix Multiplication

« Three fundamental ways to think of the computation

1. Dot product

[1 2 . [5 6] _[15+2.7 1.6+28
3 4 7 8 35+47 3.6+4.8

2. Linear combination of the columns of the left matrix

R e R AR W REET il

3. Sum of outer products

53X gl=[ls e+ [sl

Dot Product

(X1] (V1]

Vector x = x_z , Vectory = ylz X;, Vi € R
x.n _y.n_

xT' =[x X2 - xy]

Dot Product or Inner Product: ¢ = xTy xTe R,y €
R™1 cis scalar
Y1

X1 X2 - Xp] lyz] = [x1y1 + X272+ +x, V0]

4
E.g.[1 2 3] [5]:[1x4+2x5+3x6]=32
6

AXPY

« Computing the more common (atimes x plusy): y =y + ax

(V1] (V] [X1]
.)’.2 _ }’.2 ra xlz
| Vn | | Vn | | Xn

%ér i=1 to n
y[i] = y[1i] + a*x[1i]

e Cost? n multiplications and n additions = 2n or 0(n)

Matrix Vector Product

« Computing Matrix-Vector product: ¢ =c + Ax, A € R™",x € R™!

C1
Co
Cm

* Rewriting Matrix-Vector product usin

C1
Co
Cm

« Cost? m rows involving dot products and having the form c;

}z
]z

C1
Co

Cm

C1
Co

Cm

I

|

Ao

aip

a1y
Aoy
=, Amr]
} r
m

C; + xTy (Per row cost = 2r

or O(mr))

X1
X2
xT’

X1
X2

Xr

|

C1
Co

Cm

C1
Co

Cm

|

|

[ai1X4 +
ar1X1 +

|Am1Xq T+

A12X7 + +a,x,]
Az2Xp + +ay,x,
Am2X2 + + A Xy

m’l

g dot products:

alx

T

L Am X]

(because a;,x € R"), Total cost = 2mr

6

Matrix-Matrix Product

« Computing Matrix-Matrix product ¢ = C + AB,A € R™*",B € R™*",

C € RMx1
C11 C12 Cin C11 C12 Cin a1 ai2 A1y bll blZ bln
Crq1 €22 Con | _ | €21 €22 Con 4 az; @22 Azr |[b21 D22 ban
Cm1 ©mz2 Cmn Cm1 ©Pm2 Cmn Am1 4m2 Amr] Lbyq by, brn
—> — -
! n v T ! n
m m r
« Consider the AB part first.
[a;; Q12 air |[b11 D1z bin
a1 @22 azr [[b21 D22 byn
Am1 4m2 Amr] Lbry by brn

A
aiq ai»
a,q1 a22

Am1 4m2

Matrix-Matrix Product

ai1b11 + a12by1+. . +aq,bpy

amlbll + am2b21+- . +amrbr1

D14

b21

-brl

B

b12
b22

by,

Notice that:
« subscript on a varies from 1 to m in a column (i.e. m rows exist)
« subscript on a varies from 1 to r in a row (i.e. r columns exist)

Suppose that we treat a; as a vector of size r and there exist m vectors

a{b1

a%bl

T
ay by

A

by,

bin’

bzn

by

a11b1n + A12b2n+. . +a1-Dpy

amlbln + am2b2n+- . +amrbrn

a; € R, b, e R
| ranges from 1tom
jranges from 1 to n 8

Matrix-Matrix Product using Dot
Product Formulation

* Pseudocode - Matrix-Matrix product: ¢ =C + AB, A€ R™",B €

RT'XTL C € Rmxn

for i=1 to m
for j=1 to n
//compute updates involving dot products
Cij - Cij + (,l’lrb]

Matrix-Matrix Product using Dot
Product Formulation — Data Access

 Pseudocode - Matrix-Matrix product: ¢ =C + AB, A€ R™",B €
RT'XTL, C € Rmxn

for i=1 to m
for j=1 to n
//compute updates involving dot products
Cij - Cij + (,l’lrb]
 Expanded: .. A B C
for i=1 to m -* pidl
for j=1 to n I _T “-
for k=1 to r —
Cij = Cij + Ay by;

1
vV vVVYV

Elements of C matrix are computed from top to bottom, left to right. Per
element computation, you need a row of A and a column of B.
10

