
1

CS601: Software Development for

Scientific Computing
Autumn 2022

Week2: Scientific software- examples,

Program Development Environment, Minimal

C++, Version Control Systems, Motifs

Nikhil Hegde

CS601

2

Recap: Toward Scientific Software

Physical process

Mathematical model

Algorithm

Software program

Simulation results

3

Scientific Software - Examples

Biology
- Shotgun algorithm expedites sequencing

of human genome

- Analyzing fMRI data with machine

learning

Credit: Wikipedia

Credit: Wikipedia

Chemistry

- optimization and search algorithms to

identify best chemicals for improving

reaction conditions to improve yields

Credit: University of Minnesota

4

Scientific Software - Examples

Geology
- Modeling the Earth’s surface to the core

Credit: Wikipedia

Astronomy
- kd-trees help analyze very large multi-

dimensional data sets

Credit: Kaggle.comEngineering

- Boeing 777 tested via computer

simulation (not via wind tunnel)

5

Scientific Software - Examples

Economics
- ad-placement

Entertainment

- Toy Story, Shrek rendered using data-center nodes

Creating a Program

• Create your c++ program file

6

.cpp files.cpp /

.cc /

.C

files

Nikhil Hegde

CS601

Creating a Program

• Preprocess your c++ program file

7

.cpp /

.cc /

.C

files

.cpp /

.cc /

.C

files

• removes comments from your program,

• expands #include statements

Nikhil Hegde

CS601

Creating a Program

• Translate your source code to assembly language

8

.cpp /

.cc /

.C

files

.cpp /

.cc /

.C

files

.s

files

Nikhil Hegde

CS601

Creating a Program

• Translate your assembly code to machine code

9

.cpp /

.cc /

.C

files

.cpp /

.cc /

.C

files

.s

files

.o

files

Nikhil Hegde

CS601

Creating a Program

• Get machine code that is part of libraries*

10

.cpp /

.cc /

.C

files

.cpp /

.cc /

.C

files

.s

files

.o

files

Nikhil Hegde

CS601

* Depending upon how you get the library code, linker or loader may be involved.

Creating a Program

• Create executable

1. Either copy the corresponding machine code OR

2. Insert a ‘stub’ code to execute the machine code

directly from within the library module
11

.cpp /

.cc /

.C

files

.cpp /

.cc /

.C

files

.s

files

.o

files

Nikhil Hegde

CS601

Creating a Program

• g++ 4_8_1.cpp -lm

– g++ is a command to translate your source code (by

invoking a collection of tools)

• Above command produces a.out from .cpp file

– -l option tells the linker to ‘link’ the math library 12

.cpp /

.cc /

.C

files

.cpp /

.cc /

.C

files

.s

files

.o

files

Nikhil Hegde

CS601

Creating a Program

• g++: other options

-Wall - Show all warnings

-o myexe - create the output machine code in a file called myexe

-g - Add debug symbols to enable debugging

-c - Just compile the file (don’t link) i.e. produce a .o file

-I/home/mydir -Include directory called /home/mydir

-O1, -O2, -O3 – request to optimize code according to various levels

Always check for program correctness when using

optimizations

13Nikhil Hegde

CS601

Creating a Program

• The steps just discussed are ‘compiled’ way of

creating a program. E.g. C++

• Interpreted way: alternative scheme where

source code is ‘interpreted’ / translated to

machine code piece by piece e.g. MATLAB

• Pros and Cons.

– Compiled code runs faster, takes longer to develop

– Interpreted code runs normally slower, often faster to

develop

14Nikhil Hegde

CS601

Creating a Program

• For different parts of the program different

strategies may be applicable.

– Mix of compilation and interpreted – interoperability

• In the context of scientific software, the following

are of concern:

– Computational efficiency

– Cost of development cycle and maintainability

– Availability of high-performant tools / utilities

– Support for user-defined data types

15Nikhil Hegde

CS601

Creating a Program

• a.out is a pattern of 0s and 1s laid out in memory

– sequence of machine instructions

• How do we execute the program?

– ./a.out <optional command line arguments>

16Nikhil Hegde

CS601

bash-4.1$./a.out

//this is how we ran 4_8_1.cpp (refer: week1_codesample)

• Suppose the initial guess was provided to the
program as a command-line argument (instead of
accepting user-input from the keyboard):

bash-4.1$./a.out 999

Command Line Arguments

17Nikhil Hegde

CS601

• bash-4.1$./a.out 999

• Who is the receiver of those arguments and how?

Command Line Arguments

Identifier Comments Value

argc Number of command-line

arguments (including the

executable)

2

argv each command-line argument

stored as a string

argv[0]=“./a.out”
argv[1]=“999”

18Nikhil Hegde

CS601

int main(int argc, char* argv[]) {
//some code here.

