CS601: Software Development for

Scientific Computing
Autumn 2022

Week4: Build tool (Make contd.), Motifs —
Matrix Computations with Dense Matrices

Nikhil Hegde
CS601

So far..

* Qverview (scientific software, examples, commonly
occurring patterns in scientific computing)

« |EEE-754 Representation
« Creating a program (Program Development Environment)

Implementation

A

Entry point of execution
Functions

—>| Toolchain | =

Tools that are involved:

Reference variables in C++\ Preprocessor, compiler,

Declaration vs. Definition
C++ Types (standard,
compound)

assembler, loader, linker

Creating modular code

Executable

T

How'to execute?

How to pass arguments fromn
command line?

How is the program laid out
in memory?

Towards creating software (vectorprod_vx.cpp):
Data types (flexibility, adaptability)
Correctness (exceptions, validating)

Discussion vectorprod_vx.cpp

Refer to:

e vectorprod vl.cpp

— What if atoi doesn’t provide accurate status about the value
returned?

e vectorprod v2.cpp

- C++ stringstreams are an option. Is this code
modular?

e vectorprod v3.cpp scprod.cpp

- What if there is already built-in function by the
same name?

e vectorprod v4.cpp scprod va4.cpp
- Namespaces

Make - Recap

Makefile or makefile

* Is a file, contains instructions for the make
program to generate a target (executable).

* Generating a target involves:
1. Preprocessing (e.g. strips comments, conditional

compilation etc.)
2. Compiling (.c -> .sfiles, .s -> .0 files)
3. Linking (e.g. making printf available)

* A Makefile typically contains directives on how
to do steps 1, 2, and 3.

Makefile - Format

1. Contains series of ‘rules’-

target: dependencies

[TAB] system command(s)

Note that it is important that there be a TAB character before the system
command (not spaces).

: “Dependencies or Prerequisite files” “Recipe”
Example , l 1018

o testgen: testgen.cpp
“target file name” g++ testgen.cpp -o testgen 1}

2. And Macro/Variable definitions -

CFLAGS = -std=c++11 -g -Wall -Wshadow --pedantic -Wvla -Werror
GCC = g++

Makefile - Usage

— The ‘'make’ command (Assumes that a file by name
‘makefile’ or ‘Makefile’. exists)

n2021/slides/week4 codesamples$ cat makefile

vectorprod: vectorprod.cpp scprod.cpp scprod.h
g++ vectorprod.cpp scprod.cpp -o vectorprod

* Run the ‘make’ command
n2021/slides/weekd4 codesamplest

g++ vectorprod.cpp scprod.cpp -o vectorprod

Makefile - Benefits

« Systematic dependency tracking and building for
projects
— Minimal rebuilding of project
— Rule adding is ‘declarative’ in nature (i.e. more intuitive

to read caveat: make also lets you write equivalent rules that are very
concise and non-intuitive.)

« To know more, please read:

https://www.qgnu.org/software/make/manual/html node/index.ht
mI#Top

https://www.gnu.org/software/make/manual/html_node/index.html#Top

make - Demo

* Minimal build
— What if only scprod.cpp changes?

« Special targets (.phony)
— E.g. explicit request to clean executes the associated
recipe. What if there is a file named clean?

* Organizing into folders
— Use of variables (built-in (CXX, CFLAGS) and automatic

(5@, $~, $<))

refer to week3 codesamples

Recall Motifs from Week1

10

N o O s bR

Scientific Software - Motifs

=

noun

1. a decorative image or design, especially a repeated one forming a pattern.
"the colourful hand-painted motifs which adsrnaicwboars”

Similar: design pattern decoration figure shape logo monogram W

2. a dommant or recurring idea in an artistic work.
"SUBCiSUGan is a recurring motif in the book”

Finite State Machines 8. Dynamic Programming

Combinatorial 9. N-Body (/ particle)

Graph Traversal 10. MapReduce

Structured (?nd 11. Backtrack / B&B
Dense Matrix

Sparse Matrix 12. Graphical Models
FFT 13. Unstructured Grid

11

Matrix Algebra and Efficient
Computation

 Pic source: the Parallel Computing Laboratory at U.C. Berkeley: A
Research Agenda Based on the Berkeley View (2008)

g 0 = ‘f._) 2 | :-_J' 0 = 5
= .2 5 2 o = .2 3
5z 8 £ 2 S EmaP2z28E 2
3528 2 [ECSESEEE S
Motif =Y T = Motif a - > v T =
1 Finite State Mach. 9 N-Body
2 Combinational 10 MapReduce .

