
1

CS601: Software Development for

Scientific Computing
Autumn 2022

Week3: Minimal C++ (contd..), Build tool

(Make)

Nikhil Hegde

CS601

Suggested Reading

• Pointers and Pointer Arithmetic (slide 3 to

slide 52)

Nikhil Hegde

CS601

2

• The address of (&) operator fetches a
variable’s address in C

• &x would return the address of x

• prints the Hexadecimal address of x

Visualizing Addresses

3Nikhil Hegde

CS601

• Pointer is a data type that holds an address.

<type>* <pointer_name>;

• Example:

• int* p; //is a variable named p whose type is
//pointer to int OR p is an integer
//pointer

Note that the variable declared is p, not *p

Pointers

4Nikhil Hegde

CS601

• A pointer always stores an address

• <type> of the pointer tells us what kind of data
is stored at that address

• Example:

• int* p;

declares a pointer variable p holding an address,
which identifies a memory location capable of storing
an integer.

5Nikhil Hegde

CS601

• int* p;

Remember p is a variable and all variables are just names
identifying addresses.

In addition, p holds the address of a memory location that stores an
integer

• p=&x;

0x4004
p

address

name

Initializing Pointers

0x4004

p

7

0x401C

x

0x401C

6Nikhil Hegde

CS601

• Cannot assign arbitrary addresses to pointers.

• Example:

int* p=5;

• Operating system determines addresses
available to each program.

7Nikhil Hegde

CS601

• NULL is a special address

• Example

int* p=NULL; //p points to nowhere

• Useful when it is not yet known where p points
to.

• Uninitialized pointers store garbage addresses

The NULL address

8Nikhil Hegde

CS601

• The dereference operator (*)

• Lets us access the memory location at the address
stored in the pointer

int x=7;

Using Pointers

7

0x401c
x

9Nikhil Hegde

CS601

• The dereference operator (*)

• Lets us access the memory location at the address
stored in the pointer

int x=7;

int* p = &x; //p now points to x

Using Pointers

0x4004

p

7

0x401C

x

0x401C

10Nikhil Hegde

CS601

• The dereference operator (*)

• Lets us access the memory location at the address
stored in the pointer

int x=7;

int* p = &x; //p now points to x

*p = 10; //this is the same as x=10

Using Pointers

0x4004

p

10

0x401C

x

0x401C

11Nikhil Hegde

CS601

• The dereference operator (*)

• Lets us access the memory location at the address
stored in the pointer

int x=7;

int* p = &x; //p now points to x
*p = 10; //this is the same as x=10
int y=*p; //this is the same as y=x

Using Pointers

0x4004

p

10

0x401C

x

0x401C10

0x4020
y 12Nikhil Hegde

CS601

• Pointers as alternate names to memory
locations

x is the name for an address

*p is the name for an address
10

0x401c
x

*p

int x=7;

int *p = &x;

13Nikhil Hegde

CS601

• Pointers as “dynamic” names to memory
locations

int x=7; //x always names the location 0x401C

int *p = &x; //*p is now another name for x

7

0x401c
x

*p

14Nikhil Hegde

CS601

• Pointers as “dynamic” names to memory
locations

int x=7; //x always names the location 0x401C

int *p = &x; //*p is now another name for x

int y = *p //like saying y=x

p = &y; //*p is now another name for y

7

0x401c
x
*p

7

0x4020
y

*p 15Nikhil Hegde

CS601

• What can pointers point to? any data type!

• Basic data types – we have seen these.

• Structures – Next set of slides.

• Pointers! and

• Functions

Pointers to Different Types

16Nikhil Hegde

CS601

• Point p1={10.1,22.8};

• Point p2={.x=10.1,.y=22.8};

//Introduced in C99.

//Designated initializers

//Best-way

Structures - Initialization

17Nikhil Hegde

CS601

typedef struct {
int year;
char model;
float acceleration; //0-60mph in seconds

}Car;

Car t1 = {.year = 2017, .model = ‘S’,
.acceleration = 2.8 };

Car * pt1 = &t1; //now you can use *pt1
anywhere you use t1

Pointers to Structures

18Nikhil Hegde

CS601

(*pt1).acceleration = 2.3;
(*pt1).year = 2019;
(*pt1).model = ‘X’;
float avg_acceleration = ((*pt1).acceleration
+ (*pt2).acceleration) / 2.0;

We can also use the -> operator to access
structure members.

pt1->acceleration = 2.3;
pt1->year = 2019;
pt1->model = ‘X’
float avg_acceleration = (pt1->acceleration +
pt2->acceleration) / 2.0;

