
1

CS601: Software Development for

Scientific Computing
Autumn 2022

Week14 : Some important problems in motifs

of scientific computing

(Minimum weight triangulation, Fast Multipole

Method, Barnes-Hut)

Nikhil Hegde

Course Progress..

• Pic source: the Parallel Computing Laboratory at U.C. Berkeley: A

Research Agenda Based on the Berkeley View (2008)

Nikhil Hegde 2

Seen earlier

Next..

Unstructured Grids

• Motivation:

– E.g. reduce the noise because of air flowing through a

duct, Maintain uniformity in flow (no pressure drop)

• Handle complex geometries

• Refine at region of interest

Nikhil Hegde 3

https://www.math.uci.edu/~chenlong/Papers/Chen.L%3BHolst.M2010.pdf

Unstructured Grids

• Discretize the domain into an optimal set of

triangles (or tetrahedra / simplex)

• Areas: Mesh Generation and Mesh Optimization

1. Fix the location of vertices and optimize OR

2. Fix the vertices’ connectivity and optimize (determine

optimal placement of vertices)

(Optimize based on:

• Sum of edge weights

• Harmonic energy, Distortion energy)

Nikhil Hegde 4

It
e
ra

te

Unstructured Grids – Program

Representation (Examples)

• Option 1:

• Option 2:

• Option 3: 𝐺(𝑉, 𝐸)

Nikhil Hegde 5

Point points[n]; // represents coordinates

int triangles[m][3]; // represents triangles

double x[n], y[n]; // represents coordinates (2D)

int triangles[m][3]; // represents triangles

double x[n], y[n]; // represents vertices/nodes (2D)

int edges[m][2]; // represents edges

Unstructured Grids - Challenges

• Placing the points

– What constitutes inside and what is outside the

domain? Place points only in the interior.

– What should be the distance between points?

– How many points should be there?

• Connecting the points

– What is the best way to create tiles once the points

are placed?

Nikhil Hegde 6

Unstructured Grids - Approaches

• Delaunay Triangulation is the most commonly

used unstructured triangulation method

– Advantage: can automatically give a ‘better’

triangulation (e.g. w.r.t aspect ratio)

– Disadvantage: suitable for convex domain

• Advancing Front Method is another method

– Advantage: suitable for concave domain

– Disadvantage: No prioritization of triangulation

Nikhil Hegde 7

Minimum Weight Triangulation

• Type of divide-and-conquer with two properties:

– Optimal substructure and repeated sub-problems.

2

0 1

3

4

𝐶 𝑖, 𝑗 =

𝑚𝑖 𝑛(𝐶 𝑖, 𝑗 , min
𝑖<𝑘<𝑗

൯𝐶 𝑖, 𝑘 + 𝐶 𝑘, 𝑗 +𝑊 𝑖, 𝑘, 𝑗

0 𝑗 ≤ 𝑖 + 1

𝐺𝑖𝑣𝑒𝑛 𝑊 𝑖, 𝑗, 𝑘

Minimum Weight Triangulation Problem

Objective: Triangulate a polygon such that edges do not intersect AND

sum of edge lengths is minimized

8

Nikhil Hegde 9

Pseudocode and call tree of triangulating a pentagon

(vertices named 0 to 4)

Nikhil Hegde 10

Iterative formulation (note the 2D array representing the

matrix to be computed)

Nikhil Hegde 11

The 2D array is used to compute only the upper triangular

matrix. Cost of polygon (0,1,2,3) is shown.

Further reading/viewing

• https://www.youtube.com/watch?v=lPcBX

4BBW9U

• https://www.youtube.com/watch?v=tWf1z9

i-Org

• https://www.math.uci.edu/~chenlong/Pape

rs/Chen.L%3BHolst.M2010.pdf

Nikhil Hegde 12

https://www.youtube.com/watch?v=lPcBX4BBW9U
https://www.youtube.com/watch?v=tWf1z9i-Org
https://www.math.uci.edu/~chenlong/Papers/Chen.L%3BHolst.M2010.pdf

Particle (Simulation) Methods

• N-Body Simulation – Problem

System of N-bodies (e.g. galaxies, stars, atoms, light rays

etc.) interacting with each other continuously

– Problem:

• Compute force acting on a body due to all other bodies in the

system

• Determine position, velocity, at various times for each body

– Objective:

• Determine the (approximate) evolution of a system of bodies

interacting with each other simultaneously

Nikhil Hegde 13

Particle (Simulation) Methods

• N-Body Simulation - Examples

– Astrophysical simulation: E.g. each body is a

star/galaxy

https://commons.wikimedia.org/w/index.php?title=File

%3AGalaxy_collision.ogv

– Graphics: E.g. each body is a ray of light emanating

from the light source.

