CS601: Software Development for

Scientific Computing
Autumn 2022

Week3: Minimal C++ (contd..), Build tool
(Make)

Nikhil Hegde
CS601

Suggested Reading

* Pointers and Pointer Arithmetic (slide 3 to
slide 52)

Visualizing Addresses

* The address of (&) operator fetches a
variable’s address in C

« &x would return the address of x
H#Hinclude<iostream>
int main(int argc, char* argv[]) {
int x = 7;

std: :cout<<"Address of x 1is:"<<&x<<std::endl;
return 0;

* prints the Hexadecimal address of x

iddress_of X 1s:0x7ffd1d5e2844

Pointers

 Pointer Is a data type that holds an address.
<type>* <pointer name>;
« Example:

« int* p; //is avariable named p whose type is
//[pointer to int OR p is an integer
//[pointer

Note that the variable declared is p, not *p

A pointer always stores an address

« <type> of the pointer tells us what kind of data
IS stored at that address

« Example:
e int* p;

declares a pointer variable p holding an address,
which identifies a memory location capable of storing
an integer.

Initializing Pointers

e int* p;

Remember p is a variable and all variables are just names
identifying addresses.

Ox4004 < address
p «—— Name

In addition, p holds the address of a memory location that stores an
integer

* p=&X;

Ox401C_ 7
Ox4004 ~——0x401C

P X

« Cannot assign arbitrary addresses to pointers.
« Example:
int* p=5;

» Operating system determines addresses
available to each program.

The NULL address

* NULL Is a special address

* Example
int* p=NULL; //p points to nowhere

« Useful when it is not yet known where p points
to.

* Uninitialized pointers store garbage addresses

Using Pointers

« The dereference operator (*)

 Lets us access the memory location at the address
stored in the pointer

int x=7; 7

Ox401c
X

Using Pointers

* The dereference operator (*)
 Lets us access the memory location at the address
stored in the pointer

int x=7;
int* p = &; //p now points to x

@X4@1CN 7

0x4004 ~——0x401C
P X

10

Using Pointers

« The dereference operator (*)

 Lets us access the memory location at the address
stored in the pointer

int x=7;
int* p = &; //p now points to x
*p = 10; //this is the same as X=10

Ox401C 10
Ox4004 ~——0x401C

p X

11

Using Pointers

« The dereference operator (*)

 Lets us access the memory location at the address
stored in the pointer

int x=7;

int* p = &; //p now points to x
*p = 10; //this is the same as x=10
int y=*p; //this 1s the same as y=X

10 @X4@1CN 10

0x4020 0x4004 ~——0x401C
y p X12

 Pointers as alternate names to memory
locations

int x=7;
int *p = &x;

X IS the name for an address 10

.
p IS the name for an address OxA01c

X
*p

13

 Pointers as “dynamic” names to memory
locations

int x=7; //x always names the location 0x401C

int *p = &X; //*p is now another name for x

14

 Pointers as “dynamic” names to memory
locations

int x=7; //x always names the location 0x401C

int *p = &X; //*p is now another name for x
int y = *p //like saying y=x
p = &y; //*p is now another name for y
7 V4
0©x4020 ©x401c

X
*p iﬁ 15

Pointers to Different Types

* What can pointers point to? any data type!
« Basic data types — we have seen these.
 Structures — Next set of slides.
 Pointers! and

 Functions

16

Structures - Initialization
 Point pl={10.1,22.8};

 Point p2={.x=10.1,.y=22.8};
//Introduced in (C99.
//Designated initializers

//Best-way

17

Pointers to Structures

typedef struct {

int year;

char model;

float acceleration; //0-60mph in seconds
}Car;

Car t1l = {.year 017
.acceleration }

= 2 .model = °S’,
2.8

J
J

Car * ptl = &tl; //now you can use *ptl
anywhere you use tl

18

(*ptl).acceleration = 2.3;
(*ptl).year = 2019;
(*ptl).model = X’;

float avg acceleration = ((*ptl).acceleration
+ (*pt2).acceleration) / 2.0;

We can also use the -> operator to access
structure members.

ptl->acceleration = 2.3;

ptl->year = 2019;

ptl->model = ‘X’

float avg acceleration = (ptl->acceleration +
pt2->acceleration) / 2.0; 0

Pointer Chains
int x = 7;
int *p = &X; //p points to x; *p is same as X.
int ** d=&p; //q is a pointer to pointer to int

*q IS same as p.
*(*q) Is the same as *p, which is same as x

20

Address of (&) operator and
Type

* Adding & to a variable adds * to its type
« Example:
« ifais an int, then &a is an int*

e if bis an int*, then &b is an int**

e if cIs an int**, then &c Is an Int***

21

Dereference (*) operator and
Type

* Adding * to a variable subtracts * from its type
« Example:

e if ais an Int*, then *a is an int
e if bis an int**, then *b Is an int*

e if c IS an Iint*™*, then *c Is an Iint**

22

Pointer Arithmetic

int y = 1040;
int* p= &y;
* What does *(p+1) mean?