11 Backtrack/B&B
12 Graphical Models
13 Unstructured Grid
o0 Sparse Matrix | Temperature Chart of Need |DB = database

7 Spectral (FFT) Hot | Warm | Med | Cool ML = machine learning
8 Dynamic Prog HPC = High Perf. Comp.

Figure 4. Temperature Chart of the 13 Motifs. It shows their importance to each of the original
six application areas and then how important each one 1s to the five compelling applications of
Section 3.1. More details on the motifs can be found i (Asanovic, Bodik et al. 2006).

3 Graph Traversal

4 Structured Grid
— X B B N B

|-5 Dense Matrix |

I Sparse Matrix ||

i Next.. e

Matrix Multiplication

* Why study?
— An important “kernel” in many linear algebra algorithms
— Most studied kernel in high performance computing
— Simple. Optimization ideas can be applied to other kernels

« Matrix representation

— Matrix is a 2D array of elements. Computer memory is inherently
linear

— C++ and Fortran allow for definition of 2D arrays. 2D arrays stored
row-wise in C++. Stored column-wise in Fortran. E.g.
// stores 10 arrays of 20 doubles each in C++

double** mat = new double[10][20];

13

Storage Layout - Example

A(0,0) A(0,1) A(0,2)]
« Matrix (2D):A = |A(1,0) A(1,1) A(1,2)
A(2,0) A(21) A(2,2)]
A(i,j) = A(row, column) refers to the matrix element in the it" row and the
jth column

* Row-wise (/Row-major) storage in memory:

A(0,0)| A(0,1)| A(0,2)[A(1,0)] A(1,1)| A(1,2)| A(2,0)| A(2,1)| A(2,2)
« Column-wise (/Column-major) storage in memory:
A(0,0)| A(1,0)| A(2,0)[A(0,1)] A(1,1)| A(2,1)| A(0,2)| A(1,2)| A(2,2)

« Generalizing data storage order for ND: last index changes
fastest in row-major. Last index changes slowest in col-major.

14

Storage Layout - Exercise

« For a 3D array (tensor) assume A(, j, k) = A(row, column, depth)

A(0,0,0) A(2,2,2)
Offset; 0O 1 2 . 26

« What is the offset of A(1,2,1) ? as per row-major storage?
« What is the offset of A(1,2,1) ? as per col-major storage?

15

Storage Layout

« Layout format itself doesn’t influence efficiency (i.e. no
general answer to “is column-wise layout better than row-
wise?”)

 However, knowing the layout format is critical for good
performance

— Always traverse the data in the order in which it is laid out

How good performance?

16

-
Run on (12 X 2592.01 MHz CPU s)

CPU Caches:
L1 Data 32 KiB (x6) Source code:
L1 Instruction 32 KiB (x6)
L2 Unified 256 KiB (x6)
L3 Unified 12288 KiB (x1)
Load Average: 0.07, 0.02, 0.07

Benchmark Time CPU Iterations UserCounters...