19Nikhil Hegde

CS601

int x = 7;
int *p = &x; //p points to x; *p is same as x.

int ** q=&p; //q is a pointer to pointer to int

*q is same as p.
*(*q) is the same as *p, which is same as x

Pointer Chains

20Nikhil Hegde

CS601

• Adding & to a variable adds * to its type

• Example:

• if a is an int, then &a is an int*

• if b is an int*, then &b is an int**

• if c is an int**, then &c is an int***

• …

Address of (&) operator and

Type

21Nikhil Hegde

CS601

• Adding * to a variable subtracts * from its type

• Example:

• if a is an int*, then *a is an int

• if b is an int**, then *b is an int*

• if c is an int***, then *c is an int**

• …

Dereference (*) operator and

Type

22Nikhil Hegde

CS601

int y = 1040;
int* p= &y;

• What does *(p+1) mean?

• Data at “one element past” p

• What does “one element past” mean?

• p is a pointer, so holds the address of a memory
location

• p is an int pointer, so that memory location holds an
integer

• p+1 is interpreted as address of the next integer

Pointer Arithmetic

23Nikhil Hegde

CS601

• Our representation of

int y=2064;
int* p = &y;

Pointer Arithmetic

2064

0x401C
y

0x401C

0x1000
p

24Nikhil Hegde

CS601

• ints occupy 4 bytes. 0x401C is the address of
the first byte*:

• (*p) = data at 0x401C

• returns the correct value of 2064 and not 0x10. Why?

Pointer Arithmetic

10 08 00 00

0x401C 0x401D 0x401E 0x401F

*2064 = 0x810 (=0x00,00,08,10 when written using 8 digits and x86 is little-

endian)

25Nikhil Hegde

CS601

• (p+1) gets the “address of the next integer”

What is the address of the next integer?

Pointer Arithmetic

2064

0x401C
y

0x401C

0x1000
p

26Nikhil Hegde

CS601

• What is the address of the next integer?

• Add 4 to current value of p (0x401C)

Pointer Arithmetic

10 08 00 00

0x401C 0x401D 0x401E 0x401F 0x4020 0x4021 0x4022 0x4023

= 0x4020

y

27Nikhil Hegde

CS601

• (p-1) computes the address before y

int y=2064;
int* p = &y;

subtract 4 from the current value of p (0x401C) = 0x4018

• Similarly we can add/subtract any number to/from a
pointer variable.

• Compare to a specific address (E.g. if(p == NULL))

Pointer Arithmetic

10 08 00 00

0x401C 0x401D 0x401E 0x401F 0x4018 0x4019 0x401A 0x401B
y

28Nikhil Hegde

CS601

• Pointer to double (double occupies 8 bytes)

double pi=3.1428;
double* ptrPi = π

What is the address computed for (ptrPi+1)?

What is the address computed for (ptrPi-1)?

Pointer Arithmetic

0x401C

0x1000
ptrPi

3.1428

0x401C
pi

0x4024

0x4014

29Nikhil Hegde

CS601

• Pointer to char

char model=‘S’;
char* ptrModel = &model;

What is the address computed when we do
(ptrModel+1)?

Pointer Arithmetic

0x401C

0x1000

ptrModel

‘S’

0x401C
model

30Nikhil Hegde

CS601

• Pointer to pointer

char model=‘S’;
char* ptrModel = &model;
char** doublePtr = &ptrModel;

Bonus: what is the address computed when we do
(doublePtr+1)? (assuming we are using 32-bit machines)

Pointer Arithmetic

‘S’

0x401C
model

0x401C

0x1000

ptrModel

0x1000

0x0500

doublePtr

31Nikhil Hegde

CS601

C-style Arrays

Declaring arrays:
type <array_name>[<array_size>];
int num[5];

Initializing arrays:
int num[3]={2,6,4};
int num[]={2,6,4};//array_size is not
required.

Accessing arrays:
num[0] accesses the first integer
num[1] accesses the second integer and so on..

32Nikhil Hegde

CS601

• Another data type!

• Array of ints, structs etc.

• Array of chars (strings in C)

• Work a little bit like pointers

int a[10]={11,21,31,41,51,61,71,81,91,101};
//array of 10 integers

10 elements guaranteed to be next to each other in
memory

Arrays

11 21 31 41 51 61 71 81 91 101

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

33Nikhil Hegde

CS601

int a[10]={11,21,31,41,51,61,71,81,91,101};

• 0x4001 is starting address of the array = address of
a[0] = &a[0]

• Fetch the address of a = &a = 0x4001

Arrays

a

0x4001

11 21 31 41 51 61 71 81 91 101

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

34Nikhil Hegde

CS601

• Array name in C is the address of the first
element of the array

int a[10]={1,2,3,4,5,6,7,8,9,10};

Therefore, a == &a[0]

a, &a, &a[0] are the same and have values
0x4001.