}

The main Function

• Has the following common appearance (signatures)

• Every program must have exactly one main
function. Program execution begins with this

function.

• Return 0 usually means success and failure

otherwise

– EXIT_SUCCESS and EXIT_FAILURE are useful

definitions provided in the library cstdlib
19

int main()

int main(int argc, char* argv[])

Nikhil Hegde

CS601

Functions

• Definition

• Function name and parameters form the signature of the

function

• In a program, you can have multiple functions with same

name but with differing signatures - function overloading

• Example:

20

return_type function_name(parameters) {

//statements

return <optional_value>

}

double product(double a, double b) {

double result = a*b;

return result;

}
Nikhil Hegde

CS601

Functions – Declaration and

Definition

• Declaration:

• Function definition provided the complete details of the

internals of the function. Declaration just indicates the

signature.

– Declaration exposes the interface to the function

21

return_type function_name(parameters);

double product(double a, double b); //OK

double product(double, double); //OK

Nikhil Hegde

CS601

Functions - usage

• Calling:

• Example:

22

function_name(parameters);

double product(double a, double b) {

double result = a*b;

return result;

}

int main() {

double retVal, pi=3.14, ran=1.2;

retVal = product(pi,ran);

cout<<retVal;

}

Nikhil Hegde

CS601

Functions - usage

• Calling:

• Example:

23

function_name(parameters);

double product(double a, double b) {

double result = a*b;

return result;

}

int main() {

double retVal, pi=3.14, ran=1.2;

retVal = product(pi,ran);

cout<<retVal;

}

At least the signature of

function must be visible

at this line

Nikhil Hegde

CS601

Functions - usage

• Calling:

• Example:

24

function_name(parameters);

double product(double a, double b) {

double result = a*b;

return result;

}

int main() {

double retVal, pi=3.14, ran=1.2;

retVal = product(pi,ran);

cout<<retVal;

}

pi and ran are copied to

a and b

Nikhil Hegde

CS601

Functions - usage

• Calling:

• Example:

25

function_name(parameters);

double product(double a, double b) {

double result = a*b;

return result;

}

int main() {

double retVal, pi=3.14, ran=1.2;

retVal = product(pi,ran);

cout<<retVal;

}

pi and ran are copied to

a and b

Pass-by-value

Nikhil Hegde

CS601

Functions - usage

• Calling:

• Example:

26

function_name(parameters);

double product(double& a, double& b) {

double result = a*b;

return result;

}

int main() {

double retVal, pi=3.14, ran=1.2;

retVal = product(pi,ran);

cout<<retVal;

}

pi and ran are NOT

copied to a and b

Pass-by-reference

Nikhil Hegde

CS601

Reference Variables

• Example:

• Like pointer variables. re is constant pointer to n (re

cannot change its value). Another name for n.

– Can change the value of n through re though

27

int n=10;

int &re=n;

Nikhil Hegde

CS601

Exercise: give an example of a variable that is declared but not defined

• Integer types: char, short int, int, long
int, long long int, bool

• Float: float, double, long double

• Pointers: handle to addresses

• References: safer than pointers but less
powerful

• void: nothing

C++ standard types

28Nikhil Hegde

CS601

C++ standard types

• Compound types

– pointers, structs, enums, arrays, etc.

• Modifiers

– short, long, signed, unsigned.

29Nikhil Hegde

CS601

E.g. int x;

1. What is the set of values this variable can take on in C?

-231 to (231 – 1)

2. How should operations on this variable be handled?

integer division is different from floating point divisions
3 / 2 = 1 //integer division

3.0 / 2.0 = 1.5 //floating-point division

3. How much space does this variable take up?

32 bits

30Nikhil Hegde

CS601

types / representation

• All built-in types are represented in memory as a
contiguous set of bytes

• Use sizeof() operator to check the size of a type

• e.g. sizeof(int)

C++ standard types – storage space

Data type Number of bytes

char 1

short int 2

int / long int 4

long long int 8

float 4

double 8

long double 12

31Nikhil Hegde

CS601

Typedef

– Lets you give alternative names to C data types

– Example:

typedef unsigned char BYTE;

This gives the name BYTE to an unsigned char type.

Now,

BYTE a;
BYTE b;

Are valid statements.

32Nikhil Hegde

CS601

Typedef Syntax

typedef <existing_type> <new_type>;

– Resembles a definition/declaration without

initializer;

E.g. int x;

– Mostly used with user-defined types

33Nikhil Hegde

CS601

User-defined Types

– Structures in C/C++ are one way of defining
your own type.

– Arrays are compound types but have the
same type within.