https://www.fxguide.com/fxfeatured/brave-new-hair/

• Here each body is a point on a strand of hair

Nikhil Hegde 14

https://commons.wikimedia.org/w/index.php?title=File%3AGalaxy_collision.ogv
https://www.fxguide.com/fxfeatured/brave-new-hair/

N-Body Simulation

• All-pairs Method

– Naïve approach. Compute all pair-wise interactions

• Hierarchical Methods

– Optimize. Reduce the number of pair-wise force

calculations. How? dependence on ‘distant’ particle(s)

can be compressed

– Examples:

• Barnes-Hut

• Fast Multipole Method

Nikhil Hegde 15

N-Body Simulation

• Three fundamental simulation approaches
– Particle-Particle (PP)

– Particle-Mesh (PM)

– Particle-Particle-Particle-Mesh (P3M)

• Hybrid approaches
– Nested Grid Particle Scheme

– Tree Codes

– Tree Code Particle Mesh (TPM)

• Self Consistent Field (SCF), Smoothed-Particle

Hydrodynamics (SPH), Symplectic etc.
Nikhil Hegde 16

Particle-Particle method

• Simplest. Adopts an all-pairs approach.

• State of the system at time t given by particle

positions xi(t) and velocity vi(t) for i=1 to N

{𝑥𝑖 𝑡 , 𝑣𝑖 𝑡 ; 𝑖 = 1, 𝑁}

– Steps:

1. Compute forces

2. Integrate equations of motion

3. Update time counter

Each iteration updates xi(t) and vi(t) to compute

xi(t+ Δt) and vi(t + Δt)

Nikhil Hegde 17

Particle-Particle Method

1. Compute forces

Typically: Fi = Fexternal + Fnearest_neighbor+ FN-Body

Nikhil Hegde 18

//initialize forces
for i=1 to N

Fi = 0

//Accumulate forces
for i=1 to N-1

for j=i+1 to N
Fi = Fi + Fij
Fj = Fj - Fij

Fij is the force on particle i due to particle j

Particle-Particle Method

2. Integrate equations of motion

3. Update time counter

Nikhil Hegde 19

for i=1 to N

𝑣𝑖
𝑛𝑒𝑤 = 𝑣𝑖

𝑜𝑙𝑑 +
𝐹𝑖

𝑚𝑖
Δ𝑡 //using a=F/m and v=u+at

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖

𝑜𝑙𝑑 + 𝑣𝑖 Δ𝑡

𝑡𝑛𝑒𝑤 = 𝑡𝑜𝑙𝑑 + Δ𝑡

Particle-Particle Method

Nikhil Hegde 20

t=0
while(t<tfinal) {
//initialize forces

for i=1 to N
Fi = 0

//Accumulate forces
for i=1 to N-1

for j=i+1 to N
F[i] = F[i] + Fij
F[j] = F[j] - Fij

//Integrate equations of motion
for i=1 to N

𝑣𝑖
𝑛𝑒𝑤 = 𝑣𝑖

𝑜𝑙𝑑 +
𝐹𝑖

𝑚𝑖
Δ𝑡 //using a=F/m and v=u+at

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖

𝑜𝑙𝑑 + 𝑣𝑖 Δ𝑡
// Update time counter

t = t + Δ𝑡
}

Particle-Particle Method

• Costs (CPU operations)?

Nikhil Hegde 21

t=0
while(t<tfinal) {
//initialize forces

for i=1 to N
Fi = 0

//Accumulate forces
for i=1 to N-1
for j=i+1 to N
F[i] = F[i] + Fij
F[j] = F[j] - Fij

//Integrate equations of motion
for i=1 to N

𝑣𝑖
𝑛𝑒𝑤 = 𝑣𝑖

𝑜𝑙𝑑 +
𝐹𝑖

𝑚𝑖
Δ𝑡 //using a=F/m and v=u+at

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖

𝑜𝑙𝑑 + 𝑣𝑖 Δ𝑡
// Update time counter

t = t + Δ𝑡
}

Particle-Particle Method

• Experimental results (then):

– Intel Delta = 1992 supercomputer, 512 Intel i860s

– 17 million particles, 600 time steps, 24 hours elapsed time

M. Warren and J. Salmon

Gordon Bell Prize at Supercomputing 1992

– Sustained 5.2 Gigaflops = 44K Flops/particle/time step

– 1% accuracy

– Direct method (17 Flops/particle/time step) at 5.2 Gflops would have

taken 18 years, 6570 times longer

22
Courtesy: CS267 Lecture 24 https://sites.google.com/lbl.gov/cs267-spr2019/

Nikhil Hegde

https://sites.google.com/lbl.gov/cs267-spr2019/

Particle-Particle Method

• Experimental results (now):