Matrix-Matrix Product using Dot
Product Formulation - Cost

 Pseudocode - Matrix-Matrix product: ¢ =C + AB, A€ R™",B €

RT'XTL, C € Rmxn

for i=1 to m
for j=1 to n
//compute updates involving dot products
— T

« Cost? Cij = Cij +aib;
— Per dot-product cost = 2r (a;,b; € R") Total cost = 2mnr or

o(mnr)

11

Common Computational Patterns

Some patterns that we see while doing Matrix-Matrix product:

1. Dot Product or Inner Product: x7y < Slide 27, Method 1

2. Scalar atimes x plusy: y=y+ax OR saxpy

V\ .
— Scalar times X ax Slide 27, Method 2

3. Matrix times x plus y: y=y+Ax « Slide 27, Method 1
— generalized axpy OR gaxpy
4. Outer product: C=C+xy" «—— Slide 27, Method 3

5. Matrix times Matrix plus Matrix
- GEMM or generalized matrix multiplication

12

What Is dense linear algebra?

Not just matrix multiplication (matmul!)
Solving system of equations: Ax=Db (e.g. using Gaussian Elimination)
Computing Least Squares: choose x to minimize ||Ax-b||,

— Overdetermined or underdetermined; Unconstrained, constrained, or weighted
Computing Eigenvalues and Eigenvectors of Matrices (Symmetric and
Unsymmetric)

« Standard (Ax = Ax), Generalized (AXx=ABXx)
Representing Different matrix structures
— Real, complex; Symmetric, Hermitian, positive definite; dense, triangular, banded ...

Capturing level of detall
— error bounds, extra-precision, other options

13
slide source: www.cs.berkeley.edu/~demmel (CS267)

http://www.cs.berkeley.edu/~demmel

Linear Algebra Software

Goals: programmer productivity, readability, robustness, portability,
machine efficiency

Examples

— EISPACK (for computing eigenvalue problems)
— BLAS

— LAPACK

— Many more..

14

BLAS — Basic Linear Algebra Subroutines

* Level-1 or BLAS-1 (46 operations, routines operating on
vectors mostly)
— axpy, dot product, rotation, scale, etc.

— 4 versions each: Single-precision, double-precision, complex,
complex-double (z)

— E.g. saxpy, daxpy, caxpy etc.
— Do O(n) operations on O(n) data.

« Level-2 or BLAS-2 (25 operations, routines operating on
matrix-vectors mostly)

— E.g. GEMV (aA.x + By), GER (Rank-1 update A = A4 + y.xT),
Triangular solve (y = T.x, T is a triangular matrix) etc.

— 4 versions each, do O(n?) operations on O(n?) data.

15

BLAS — Basic Linear Algebra Subroutines

« Level-3 or BLAS-3 (9 basic operations, routines operating

on matrix-matrix mostly)
— GEMM (C = aA.B + BO),

— Multiple triangular solve (Y = TX, T is triangular, X is rectangular)
— Do O(n3) operations on O(n?) data.

 Why categorize as BLAS-1,
BLAS-2, BLAS-3?
« Performance

RS2:Level 1,2 and 3 BLAS
T T T

300

2501

BLAS-3

BLAS-2

BLAS-1 ——

Speed in Megatlops
@ 3

o o

T

[=]
o

0 100 200 300 400 500 600

Order of veatt

source: http://people.eecs.berkeley.edu/~demmel/cs267/lecture02.html

16

http://people.eecs.berkeley.edu/~demmel/cs267/lecture02.html

LAPACK - Linear Algebra Package

LAPACK — uses BLAS-3 (1989 — now)
— Ex: Obvious way to express Gaussian Elimination (GE) is adding
multiples of one row to other rows — BLAS-1
 How do we reorganize GE to use BLAS-3 ?
— Contents of LAPACK (summary)
 Algorithms that are (nearly) 100% BLAS-3
— Linear Systems, Least Squares
Algorithms that are only *50% BLAS-3
— Eigenproblems, Singular Value Decomposition (SVD)
Generalized problems (eg Ax = | Bx)
Error bounds for everything
Lots of variants depending on A’ s structure (banded, A=AT, etc.)
— How much code? (Release 3.9.0, Nov 2019) (www.netlib.org/lapack)
« Source: 1982 routines, 827K LOC, Testing: 1210 routines, 545K LOC

17
slide source: www.cs.berkeley.edu/~demmel (CS267)

http://www.cs.berkeley.edu/~demmel

Costs Involved

Algorithms have two costs:

1.Arithmetic (FLOPS)

2.Communication: moving data between
* levels of a memory hierarchy (sequential case)
« processors over a network (parallel case).

i1

Computational Intensity

« Connection between computation and communication cost

« Average number of operations performed per data element
(word) read/written from slow memory

— E.g. Read/written m words from memory. Perform f operations on m
words.