• E.g. A string is an array of char

• int arr[]={1,2,3}; arr is an array of integer
types

– Structures let you compose types with
different basic types within.

34Nikhil Hegde

CS601

Structures - Declaration

– Variable definition:
• struct Point p1;

• struct Point{
float xCoordinate;
float yCoordinate;
}p1;

p1 is a variable (an object) of type struct Point35

struct Point{

float xCoordinate;

float yCoordinate;

};

Type name

Declarations of fields

Nikhil Hegde

CS601

Structures - Definition

36

typedef struct _Point{

float xCoordinate;

float yCoordinate;

}Point;

Canonical

type name

(long form)

Declarations of fields

New Type name

• Variable definition:

• Point p1;

Nikhil Hegde

CS601

Structures - Usage

– Structure fields are accessed using dot (.)

operator

– Example:

Point p;

p.xCoordinate = 10.1;

p.yCoordinate = 22.8;

printf(“(x,y)=(%f,%f)\n”,p.xCoordinate,
p.yCoordinate);

37Nikhil Hegde

CS601

Structures - Initialization

– Error to initialize fields in declaration;

38

typedef struct{

float xCoordinate = 10.1;

float yCoordinate = 22.8;

}Point;

Nikhil Hegde

CS601

Data types - quirks

– if no type is given compiler automatically

converts it to int data type.

• signed x;

– long is the only modifier allowed with double

• long double y;

– signed is the default modifier for char and int

– Can’t use any modifiers with float

39Nikhil Hegde

CS601

char s[3] = “Hi”;

char *t = “Si”;

int u[3] = {5, 6, 7};

int n=8;

Expression Type Comments

Exercise

s

t

u

&u[0]

char[3] array of 3 chars

char* address of a char

int[3] array of 3 ints

int* address of an int

40Nikhil Hegde

CS601

char s[3] = “Hi”;

char *t = “Si”;

int u[3] = {5, 6, 7};

int n=8;

Expression Type Comments

Exercise

*&n

*t

int value at n

char data at address
Held by t

41Nikhil Hegde

CS601

• Array initializers:

1. int u[3] = {5, 6};
Is this valid?
If yes, what is the value held in the third element u[2]?

2. int u[3] = {5, 6, 7, 8};
Is this valid?

3. char s1[]=“Hi”;
What is the size of s1? (how many bytes are reserved
for s1)

4. char s2[3]=“Si”;
Is this valid?

Exercise

42Nikhil Hegde

CS601

int u[3] = {5, 6, 7};
int* p=u;
p[0]=7;
p[1]=6;
p[2]=5;

//Now, u would contain the numbers in reverse order.
u[0] = 7, u[1]=6, u[2]=5.

char *str = “Hello”;
char* p=str;
p[0]=‘Y’;
//Now, what would str contain?

Exercise

43Nikhil Hegde

CS601

Program layout in memory

• How is a program laid out in memory?

– Helpful to debug

– Helpful to create robust software

– Helpful to customize program for embedded systems

44Nikhil Hegde

CS601

Program Layout in Memory

• A program’s memory space is divided into
four segments:

1. Text
• source code of the program

2. Data
• Broken into uninitialized and initialized segments; contains space for

global and static variables. E.g. int x = 7; int y;

3. Heap
• Memory allocated using malloc/calloc/realloc/new

4. Stack
• Function arguments, return values, local variables, special registers.

45Nikhil Hegde

CS601

Text

Stack

Data
bss/uninitialized

Heap

Program Layout in Memory

initialized

46

(initialized to zero)

Nikhil Hegde

CS601

Text

Stack

Data
bss/uninitialized

Heap

Program Layout in Memory

initialized

47

0x1234AA00

0x1234AA04

0x1234AA08

0x1234AA0B

• Every memory location is a box

holding data

• Each box has an address

Nikhil Hegde

CS601

Text

Stack

Data
bss/uninitialized

Heap

Program Layout in Memory

initialized

high address (0x1234ABCD)

low address (0x12340000)

48

(initialized to zero)

Nikhil Hegde

CS601

• Computer programs think and live in terms of
memory locations

• Addresses in computer programs are just
numbers identifying memory locations

• A program navigates by visiting one address
after another

Addresses

49Nikhil Hegde

CS601

• Humans are not good at remembering
numerical addresses.

what are the GPS coordinates (latitude and longitude)
of your residence?

• We (humans) choose convenient ways to
identify addresses so that we can give directions
to a program. E.g. Variables

Addresses

50Nikhil Hegde

CS601

• Variables

• Its just a handle to an address / program memory
location

• int x = 7;

• Read x => Read the content at address 0x401C

• Write x=> Write at address 0x401C

7

0x401c
x

Handles to Addresses

51Nikhil Hegde

CS601