Vortex particle simulation of turbulence

– Cluster of 256 NVIDIA GeForce 8800 GPUs

– 16.8 million particles

• T. Hamada, R. Yokota, K. Nitadori. T. Narumi, K. Yasoki et al

• Gordon Bell Prize for Price/Performance at Supercomputing

2009

– Sustained 20 Teraflops, or $8/Gigaflop

Nikhil Hegde 23
Courtesy: CS267 Lecture 24 https://sites.google.com/lbl.gov/cs267-spr2019/

https://sites.google.com/lbl.gov/cs267-spr2019/

Particle-Particle (PP) Method

• Discussion

– Simple/trivial to program

– High computational cost

• Useful when number of particles are small (few thousands) and

• We are interested in close-range dynamics when the particles in

the range contribute significantly to forces

• Constant time step must be replaced with variable time steps

and numerical integration schemes for close-range interactions

Nikhil Hegde 24

N-Body Simulation

• All-pairs Method

– Naïve approach. Compute all pair-wise interactions

• Hierarchical Methods

– Optimize. Reduce the number of pair-wise force

calculations. How? dependence on ‘distant’ particle(s)

can be compressed

– Examples:

• Barnes-Hut

• Fast Multipole Method

Nikhil Hegde 25

Tree Codes

Fi = Fexternal + Fnearest_neighbor+ FN-Body
• Fexternal can be computed for each body independently. O(N)

• Fnearest_neighbor involve computations corresponding to few

nearest neighbors. O(N)

• FN-Body require all-to-all computations. Most expensive. O(N2)

if computed using all-pairs approach.

for(i = 1 to N)

𝐹𝑖 = σ𝑖≠𝑗 𝐹𝑖𝑗 Fij= force on i from j

Nikhil Hegde 26We can do better.

𝐹𝑖𝑗 =c*v/||v||3 in 3D, 𝐹𝑖𝑗 = c*v/||v||2 in 2D

v = vector from particle i to particle j , ||v|| = length

of v, c = product of masses or charges

Tree Codes: Divide-Conquer Approach

• Consider computing force on earth due to all celestial bodies

➢ Look at the night sky. Number of terms in σ𝑖≠𝑗 𝐹𝑖𝑗 is greater than the

number of visible stars

➢ One “star” could really be the Andromeda galaxy, which contains

billions of real stars. Seems like a lot more work than we thought …

– Idea: Ok to approximate all stars in Andromeda by a single point at its

center of mass (CM) with same total mass (TM)

– Require that D/r be “small enough” (D = size of box containing Andromeda , r

= distance of CM to Earth).
27

Slide contents based on: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Nikhil HegdeIdea is not new. Newton approximated earth and falling apple by CM

https://sites.google.com/lbl.gov/cs267-spr2019/

Tree Codes: Divide-Conquer Approach

– If you are in Andromeda, Milky Way

(the galaxy we are part of) could

appear like a white dot. So, can be

approximated by a point mass.

– Within Andromeda, picture repeats

itself
• As long as D1/r1 is small enough,

stars inside smaller box can be

replaced by their CM to compute

the force on Vulcan

• If you are on Vulcan, another solar

system in Andromeda can be a

white dot.

• Boxes nest in boxes recursively

28

Slide contents based on: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Nikhil Hegde

• New idea: recursively divide the box.

https://sites.google.com/lbl.gov/cs267-spr2019/

Tree Codes: Divide-Conquer Approach

29Nikhil Hegde

• Data structures needed:

– Quad-trees

– Octrees

Background – metric trees

A

B

C

D

E
F

G

2-dimensional space of points

G

FEA C

B D

Binary kd-tree, 1 point /leaf cell

e.g. K-dimensional (kd-), Vantage Point (vp-), quad-trees, octrees, ball-

trees

X

Y

30Nikhil Hegde

G

31

Background - metric trees

Typical use: traverse the tree (often repeatedly), truncate

the traversal at some intermediate node if a domain-

specific criteria is not met.

Cost ???

N21

E.g. Does the distance

from CM to me < D/r?
Input points = {1, 2, … , N} ℝK

Kd-tree

FEA C

B D

Nikhil Hegde

• Data structure to subdivide the plane

– Nodes can contain coordinates of center of box, side

length.