— Computational Intensity q = f/m (flops per word).

« (Goal: we want to maximize the computational intensity
— We want to minimize words moved (read/written)
— We want to minimize messages sent

What is the computational intensity, g, for:
axpy?
Matrix-Vector product? (e.g. GEMV)

Matrix-Matrix product? (e.g. GEMM) 19

Computational Intensity - axpy

Note: a slightly changed variant of axpy. There are n scalars (x;) here.

1
Cy .
Cn

Read(x) //read x from slow memory
Read(y) //read y from slow memory
Read(c) //read c from slow memory

for i=1 to n
c[i] = c[i] + x[i]*y[i] //do arithmetic on data read

Write(c) //write c back to slow memory

 Number of memory operations = 4n (assuming one word of storage for
each component (x;, y;, c;) of vectors X, y, c resp.)

* Number of arithmetic operations = 2n (one addition and one
multiplication per row.)

e g=2n/4n =1/2

C1
Co

Cn n . ;
* indicates component-
wise multiplication

20

Computational Intensity — matrix-

e ASSUMEe M=r=n =n

Cl C1 [all a12 . alr | x1 Cl [allxl + alzxz + "t +a11‘x1‘]
C2[_|C2| 4| G A22 -+ Qg |[X2]|_ [C2| | Q21X+ G22%2 T . Fayx
Cm Cm Am1 Am2 Amr | Xr Cm Am1X1 + Gm2X2 + .. T A Xy

- Number of memory operations = n? + 3n =n? + 0(n)
« Number of arithmetic operations = 2n?
e q=~2n%/n* =2

21

Communication Cost — Matrix-Matrix
Product

//Assume A, B, C are all nxn

for i=1 to n
for j=1 to n
for k=1 to n
C(l,J)iiﬁa,J) +|A(L, k) B(K,3)

loop k=1 to n: read C(i,j) into fast
memory and update in fast memory

End of loop k=1 to n: write C(i,))
back to slow memory

Reading column j of B

) 2 "
Pl words read: each row of A read

once for each i.

Assume that row i of A stays in fast
memory during j=2, .. J=n

Reading a row i of A

n? words read and n?words written (each

— entry of C read/written to memory once).

= 2 n2 words read/written

total cost = 3 n? +n3 (if the cache size is
n+n+1)

Suppose there is space in fast memory to hold only one
column of B (in addition to one row of A and 1 element
of C), then every column of B is read from slow memory

to fast memory once in inner two loops.

22

Each column of B read ntimes including outer i loop = n3words read

Computational Intensity — Matrix-Matrix
Product

* Words moved = n3+3n? = n3+0O(n?)
« Number of arithmetic operations = 2n® (from slide 35)

« computational intensity g=2n3/n3 = 2. (computation to
communication ratio)

Same as g for matrix-vector?

What if the fast memory has more space ? more than just two
columns + one element space?

« Can we do better?

23

Blocked Matrix Multiply

For N=4: cicz|c3fcq _ |c1fcz{esjcd | A « | B1| B2/ B3 B4
n
Gl . |g| 4 A « |B| - |g] 4% " —
k=1
A(Lk) Bj(k,:)

for j=1 to N
//Read entire Bj into fast memory
//Read entire Cj into fast memory
for k=1 to n
//Read column k of A into fast memory
Cj=Cj + A(*,k) * Bj(k,*)
//Write Cj back to slow memory

source: http://people.eecs.berkeley.edu/~demmel/cs267/lecture02.html

24

http://people.eecs.berkeley.edu/~demmel/cs267/lecture02.html

Blocked Matrix Multiply - Example

(3 Cy C;, G C3 (G4 A B, B, B; B,
C3| c141 [c11] €12 |3 | c141 [ayr Q12 Q3 agq][b11] b1z | b1z | b14]
23| Caa| _ |C21| C22 |23 | Cp4 4+ | %21 Q22 Q23 Qgq||ba1| D2z | D23 | bas
C33| C34 C31| €32 | (33| C34 az; @32 433 Qzq||bzq| b3z | b3z | bay
C43| Cy4] 1C41 | Ca2 [C43 | Cqq] lasq Qa2 Q43 aQyq) bai| bay| baz | bys
for k=1 to n