Arrays

35Nikhil Hegde

CS601

• Array name in C is the address of the first
element of the array

Array names are converted to pointers (in
most cases) but a’s type is not a pointer.

int* ptr=a; //ptr holds the address of the
first element of the array (also &a[0]).

ptr[1] gets a[1]
ptr[2] gets a[2]
...
How is this possible?

Arrays

36Nikhil Hegde

CS601

• Array dereferencing operator [] is implemented
in terms of pointers.

• a[3] means: start at the address a, go forward 3
elements, fetch the data at that address.

• In pointer arithmetic syntax, this is equivalent to:

*(a+3)

So,

a[0] really means: *(a+0)
a[1] really means: *(a+1)

Arrays

37Nikhil Hegde

CS601

• So, when

int* ptr = a;

• ptr[0] really means *(ptr+0), which is the same
as *(a+0), which is a[0]

• ptr[1] really means *(ptr+1), which is the same
as *(a+1), which is a[1]

...

Arrays

38Nikhil Hegde

CS601

• Statically allocated arrays:

int arr[3]={1, 2, 3};

• Can’t expand arr once defined

Dynamic Memory Allocation

Must be known

at compile time

39Nikhil Hegde

CS601

• What if we don’t know the array length?

• Option 1: Variable length arrays.

Not an option with -Wvla, -Wall, and -Werror
flags

• Option 2: use heap.

Preferred option

Dynamic Memory Allocation

40Nikhil Hegde

CS601

• We interact with heap using

• new

“Give us X bytes of storage space (memory) from
the heap so that we can use it to store data”

• delete

“take back this memory so that it can be used for
something else”

Dynamic Memory Allocation

41Nikhil Hegde

CS601

2D Arrays

• 1D array gives us access to a row of data

• 2D array gives us access to multiple rows of data
• A 2D array is basically an array of arrays

• Consider a fixed-length 1D array:
int arr1[4];//defines array of 4 elements; every
element is an integer. Reserves contiguous memory to
store 4 integers.

We have seen this

100 104 108 112

Starting addr:

arr1[0] arr1[1] arr1[2] arr1[3]

42Nikhil Hegde

CS601

2D Arrays (fixed-length)

• Consider a fixed-length 2D array (array of arrays). Think:

array of integers => every element is an int
array of characters => every element is a char
array of array => every element is an array

• Example:

int arr[2][4];//defines array of 2 elements; every
element is an array of 4 integers. Therefore, reserves
contiguous memory to store 8 integers

100 104 108 112 116 120 124 128
Starting addr:

arr[0] arr[1]

43Nikhil Hegde

CS601

2D Arrays (on heap)

• What if we don’t know the length of the array upfront?

E.g. A line in a file contains number of people riding a bus every trip.

Multiple trips happen per day and the number can vary depending on the

traffic.

Day1 numbers: 10 23 45 44

Day2 numbers: 5 33 38 34 10 4

Day3 numbers: 9 17 10

………………………………………

DayN numbers: 13 15 28 22 26 23 22 21

//we need array arr of N elements; every element is an
array of M integers. Both N and M vary with every file
input.

44Nikhil Hegde

CS601

2D Arrays (on heap)

1. First, we need to create an array arr2D of N elements.

So, get the number of lines in the input file.

• But what is the type of every element? - array of M

elements, where every element is an integer (i.e. every

element is an integer array). int *

• What is the type of arr2D? (array of array of integers)

Think:

type of an integer => int
type of array of integers => int *

(append a * to the type for every occurrence of the term array)

type of array of array of integers => int **
45Nikhil Hegde

CS601

2D Arrays (on heap)

1. First, we need to create an array arr2D of N elements.

So, get the number of lines in the input file.