« Data at “one element past” p

* What does “one element past” mean?

* p IS a pointer, so holds the address of a memory
location

e p IS an int pointer, so that memory location holds an
Integer

- p+1 is interpreted as address of the next integer =

Pointer Arithmetic

* Our representation of

int y=2064;
int* p = &y;

__Ox401C_ . . 2064
0x1000 0x401C
p y

24

Pointer Arithmetic

* ints occupy 4 bytes. 9x401C Is the address of
the first byte™

Ox401C 0Ox401D Ox401E @X4@1F

*2064 = 0x810 (=0x00,00,08,10 when written using 8 digits and x86 is little-
endian)

 (*p) = data at 0x401C

* returns the correct value of 2064 and not 0x10. Why?

25

Pointer Arithmetic

* (p+1) gets the “address of the next integer”

L __6x4e1C ;. 2064 .
0x1000 Ox401C
p y

What is the address of the next integer?

26

Pointer Arithmetic

* What is the address of the next integer?
« Add 4 to current value of p (0x401C) = 0x4020

0x401C 0x401D Ox401E 0Ox401F
y

0x4020 0x4021 0x4022 0x4023

27

Pointer Arithmetic

* (p-1) computes the address before y

int y=2064;

int* p = &y;
r - - - - - - - - - -----=-=-=---= 1 - - - - - -_ - - - - - - --=-=--—-=-"-= 1
| | | 1
! | | 10 08 00 00 |
1
Ox4018 0x4019 Ox401A '@>'<AT@'1T3 éx'4éic' 0x401D Ox401E '@>'<AT@'1TE

y

subtract 4 from the current value of p (0x401C) = 9x4018

« Similarly we can add/subtract any number to/from a
pointer variable.
« Compare to a specific address (E.g. if(p == NULL))
28

Pointer Arithmetic

* Pointer to double (double occupies 8 bytes)

double pi=3.1428;
double* ptrPi = π

__bx4elC i 3.1428 |
oxices "0 emmmmemeeeeeeee————= .
)ft Pi Ox401C
ptrril pl

What is the address computed for (ptrPi+1)? 0x4024
What is the address computed for (ptrPi-1)? 0x4014

29

Pointer Arithmetic

 Pointer to char

char model=°S’;
char* ptrModel = &model;

| ox401C | cg2 |
——— e — == — o I I
ox 1560 Ox461C
ptrModel model

What is the address computed when we do
(ptrModel+1)?

30

Pointer Arithmetic

* Pointer to pointer

char model=°S’;
char* ptrModel = &model;
char** doublePtr = &ptrModel;

, Ox1e00 , | ox401C . [g |i
- T o m====" - T Tmmm s [|
©x0500 0x1000 SA61C
doublePtr ptrModel model

Bonus: what is the address computed when we do
(doublePtr+1)? (assuming we are using 32-bit machines)

31

C-style Arrays

Declaring arrays:
type <array _name>[<array_size>];
int num[5];

Initializing arrays:

int num[3]={2,6,4};

int num[]={2,6,4};//array _size is not
required.

Accessing arrays:
num[0] accesses the first integer

num[1] accesses the second integer and so on..

32

Arrays

* Another data type!
« Array of ints, structs etc.

« Array of chars (strings in C)

* Work a little bit like pointers

int a[10]={11,21,31,41,51,61,71,81,91,101};
//array of 10 integers

11 |21|31|41|51|61|71|81[91 (101
al0] a[l] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

10 elements guaranteed to be next to each other in
rmemory 33

Arrays

int a[10]={11,21,31,41,51,61,71,81,91,101};

11 |21|31|41|51|61|71|81|91 (101
al0] a[l] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

a
0x4001

* Ox4001 is starting address of the array = address of
a[0] = &a[0]

 Fetch the address of a = & = 0x4001 3

Arrays

* Array name In C Is the address of the first
element of the array

int a[10]={1,2,3,4,5,6,7,8,9,10};
Therefore, a == &a[0]

a, &a, &a[@] are the same and have values
Ox4001.