C11 c111 a1 %2 Qs aqy] [bia]
=1 Ca1| _ |C21] |92 Az2 Q23 Ayy|, |21
= C31| |C31 az; Q32 433 as,| |[bsy

Ca1 Ca1 Ay1 @42 Q43 ayel| by

C14 C14 aiq aiz Q13 a14- _b14_
__|C24
C34
Caq

25

Blocked Matrix Multiply - Example

¢, G G

Cy

k=

C, C3
C12 | 13
C22 |C23
C32 |C33
Ca2 | C43

C11 C11
C1|| [C21
€31 C31
1Ca1 Caq
C11 C11
Ca1| _ [C€21
C31 C31
Ca1 Ca1
C11 C11
€21 _ |C21
C31 C31
Ca1 Ca1

Cy
Cia] [@11
Co4 n azq
C34 aszq
Chq. |41
a7 | %12
a21 a22
a31 Cl32
a1 Ay
aiq
azq
[b14]
aszq
A4q
(A11b11]
ay1b11
a31b11
a41b11

A B, B, B3 B,

23 Q4| , [D21
A33 azs| |bzg
43 Qg4 by,

<— First row of B,

What is required to be
In fast memory

What is operated
upon

26

G G
C11]| €12
Co1 C22
C31 C32
Cq1 Ca2

Blocked Matrix Multiply - Example

for k=1 (previous

slide)

(3 C, €1 G (3 G A B, B, Bs; B,
C13| Cq14] Ci1|| €12 | €3 | c1a] [aqq |@12 | @13 aq4][P11| P12 | D13 | b14]
C23| Cy4 _|ea C22 | €23 | Cpq4 + Ap1 |@22 | Q23 Qpq||| b2y | D2z | D23 | bay
€33 C34 C31 C32 | (€33 C34 asq dzp | A33 a3y b31 b32 b33 b34
Caz| Caal €41 || Ca2 |C43 | Cagl |41 (D42 | Qa3 Qgalllbyy | bap | baz | byyl
for k=1 to n
ci11| e [an [@z] Qs aqq] [baa]
=1 C21| | |C21 N ayq | Q22| 423 ag4| ,||b21
C31 C31 azq | 932| 433 azy| [b3;
[C41 LCa1 Ag1 | @42 Q43 ayel| by
C11 (a11b11] a1,
k= Co1 ay1b1y ay, +~—— Second row of B
cai| = + * [ba4]
31 a31b11 as;
Comes from patrtial cad | 11_ Qa2
sum for C; computed [€11 a11 (12021
_ |21 _ az1b11 n az2bz1
€31 aszibq1 azzbyq
C41 [ag1D11] Las;baqd

27

Blocked Matrix Multiply - Example

C3 Gy € G (G (4 A B, B, Bz B,
C3| c141 €11l €12 |3 | c141 [ayy Q12 [@3] agql[P11| 12| D1z | b14]
23| Caa| _ |C21 | C22 |23 | Cp4 4+ | %21 A2 | @23 | Qgq|| b2y | D2z | D23 | baa
C33| C34 C31 || €32 |C33 | (34 31 432 | 433 | azg|||bsy | D32 | D33 | b3a
Caz| Caal €41 || Ca2 |C43 | Caal lag1 Q42 | Qa3 | Qgalllbyy | bap | baz | byyl
for k=1 to n
ci11| rci1 [air @az| @s| aqq] [baa]
_ C21|| |C21 apq Q22| A23| ag4| , |byy
=1 cay | |can| T az; Q32| @33 asu| |[bs;
C41 LCa1 Ag1 Q42| @43 aysl [hyq]
C11 ‘a11b11 + a12b21] raqs .
k=3 C21| _ |az1b1q + azzbyq N azs|, b]/Thlrd row of By
c31| |azibyq + azzbyq as3 31
Card layybig + agpbyel M43
C11 ‘A11b11 + 12021 [A13b31]
_[C21| _|az1b11 + az;by, ay3b31
~[G31| |asibig + azzbag * aszbzq
Cat |ag1b11 + ayoby1) Lagzbsqd