• What is the type of arr2D? (int **)

int N = GetNumberOfLinesFromFile(fileName);

int** arr2D = new int*[N];

46Nikhil Hegde

CS601

int N = GetNumberOfLinesFromFile(filename);
int** arr2D = new int*[N];

100 104 108 112 116 120 124 128
Starting addr:

arr[0] arr[1]

Recall boxes with dashed lines in int arr[2][4];

arr2D[0] arr2D[1] arr2D[N-1]

100 108 100+(N-1)*8

Starting addr(assuming 64-bit machine/pointer stored in 8 bytes):
47Nikhil Hegde

CS601

arr2D[0] arr2D[1] arr2D[N-1]

100 108 100+(N-1)*8

Starting addr(assuming 64-bit machine/pointer stored in 8 bytes):

2. arr2D[0], arr2D[1], etc. are not initialized. They hold

garbage values. How do we initialize them?

for(int i=0;i<N;i++) {
char* line = ReadLineFromFile(filename);
int M = GetNumberOfIntegersPerLine(line);
arr2D[i] = new int[M]

}

48Nikhil Hegde

CS601

1000 5004 50

arr2D[0] arr2D[1] arr2D[N-1]

100 108 100+(N-1)*8
Starting addr(assuming 64-bit machine/pointer stored in 8 bytes):

for(int i=0;i<N;i++) {
char* line = ReadLineFromFile(filename);
int M = GetNumberOfIntegersPerLine(line);
arr2D[i] = new int[M]

}

Starting addr:

1000

5004

9000

50

. 49Nikhil Hegde

CS601

2D Arrays (on heap)

Summary:

Creation: 2-steps

Initializing: 2-steps

Releasing: 2-steps

for(int i=0;i<N;i++)
delete [] arr2D[i]; //frees memory at 1000, 5004,

etc.

delete [] arr2D;//frees memory at 100

50Nikhil Hegde

CS601

2D Arrays (trivia)

• Notation used to refer to elements different from cartesian

coordinates

• Cartesian:

• 2D Arrays:

0 X

Y

arr2D[M][N] = move to (M+1)th

row (along Y axis), to (N+1)th

column (along X axis)!

51

arr2D[0][0] accesses 1st row, 1st element

arr2D[0][1] accesses 1st row, 2nd element

arr2D[1][1] accesses 2nd row, 2nd element

arr2D[N][M] accesses N+1th row, M+1th element

(M,N) = move M along X axis,

N along Y axis

Nikhil Hegde

CS601

• From the previous bus trip data, what if we wanted to:

• Drop certain days as we analyzed arr2D?

• Add more days to (read from another file) to arr2D ?

i.e.

modify arr2D as program executes?

Day1 numbers: 10 23 45 44

Day2 numbers: 5 33 38 34 10 4

Day3 numbers: 9 17 10

………………………………………

DayN numbers: 13 15 28 22 26 23 22 21

52Nikhil Hegde

CS601

Exercise

• Write a C++ program with the following

requirements:

– User should be able to provide the dimension of two

vectors (do not use C++ vectors from STL)

– The program should allocate two vectors of the

required size and initialize them with meaningful data

– The program should compute the scalar product of

the two vectors and print the result

53Nikhil Hegde

CS601

Discussion

Refer to:

• vectorprod_v1.cpp
– What if atoi doesn’t provide accurate status about the value

returned?

• vectorprod_v2.cpp
– C++ stringstreams are an option. Is this code

modular?

• vectorprod_v3.cpp scprod.cpp
– What if there is already built-in function by the

same name?

• vectorprod_v4.cpp scprod_v4.cpp
– Namespaces

Nikhil Hegde

CS601

54

Makefile or makefile

• Is a file, contains instructions for the make
program to generate a target (executable).

• Generating a target involves:
1. Preprocessing (e.g. strips comments, conditional

compilation etc.)

2. Compiling (.c -> .s files, .s -> .o files)

3. Linking (e.g. making printf available)

• A Makefile typically contains directives on how

to do steps 1, 2, and 3.

55Nikhil Hegde

Makefile - Format

1. Contains series of ‘rules’-

Example:

2. And Macro/Variable definitions -

target: dependencies
[TAB] system command(s)
Note that it is important that there be a TAB character before the system

command (not spaces).

CFLAGS = -std=c++11 -g -Wall -Wshadow --pedantic -Wvla –Werror

GCC = g++

testgen: testgen.cpp
g++ testgen.cpp –o testgen

56Nikhil Hegde

“Recipe”“Dependencies or Prerequisite files”

“target file name”

Makefile - Usage

– The ‘make’ command (Assumes that a file by name

‘makefile’ or ‘Makefile’. exists)

• Run the ‘make’ command

57Nikhil Hegde

Makefile - Benefits

• Systematic dependency tracking and building for

projects
– Minimal rebuilding of project

– Rule adding is ‘declarative’ in nature (i.e. more intuitive

to read caveat: make also lets you write equivalent rules that are very

concise and non-intuitive.)

• To know more, please read:
https://www.gnu.org/software/make/manual/html_node/index.ht

ml#Top

58Nikhil Hegde

https://www.gnu.org/software/make/manual/html_node/index.html#Top