693 ns 693 ns items_per_ second=5.91004G/s

2464 ns 2464 ns items per second=6.64813G/s

11134 ns 11133 ns items per second=5.88639G/s

44353 ns 44353 ns items per second=5.91041G/s

3270 ns 3270 ns items per_second=1.25254G/s

39741 ns 39741 ns items per second=412.272M/s

314880 ns 314878 ns items per second=208.132M/s

1276733 ns 1276723 ns items per second=205.326M/s

des/week13 codesamples$./a.out 4096
Rowwise time n=4096 (us): 18967
Colwise time n=4096 (us): 158608
nikhilh@ndhpc@l:/mnt/c/temp/Nikhil/Co
des/week13 codesamples$./a.out 2048

Matrix-Matrix Addition benchmarking
(Source code and further reading)

Rowwise time n=2048 (us): 4860 _ _
Colwise time n=2048 (us): 32158 <: Matvec execution time
nikhilh@ndhpc@l1:/mnt/c/temp/Nikhil/Co (we used the source code as a

des/week13 codesamples$./a.out 1024 basic example to demonstrate row_major vs.

Rowwise time n=1024 (us): 1125 col_major storage.) 17

Colwise time n=1024 (us): 19860

refer to week4 codesamples

https://github.com/eliben/code-for-blog/tree/master/2015/benchmark-row-col-major
https://hegden.github.io/cs601/slides/week13_codesamples.zip
https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays

Detour - Memory Hierarchy

18

The von Neumann Architecture

* Proposed by Jon Von Neumann in 1945

Central Processing Unit

Contral Unit

Impast —> Arithmetic/Logic Unit 1 3
Devica s g

It

Memory Unit

eeeeee

source: wikipedia

« The memory unit stores both instruction and
data

— consequence: cannot fetch instruction and data
simultaneously - von Neumann bottleneck

19

Harvard Architecture

* Origin: Harvard Mark-I machines
« Separate memory for instruction and data

o

£

Instruction (/l—n\ Control /‘—\) Data
memory N—V unit N memory

.
s =

/(o]

— advantage: speed of execution
— disadvantage: complexity

20

Memory Hierarchy

* Most computers today have layers of cache In

between processor and memory SR
processor
4)
COre | Core | core
Second-level Main Secondary Tape /
shared cache] [cache }{ memory } Storage / Disk| | Tertiary
Storage
core | core | core _ -
Latency: 1ns ~5-10ns ~10% ns ~107ns ~10%% ns
Size: few KBs ~106 (MBSs) ~10° (GBs) ~10'? (TBs) [~10%°> (PBs)
N

— Closer to cores exist separate D and | caches

» Where are registers?

21

Memory Hierarchy

« Consequences on programming?
— Data access pattern influences the performance
— Be aware of the principle of locality

pProcessor

core |

core

core

(shared cache]

core

core

core

[S

econd-level
cache

|

Main
memory

|

4 N

Secondary
Storage / Disk|

N /

O)

Tape /
Tertiary
Storage

22

Memory Hierarchy - Terminology

« Hit: data found in a lower-level memory module
— Hit rate: fraction of memory accesses found in lower-level

« Miss: data to be fetched from the next-level (higher)
memory module
— Miss rate: 1 — Hit rate
— Miss penalty: time to replace the data item at the lower-level

O)
processor

4 N

core | core | core

(shared cache]

cache memory Storage / Disk

[Second_|eve|1 { Main } Secondary

core | core | core _ -

23

lower » higher ./

1.

2.

Principle of Locality

If a data item Is accessed, it will tend to be
accessed soon (temporal locality)

— SO0, keep a copy in cache

— E.g. loops

If a data item Is accessed, items in nearby
addresses in memory tend to be accessed
soon (spatial locality)

— Guess the next data item (based on access history)
and fetch it

— E.g. array access, code without any branching

24

Demo — Understanding Cache
Hierarchy

* How to find the details of cache subsystem on a machine?
>cat /sys/devices/system/cpu/cpu@/cache/index@/type
tells whether it is either Data / Instruction cache

— Explore each of the files within to know more.

25

Demo — Understanding Performance
with PAPI

« PAPI - Performance API

— Used to count events - signals related to processor or other
subsystem

— Processor manufacturers make provision for a small number of
registers that count events e.g. floating point operations, cache
misses etc.

