
1

CS601: Software Development for

Scientific Computing
Autumn 2022

Week4: Build tool (Make contd.), Motifs –

Matrix Computations with Dense Matrices

Nikhil Hegde

CS601

So far..

• Overview (scientific software, examples, commonly

occurring patterns in scientific computing)

• IEEE-754 Representation

• Creating a program (Program Development Environment)

Nikhil Hegde

CS601

2

Implementation Toolchain Executable

• Tools that are involved:

preprocessor, compiler,

assembler, loader, linker

• How to execute?

• How to pass arguments from

command line?

• How is the program laid out

in memory?

• Entry point of execution

• Functions

• Reference variables in C++

• Declaration vs. Definition

• C++ Types (standard,

compound) Towards creating software (vectorprod_vx.cpp):

Data types (flexibility, adaptability)

Correctness (exceptions, validating)

Creating modular code

Discussion vectorprod_vx.cpp

Refer to:

• vectorprod_v1.cpp
– What if atoi doesn’t provide accurate status about the value

returned?

• vectorprod_v2.cpp
– C++ stringstreams are an option. Is this code

modular?

• vectorprod_v3.cpp scprod.cpp
– What if there is already built-in function by the

same name?

• vectorprod_v4.cpp scprod_v4.cpp
– Namespaces

Nikhil Hegde

CS601

3

Make - Recap

Nikhil Hegde

CS601

4

Makefile or makefile

• Is a file, contains instructions for the make
program to generate a target (executable).

• Generating a target involves:
1. Preprocessing (e.g. strips comments, conditional

compilation etc.)

2. Compiling (.c -> .s files, .s -> .o files)

3. Linking (e.g. making printf available)

• A Makefile typically contains directives on how

to do steps 1, 2, and 3.

5Nikhil Hegde

CS601

Makefile - Format

1. Contains series of ‘rules’-

Example:

2. And Macro/Variable definitions -

target: dependencies
[TAB] system command(s)
Note that it is important that there be a TAB character before the system

command (not spaces).

CFLAGS = -std=c++11 -g -Wall -Wshadow --pedantic -Wvla –Werror

GCC = g++

testgen: testgen.cpp
g++ testgen.cpp –o testgen

6Nikhil Hegde

CS601

“Recipe”“Dependencies or Prerequisite files”

“target file name”

Makefile - Usage

– The ‘make’ command (Assumes that a file by name

‘makefile’ or ‘Makefile’. exists)

• Run the ‘make’ command

7Nikhil Hegde

CS601

Makefile - Benefits

• Systematic dependency tracking and building for

projects
– Minimal rebuilding of project

– Rule adding is ‘declarative’ in nature (i.e. more intuitive

to read caveat: make also lets you write equivalent rules that are very

concise and non-intuitive.)

• To know more, please read:
https://www.gnu.org/software/make/manual/html_node/index.ht

ml#Top

8Nikhil Hegde

CS601

https://www.gnu.org/software/make/manual/html_node/index.html#Top

make - Demo

• Minimal build
– What if only scprod.cpp changes?

• Special targets (.phony)
– E.g. explicit request to clean executes the associated

recipe. What if there is a file named clean?

• Organizing into folders
– Use of variables (built-in (CXX, CFLAGS) and automatic

($@, $^, $<))

9Nikhil Hegde

CS601

refer to week3_codesamples

Recall Motifs from Week1

Nikhil Hegde

CS601

10

11

Scientific Software - Motifs

1. Finite State Machines

2. Combinatorial

3. Graph Traversal

4. Structured Grid

5. Dense Matrix

6. Sparse Matrix

7. FFT

8. Dynamic Programming

9. N-Body (/ particle)

10. MapReduce

11. Backtrack / B&B

12. Graphical Models

13. Unstructured Grid

Matrix Algebra and Efficient

Computation
• Pic source: the Parallel Computing Laboratory at U.C. Berkeley: A

Research Agenda Based on the Berkeley View (2008)

Nikhil Hegde 12
Next..

Matrix Multiplication

• Why study?

– An important “kernel” in many linear algebra algorithms

– Most studied kernel in high performance computing

– Simple. Optimization ideas can be applied to other kernels

• Matrix representation

– Matrix is a 2D array of elements. Computer memory is inherently

linear

– C++ and Fortran allow for definition of 2D arrays. 2D arrays stored

row-wise in C++. Stored column-wise in Fortran. E.g.