35

Arrays

* Array name In C Is the address of the first
element of the array

Array names are converted to pointers (in
most cases) but a’s type is not a pointer.

int* ptr=a; //ptr holds the address of the
first element of the array (also &a[@]).

ptr[1l] gets a[1l]
ptr[2] gets a[2]

How is this possible?
36

Arrays

 Array dereferencing operator [] is implemented
In terms of pointers.

* a[3] means: start at the address a, go forward 3
elements, fetch the data at that address.

* |[n pointer arithmetic syntax, this is equivalent to:
*(a+3)
So,

a[0] really means: *(a+0)
a[l] really means: *(a+1)

37

Arrays

* S0, when
int* ptr = a;

* ptr[0] really means *(ptr+0), which is the same
as *(a+0), whichis a[0]

 ptr[1] really means *(ptr+1), which is the same
as *(a+1), whichis a[1]

38

Dynamic Memory Allocation

« Statically allocated arrays:
int arr[3]={1, 2, 3};

Must be known
at compile time

« Can’t expand arr once defined

39

Dynamic Memory Allocation

* What if we don’t know the array length”?

« Option 1: Variable length arrays.

Not an option with -Wvla, -Wall, and -Werror
flags

« Option 2: use heap.
Preferred option

40

Dynamic Memory Allocation

* We Interact with heap using

* new
“Give us X bytes of storage space (memory) from
the heap so that we can use it to store data”

e delete

“take back this memory so that it can be used for
something else”

41

2D Arrays

« 1D array gives us access to a row of data

« 2D array gives us access to multiple rows of data
« A 2D array is basically an array of arrays

« Consider a fixed-length 1D array:

int arrl[4];//defines array of 4 elements; every
element is an integer. Reserves contiguous memory to

store 4 integers.
arrl[0] arrl[1l] arrl[2] arrl[3]

Starting addr:
100 104 108 112

We have seen this 42

2D Arrays (fixed-length)

« Consider a fixed-length 2D array (array of arrays). Think:
array of integers => every element is an int
array of characters => every element is a char
array of array => every element is an array

« Example:

int arr[2][4];//defines array of 2 elements; every
element is an array of 4 integers. Therefore, reserves
contiguous memory to store 8 integers

I——.nnr.__"n.«.___________.—————————————ﬁs—_

166 104 108 112 116 120 124 128

2D Arrays (on heap)

« What if we don’t know the length of the array upfront?

E.g. Aline in a file contains number of people riding a bus every trip.
Multiple trips happen per day and the number can vary depending on the
traffic.

Dayl numbers: 10 23 45 44
Day2 numbers: 5 33 38 34 10 4
Day3 numbers: 9 17 10

DayN numbers: 13 15 28 22 26 23 22 21

//we need array arr of N elements; every element is an
array of M integers. Both N and M vary with every file

input.
44

2D Arrays (on heap)

1. First, we need to create an array arr2D of N elements.
So, get the number of lines in the input file.

« But what is the type of every element? - array of M
elements, where every element is an integer (i.e. every
element is an integer array). int *

 What is the type of arr2D? (array of array of integers)
Think:
type of an integer => int

type of array of integers => int *
(append a * to the type for every occurrence of the term array)

type of array of array of integers => int **
45

2D Arrays (on heap)

1. First, we need to create an array arr2D of N elements.
So, get the number of lines in the input file.

 What is the type of arr2D? (int **)

int N = GetNumberOfLinesFromFile(fileName);

int** arr2D = new int*[N];

46

Recall boxes with dashed linesin int arr[2][4];

[——=
I

Starting addr:
100 104 108 112 116 120 124 128

int N = GetNumberOfLinesFromFile(filename);
int** arr2D = new int*[N];

arr2D[0] arr2D[1] @ arr2D[N-1]

71—~ [
|

| | |

| | | |

I R L — 4
Starting addr(assuming 64-bit machine/pointer stored in 8 byfes):

100 108 100+(N-1)*8

arr2D[0] arr2D[1] arr2D[N-1]

[R T = 7 7

| | | |

| | | |

I R S L —
Starting addr(assuming 64-bit machine/pointer stored in 8 bytes):

100 108 100+ (N-1)*8

2. arr2D[@], arr2D[1], etc. are not initialized. They hold
garbage values. How do we Iinitialize them?