28

Blocked Matrix Multiply - Example

C; G (G G4 € G (G (4 A B, B, B,
C11]| €12 | €13 | Cq4] (c11|| €12 | €3 | ¢4 [agqr Y2 A3 [age][b11| Pz | P13 | b14]
Coq|| €22 | €23| Caa| _ |C21 || €22 |C23 | Cp4 Azqr Q22 Q23 | Qpa||b21 | D22| D23 | bas
C31|| €32 | €33| C34 C31 || €32 | €33 | C34 31 432 433 | Azg||| b3y | D32 | D33 | b3a
Ca2 | Ca3| Cyq. 1C41 || €42 [C43 | Ca4] |Aqqy Qa2 Q43 | Qys] byt | baz | bas | bysl
for k=1 to n
Cii] el [ar %z Qs | agg] [bid]
. C21] | [C21 az1 Q22 23| Agu| , D21
71 car | |esa| T azqy @32 Qa33| azs| 1bss
a1l] teal o lag Gaz Qs | @as] L] Fourth row of B,
C11 a11b11 + a12b21 + ay3b34 (147 -
k=4 Ca1| _ |Qz1b11 + az2by1 + ay3bsy n A24 % [bas]
c31| |azibyq + azpbyq + azszbsg 34 41
Card lag1byg + aspbyq + agsbzg] 144
"Cqq (A11b11 + Q12D021 + A13b31] [A14D41]
_ |C21| _ |@21b11 + Az2b21 + az3b3q + A4b4q
€31 azi1bi1 + aszybyq + azsbszg A34b44
4l lag byg + aapbay + aszbsil Lagebys

29

Blocked Matrix Multiply - Example

c; C (3 C, ¢ C (3 C,
C11 C12 | O3 C14 C11 C12 || €13 C14-
Co1 C22 | C23 Coy . Co1 C22 || C23 Coy
C31 C32 | C33 C34 - C31 C32 || €33 C34
Cq1 Ca2 | Ca3 Cy4 Ca1 Ca2 || Ca3 Cy4

for k=1 to n
€12 C12 11
- C22| _ |C22 az1
)= Ca2|| |C32 aszq
Cq2 Ca2 A1

e And so on..

* Atany point, you need (;, B;, and one column of A to be in

fast memory

A

B,

30

Computational Intensity - Blocked
Matrix Multiply

for j=1 tO.N o n2 words read: each column
//Read entire Bj into fast memor‘y_’ofBread once.

//Read entire Cj into fast memory
for k=1 to n Nn? words read: each

. o .
//Read column k of A into fast memory column of Aread N times

C(*,73)=C(*,j) + A(*,k)*Bj(k,*) //outer-product
//Write Cj back to slow memory .
3 2n? words read:

« Number of arithmetic operations = 2n3 read/write each entry of C
t .
. q=2n3/(N+3)n? = 2n/N.Good! 0

31

Blocked Matrix Multiply - General

C A B
Ci1 Cr2 Cir Ay App A1p By, Bi By
Cz1 Co Cor A1 Ay Azp B;; Ba» By,
qu CCIZ qu Aql qu qu _Bpl BPZ Bpr-
é ' op T

e A B,C e R

* We wish to update C block-by-block: C;; = C;; + Zp_, AiBy;
— Assume that blocks of A, B, and C fit in cache. C;; is roughly n/q by
n/r, A;; is roughly n/q by n/p, B;; is roughly n/p by n/r.

— But how to choose block parameters p, g, r such that assumption holds
for a cache of size M?

« i.e. giventhe constraintthat = x = + =X = +=x =< M
¢ r q"p pr

32

Blocked Matrix Multiply - General

. . 2n3 : n. . m . n.n n_n
Maximize — subjectto - X - +—-X—- +=X-< M
qrp a r q p Dp T

n2
- = = 7r =~ S
Qopt Popt opt 3M

Each block should roughly be a square matrix and occupy
one third of the cache size

Can we design algorithms that are independent of cache
size?

33