// stores 10 arrays of 20 doubles each in C++

double** mat = new double[10][20];

13Nikhil Hegde

Storage Layout - Example

• Matrix (2D):A =

𝐴(0,0) 𝐴(0,1) 𝐴(0,2)
𝐴(1,0) 𝐴(1,1) 𝐴(1,2)
𝐴(2,0) 𝐴(2,1) 𝐴(2,2)

𝐴 𝑖, 𝑗 = 𝐴(𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛) refers to the matrix element in the ith row and the

jth column

• Row-wise (/Row-major) storage in memory:

• Column-wise (/Column-major) storage in memory:

• Generalizing data storage order for ND: last index changes

fastest in row-major. Last index changes slowest in col-major.

14Nikhil Hegde

𝐴(0,0) 𝐴(0,1) 𝐴(0,2) 𝐴(1,0) 𝐴(1,1) 𝐴(1,2) 𝐴(2,0) 𝐴(2,1) 𝐴(2,2)

𝐴(0,0) 𝐴(1,0) 𝐴(2,0) 𝐴(0,1) 𝐴(1,1) 𝐴(2,1) 𝐴(0,2) 𝐴(1,2) 𝐴(2,2)

Storage Layout - Exercise

• For a 3D array (tensor) assume 𝐴 𝑖, 𝑗, 𝑘 = 𝐴(𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛, 𝑑𝑒𝑝𝑡ℎ)

• What is the offset of 𝐴 1, 2, 1 ? as per row-major storage?

• What is the offset of 𝐴 1, 2, 1 ? as per col-major storage?

15Nikhil Hegde

𝐴(0,0,0) A(2,2,2). . .

Offset: 0 1 2 . . . 26

Storage Layout

• Layout format itself doesn’t influence efficiency (i.e. no

general answer to “is column-wise layout better than row-

wise?”)

• However, knowing the layout format is critical for good

performance

– Always traverse the data in the order in which it is laid out

How good performance?

16Nikhil Hegde

Nikhil Hegde 17

Source code: https://github.com/eliben/code-for-

blog/tree/master/2015/benchmark-row-col-major

Matvec execution time
(we used the source code as a

basic example to demonstrate row_major vs.

col_major storage.)

Matrix-Matrix Addition benchmarking

(Source code and further reading)

refer to week4_codesamples

https://github.com/eliben/code-for-blog/tree/master/2015/benchmark-row-col-major
https://hegden.github.io/cs601/slides/week13_codesamples.zip
https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays

Detour - Memory Hierarchy

Nikhil Hegde

CS601

18

19

The von Neumann Architecture

• Proposed by Jon Von Neumann in 1945

• The memory unit stores both instruction and

data

– consequence: cannot fetch instruction and data

simultaneously - von Neumann bottleneck

source: wikipedia

Nikhil Hegde

CS601

20

Harvard Architecture

• Origin: Harvard Mark-I machines

• Separate memory for instruction and data

– advantage: speed of execution

– disadvantage: complexity

Nikhil Hegde

CS601

21

Memory Hierarchy

• Most computers today have layers of cache in

between processor and memory

– Closer to cores exist separate D and I caches

• Where are registers?

processor

core core core

core core core

shared cache

cache cache cache

cache cache cache

Second-level

cache

Main

memory

Secondary

Storage / Disk

Tape /

Tertiary

Storage

Latency: 1 ns ~5-10 ns ~102 ns ~107 ns ~1010 ns

Size: few KBs ~106 (MBs) ~109 (GBs) ~1012 (TBs) ~1015 (PBs)

Nikhil Hegde

CS601

22

Memory Hierarchy

• Consequences on programming?

– Data access pattern influences the performance

– Be aware of the principle of locality

processor

core core core

core core core

shared cache

cache cache cache

cache cache cache

Second-level

cache

Main

memory

Secondary

Storage / Disk

Tape /

Tertiary

Storage

Nikhil Hegde

CS601

23

Memory Hierarchy - Terminology

• Hit: data found in a lower-level memory module
– Hit rate: fraction of memory accesses found in lower-level

• Miss: data to be fetched from the next-level (higher)

memory module

– Miss rate: 1 – Hit rate

– Miss penalty: time to replace the data item at the lower-level

processor

core core core

core core core

shared cache

cache cache cache

cache cache cache

Second-level

cache

Main

memory

Secondary

Storage / Disk

Tape /

Tertiary

Storage

lower higher
Nikhil Hegde

CS601

24

Principle of Locality

1. If a data item is accessed, it will tend to be

accessed soon (temporal locality)

– So, keep a copy in cache

– E.g. loops

2. If a data item is accessed, items in nearby

addresses in memory tend to be accessed

soon (spatial locality)

– Guess the next data item (based on access history)

and fetch it

– E.g. array access, code without any branching

Nikhil Hegde

CS601

Demo – Understanding Cache

Hierarchy

• How to find the details of cache subsystem on a machine?