for(int 1=0;i<N;i++) {
char* line = ReadlLineFromFile(filename);

int M = GetNumberOfIntegersPerLine(line);
arr2D[1i] = new int[M]

48

arr2D[0] arr2D[1] arr2D[N-1]

————

I e

| 1000 | 5004 | | 50 |

R R S L
Starting addr(assuming 64-bit machine/pointer stored in 8 bytes):

100 108 100+ (N-1)*8

for(int i=0;i<N;i++) {
char* line = ReadlLineFromFile(filename);

int M = GetNumberOfIntegersPerLine(line);
arr2D[i] = new int[M]

}

Starting addr:
1000
5004
9000

49

50

2D Arrays (on heap)

Summary:
Creation: 2-steps
Initializing: 2-steps
Releasing: 2-steps

for(int 1i=0;i<N;i++)
delete [] arr2D[1i]; //frees memory at 1000, 5004,
etc.

delete [] arr2D;//frees memory at 100

50

2D Arrays (trivia)

 Notation used to refer to elements different from cartesian
coordinates

>

+ Cartesian: vy (M,N) = move M along X axis,

N along Y axis

0 X

. 2D Arrays: arr2D[M][N] = move to (M+1)™
row (along Y axis), to (N+1)t

arr2D[0][0] accesses 1t row, 1stelement cOlumn (along X axis)!
arr2D[0][1] accesses 15t row, 2" element
arr2D[1][1] accesses 2" row, 2" element

arr2D[N][M] accesses N+1% row, M+1% element
51

* From the previous bus trip data, what if we wanted to:

Dayl numbers: 10 23 45 44
Day2 numbers: 5 33 38 34 10 4
Day3 numbers: 9 17 10

DayN numbers: 13 15 28 22 26 23 22 21

* Drop certain days as we analyzed arr2D?
« Add more days to (read from another file) to arr2D ?
l.e.

modify arr2D as program executes?

52

Exercise

* Write a C++ program with the following
requirements:

— User should be able to provide the dimension of two
vectors (do not use C++ vectors from STL)

— The program should allocate two vectors of the
required size and initialize them with meaningful data

— The program should compute the scalar product of
the two vectors and print the result

53

Discussion

Refer to:

e vectorprod vl.cpp

— What if atoi doesn’t provide accurate status about the value
returned?

e vectorprod v2.cpp

- C++ stringstreams are an option. Is this code
modular?

e vectorprod v3.cpp scprod.cpp

- What if there is already built-in function by the
same name?

e vectorprod v4.cpp scprod va4.cpp
- Namespaces

54

Makefile or makefile

* Is a file, contains instructions for the make
program to generate a target (executable).

* Generating a target involves:
1. Preprocessing (e.g. strips comments, conditional

compilation etc.)
2. Compiling (.c -> .sfiles, .s -> .0 files)
3. Linking (e.g. making printf available)

* A Makefile typically contains directives on how
to do steps 1, 2, and 3.

55

Makefile - Format

1. Contains series of ‘rules’-

target: dependencies

[TAB] system command(s)

Note that it is important that there be a TAB character before the system
command (not spaces).

: “Dependencies or Prerequisite files” “Recipe”
Example , l 1018

o testgen: testgen.cpp
“target file name” g++ testgen.cpp -o testgen 1}

2. And Macro/Variable definitions -

CFLAGS = -std=c++11 -g -Wall -Wshadow --pedantic -Wvla -Werror
GCC = g++

56

Makefile - Usage

— The ‘'make’ command (Assumes that a file by name
‘makefile’ or ‘Makefile’. exists)

n2021/slides/week4 codesamples$ cat makefile

vectorprod: vectorprod.cpp scprod.cpp scprod.h
g++ vectorprod.cpp scprod.cpp -o vectorprod

* Run the ‘make’ command
n2021/slides/weekd4 codesamplest

g++ vectorprod.cpp scprod.cpp -o vectorprod

57

Makefile - Benefits

« Systematic dependency tracking and building for
projects
— Minimal rebuilding of project
— Rule adding is ‘declarative’ in nature (i.e. more intuitive

to read caveat: make also lets you write equivalent rules that are very
concise and non-intuitive.)

« To know more, please read:

https://www.qgnu.org/software/make/manual/html node/index.ht
mI#Top

58

https://www.gnu.org/software/make/manual/html_node/index.html#Top