— The APIs of PAPI provide a software abstraction to read the platform
dependent counters

» refer to matvec_rowmajor.cpp, matvec_colmajor.cpp, and makefile in papi_demo folder
of week4 codesamples.
» To build this code using PAPI:
« you must download PAPI and install on your home drive:
* Forinstallation instructions, read the INSTALL . txt file in the downloaded folder.
* Once installed, you need to change the CFLAGS and LDFLAGS path in the makefile.
* Now, you can build using make DEBUG=1 command
« Before executing the program, on the terminal type: export
LD_LIBRARY_PATH=<absolute-path-where-you-have-installed-papi/lib>.
< _'Now execute using: ./matvec_rowmajor 4096 OR ./matvec_colmajor 4096. 26

https://bitbucket.org/icl/papi/downloads/?tab=tags

Matrix Multiplication

« Three fundamental ways to think of the computation

1. Dot product

[1 2 . [5 6] _[15+2.7 1.6+28
3 4 7 8 35+47 3.6+4.8

2. Linear combination of the columns of the left matrix

R e R AR W REET il

3. Sum of outer products

53X gl=[ls e+ [sl

27

Dot Product

(X1] (V1]

Vector x = x_z , Vectory = ylz X;, Vi € R
x.n _y.n_

x'' =[x X2 - xp]

Dot Product or Inner Product: ¢ = xTy xTe R,y €

R™1 cis scalar
V1

X1 X2 - Xp] lyz] = [x1y1 + X272+ +x, V0]

4
E.g.[1 2 3] [5]:[1x4+2x5+3x6]=32
6

28

AXPY

« Computing the more common (atimes x plusy): y =y + ax

(V1] (V] [X1]
.)’.2 _ }’.2 ra xlz
| Vn | | Vn | | Xn

%ér i=1 to n
y[i] = y[1i] + a*x[1i]

e Cost? n multiplications and n additions = 2n or 0(n)

29

Matrix Vector Product

« Computing Matrix-Vector product: ¢ =c + Ax, A € R™",x € R™!

C1
Co
Cm

* Rewriting Matrix-Vector product usin

C1
Co
Cm

« Cost? m rows involving dot products and having the form c;

}z
]z

C1
Co

Cm

C1
Co

Cm

|

|

Ao

aip

a1y
Aoy
=, Amr]
} r
m

C; + xTy (Per row cost = 2r

or O(mr))

X1
X2
xT’

X1
X2

Xr

|

C1
Co

Cm

C1
Co

Cm

|

|

[ai1X4 +
ar1X1 +

|Am1Xq T+

A12X7 + +a,x,]
Az2Xp + +ay,x,
Am2X2 + + A Xy

m’l

g dot products:

alx

T

L Am X]

(because a;,x € R"), Total cost = 2mr

30

Matrix-Matrix Product

« Computing Matrix-Matrix product ¢ = C + AB,A € R™*",B € R™*",

C € RMx1
C11 C12 Cin C11 C12 Cin a1 ai2 A1y bll blZ bln
Crq1 €22 Con | _ | €21 €22 Con 4 az; @22 Azr |[b21 D22 ban
Cm1 ©mz2 Cmn Cm1 ©Pm2 Cmn Am1 4m2 Amr] Lbyq by, brn
—> — -
! n v T ! n
m m r
« Consider the AB part first.
[a;; Q12 air |[b11 D1z bin
a1 @22 azr [[b21 D22 byn
Am1 4m2 Amr] Lbry by brn

31

Matrix-Matrix Product

A B
[a;; M2 - aqe |[bir b1z - by
arq Az -+ Aoy b21 bzz - b2n
Am2 v amr_ -bT1 bT‘Z . an-
ay1b11 + Ai2by+..+agbyey o . aqibyy + agbopt. +ag by
amlbll + am2b21+- . +amrbr1 o amlbln + am2b2n+- . +amrbrn
Notice that:

e subscript on a varies from 1 to m in a column (i.e. m rows exist)
* subscript on a varies from 1 to r in a row (i.e. r columns exist)

Suggesting that we can treat a, as a vector of size r and there exist m vectors

T T
a;b;y . . aib
I L al € R", b, € R™!

alb; .. abb, i ranges from 1 tom
j ranges from 1 to n 32