> cat /sys/devices/system/cpu/cpu0/cache/index0/type

tells whether it is either Data / Instruction cache

– Explore each of the files within to know more.

Nikhil Hegde

CS601

25

Demo – Understanding Performance

with PAPI

• PAPI – Performance API

– Used to count events - signals related to processor or other

subsystem

– Processor manufacturers make provision for a small number of

registers that count events e.g. floating point operations, cache

misses etc.

– The APIs of PAPI provide a software abstraction to read the platform

dependent counters

Nikhil Hegde

CS601

26

• refer to matvec_rowmajor.cpp, matvec_colmajor.cpp, and makefile in papi_demo folder

of week4_codesamples.

• To build this code using PAPI:

• you must download PAPI and install on your home drive:

• For installation instructions, read the INSTALL.txt file in the downloaded folder.

• Once installed, you need to change the CFLAGS and LDFLAGS path in the makefile.
• Now, you can build using make DEBUG=1 command

• Before executing the program, on the terminal type: export
LD_LIBRARY_PATH=<absolute-path-where-you-have-installed-papi/lib>.

• Now execute using: ./matvec_rowmajor 4096 OR ./matvec_colmajor 4096.

https://bitbucket.org/icl/papi/downloads/?tab=tags

Matrix Multiplication

• Three fundamental ways to think of the computation

1. Dot product

1 2
3 4

×
5 6
7 8

=
1.5 + 2.7 1.6 + 2.8
3.5 + 4.7 3.6 + 4.8

2. Linear combination of the columns of the left matrix

1 2
3 4

×
5 6
7 8

= 5
1
3

+ 7
2
4

6
1
3

+ 8
2
4

3. Sum of outer products

1 2
3 4

×
5 6
7 8

=
1
3

5 6 +
2
4

7 8

27Nikhil Hegde

Dot Product

• Vector 𝑥 =

𝑥1
𝑥2
:
𝑥𝑛

, Vector 𝑦 =

𝑦1
𝑦2
:
𝑦𝑛

xi, yi ∈ ℝ

• 𝑥𝑇 = 𝑥1 𝑥2 . . 𝑥𝑛

• Dot Product or Inner Product: 𝑐 = 𝑥𝑇𝑦 xT ∈ ℝ1×𝑛, 𝑦 ∈
ℝ𝑛×1, 𝑐 𝑖𝑠 𝑠𝑐𝑎𝑙𝑎𝑟

• E.g. 1 2 3
4
5
6

= 1 × 4 + 2 × 5 + 3 × 6 = 32

28Nikhil Hegde

𝑥1 𝑥2 . . 𝑥𝑛

𝑦1
𝑦2
:
𝑦𝑛

= 𝑥1𝑦1 + 𝑥2𝑦2+. . +𝑥𝑛𝑦𝑛

AXPY

• Computing the more common (a times x plus y): 𝑦 = 𝑦 + 𝑎𝑥

•

𝑦1
𝑦2
:
𝑦𝑛

=

𝑦
𝑦2
:
𝑦𝑛

+ 𝑎

𝑥1
𝑥2
:
𝑥𝑛

• Cost? n multiplications and n additions = 2n or O(n)

29Nikhil Hegde

..
for i=1 to n

y[i] = y[i] + a*x[i]
..

Matrix Vector Product

• Computing Matrix-Vector product: 𝑐 = 𝑐 + 𝐴𝑥, 𝐴 ∈ ℝ𝑚×𝑟 , 𝑥 ∈ ℝ𝑟×1

• Rewriting Matrix-Vector product using dot products:

• Cost? m rows involving dot products and having the form 𝑐𝑖 =
𝑐𝑖 + 𝑥𝑇𝑦 (Per row cost = 2r (because 𝑎𝑖 , 𝑥 ∈ ℝ𝑟),Total cost = 2mr
or O(mr))

30Nikhil Hegde

𝑐1
𝑐2
:
𝑐𝑚

=

𝑐1
𝑐2
:
𝑐𝑚

+

𝑎11 𝑎12 . . 𝑎1𝑟
𝑎21 𝑎22 . . 𝑎2𝑟

:
𝑎𝑚1 𝑎𝑚2 . . 𝑎𝑚𝑟

𝑥1
𝑥2
:
𝑥𝑟

m
r

=

𝑐1
𝑐2
:
𝑐𝑚

+

𝑎11𝑥1 + 𝑎12𝑥2 + . . +𝑎1𝑟𝑥𝑟
𝑎21𝑥1 + 𝑎22𝑥2 + . . +𝑎2𝑟𝑥𝑟

:
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + . . +𝑎𝑚𝑟𝑥𝑟

m
1

𝑐1
𝑐2
:
𝑐𝑚

=

𝑐1
𝑐2
:
𝑐𝑚

+

𝑎11 𝑎12 . . 𝑎1𝑟
𝑎21 𝑎22 . . 𝑎2𝑟

:
𝑎𝑚1 𝑎𝑚2 . . 𝑎𝑚𝑟

𝑥1
𝑥2
:
𝑥𝑟

=

𝑐1
𝑐2
:
𝑐𝑚

+

𝑎1
𝑇𝑥

𝑎2
𝑇𝑥
:

𝑎𝑚
𝑇 𝑥

Matrix-Matrix Product

• Computing Matrix-Matrix product 𝐶 = 𝐶 + 𝐴𝐵, 𝐴 ∈ ℝ𝑚×𝑟 , 𝐵 ∈ ℝ𝑟×𝑛,
𝐶 ∈ ℝ𝑚×𝑛

• Consider the AB part first.

31Nikhil Hegde

𝑐11 𝑐12 . . 𝑐1𝑛
𝑐21 𝑐22 . . 𝑐2𝑛

:
𝑐𝑚1 𝑐𝑚2 . . 𝑐𝑚𝑛

=

𝑐11 𝑐12 . . 𝑐1𝑛
𝑐21 𝑐22 . . 𝑐2𝑛

:
𝑐𝑚1 𝑐𝑚2 . . 𝑐𝑚𝑛

+

𝑎11 𝑎12 . . 𝑎1𝑟
𝑎21 𝑎22 . . 𝑎2𝑟

:
𝑎𝑚1 𝑎𝑚2 . . 𝑎𝑚𝑟

𝑏11 𝑏12 . . 𝑏1𝑛
𝑏21 𝑏22 . . 𝑏2𝑛

:
𝑏𝑟1 𝑏𝑟2 . . 𝑏𝑟𝑛

m
r

r
n

m
n

𝑎11 𝑎12 . . 𝑎1𝑟
𝑎21 𝑎22 . . 𝑎2𝑟

:
𝑎𝑚1 𝑎𝑚2 . . 𝑎𝑚𝑟

𝑏11 𝑏12 . . 𝑏1𝑛
𝑏21 𝑏22 . . 𝑏2𝑛

:
𝑏𝑟1 𝑏𝑟2 . . 𝑏𝑟𝑛

Matrix-Matrix Product

32

𝑎11 𝑎12 . . 𝑎1𝑟
𝑎21 𝑎22 . . 𝑎2𝑟

:
𝑎𝑚1 𝑎𝑚2 . . 𝑎𝑚𝑟

𝑏11 𝑏12 . . 𝑏1𝑛
𝑏21 𝑏22 . . 𝑏2𝑛

:
𝑏𝑟1 𝑏𝑟2 . . 𝑏𝑟𝑛

= .
𝑎11𝑏11 + 𝑎12𝑏21+. . +𝑎1𝑟𝑏𝑟1 . . 𝑎11𝑏1𝑛 + 𝑎12𝑏2𝑛+. . +𝑎1𝑟𝑏𝑟𝑛

.
𝑎𝑚1𝑏11 + 𝑎𝑚2𝑏21+. . +𝑎𝑚𝑟𝑏𝑟1 . . 𝑎𝑚1𝑏1𝑛 + 𝑎𝑚2𝑏2𝑛+. . +𝑎𝑚𝑟𝑏𝑟𝑛

= .
𝑎1
𝑇𝑏1 . . 𝑎1

𝑇𝑏𝑛
.

𝑎𝑚
𝑇 𝑏1 . . 𝑎𝑚

𝑇 𝑏𝑛

𝑎𝑖
𝑇 ∈ ℝ1×𝑟, 𝑏𝑗 ∈ ℝ𝑟×1

i ranges from 1 to m

j ranges from 1 to n

A B

Notice that:

• subscript on a varies from 1 to m in a column (i.e. m rows exist)

• subscript on a varies from 1 to r in a row (i.e. r columns exist)

Suggesting that we can treat ai as a vector of size r and there exist m vectors