– Eventually also coordinates of CM, total mass, etc.

• In a complete quad tree, each non-leaf node has 4 children

32

Quad Tree

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Nikhil Hegde

https://sites.google.com/lbl.gov/cs267-spr2019/

• Similar data structure for subdividing 3D space

33

Octree or Oct Tree

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Nikhil Hegde

https://sites.google.com/lbl.gov/cs267-spr2019/

• Begin by constructing a tree to hold all the

particles

– Interesting cases have nonuniformly distributed particles

– In a complete tree most nodes would be empty, a waste

of space and time

– Adaptive Quad (Oct) Tree only subdivides space where

particles are located

• For each particle, traverse the tree to compute

force on it

34

Using Quad Tree and Octree

Slide contents based on: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Nikhil Hegde

https://sites.google.com/lbl.gov/cs267-spr2019/

• In practice, have q>1 particles/square; tuning

parameter (code to build data structure on hidden slide)
35

Using Quad Tree and Octree

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Child nodes enumerated counterclockwise

from SW corner, empty ones excluded

Nikhil Hegde

https://sites.google.com/lbl.gov/cs267-spr2019/

Adaptive Quad Tree

X

Y

36Nikhil Hegde

• In practice, #particles/square > 1. tuning

parameter

• Child nodes numbered as per Z-order

numbering

37

Adaptive Quad Tree Construction

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Procedure Quad_Tree_Build

Quad_Tree = {emtpy}

for j = 1 to N … loop over all N particles

Quad_Tree_Insert(j, root) … insert particle j in QuadTree

endfor

… At this point, each leaf of Quad_Tree will have 0 or 1 particles

… There will be 0 particles when some sibling has 1

Traverse the Quad_Tree eliminating empty leaves … via, say Breadth First Search

Procedure Quad_Tree_Insert(j, n) … Try to insert particle j at node n in Quad_Tree

if n an internal node … n has 4 children

- determine which child c of node n contains particle j

- Quad_Tree_Insert(j, c)

else if n contains 1 particle … n is a leaf

- add n’s 4 children to the Quad_Tree

- move the particle already in n into the child containing it

- let c be the child of n containing j

- Quad_Tree_Insert(j, c)

else … n empty

- store particle j in node n

endNikhil Hegde

https://sites.google.com/lbl.gov/cs267-spr2019/

38

Adaptive Quad Tree Construction –

Cost?

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Procedure Quad_Tree_Build

Quad_Tree = {emtpy}

for j = 1 to N … loop over all N particles

Quad_Tree_Insert(j, root) … insert particle j in QuadTree

endfor

… At this point, each leaf of Quad_Tree will have 0 or 1 particles

… There will be 0 particles when some sibling has 1

Traverse the Quad_Tree eliminating empty leaves … via, say Breadth First Search

Procedure Quad_Tree_Insert(j, n) … Try to insert particle j at node n in Quad_Tree

if n an internal node … n has 4 children

- determine which child c of node n contains particle j

- Quad_Tree_Insert(j, c)

else if n contains 1 particle … n is a leaf

- add n’s 4 children to the Quad_Tree

- move the particle already in n into the child containing it

- let c be the child of n containing j

- Quad_Tree_Insert(j, c)

else … n empty

- store particle j in node n

end

≤ N *max cost of Quad_Tree_Insert

≤ max depth of Quad Tree

https://sites.google.com/lbl.gov/cs267-spr2019/

Adaptive Quad Tree Construction –

Cost?

• Max Depth of Tree:

– For uniformly distributed points?

– For arbitrarily distributed points?

• Total Cost = ?

Nikhil Hegde 39

Adaptive Quad Tree Construction –

Cost?

• Max Depth of Tree:

– For uniformly distributed points? = O(log N)

– For arbitrarily distributed points? = O(bN)

• b is number bits used to represent the coordinates

• Total Cost = Ο(b N) or Ο(N ∗ log N)

Nikhil Hegde 40

Barnes-Hut

• Simplest hierarchical method for N-Body

simulation
– "A Hierarchical O(n log n) force calculation algorithm" by J. Barnes and P. Hut,

Nature, v. 324, December 1986

• Widely used in astrophysics

• Accuracy ≥ 1% (good when low accuracy is

desired/acceptable. Often the case in astrophysics simulations.)

Nikhil Hegde 41

Barnes-Hut: Algorithm

(2D for simplicity)

42

1) Build the QuadTree using QuadTreeBuild

… already described, cost = O(N log N) or O(b N)

2) For each node/subsquare in the QuadTree, compute the

Center of Mass (CM) and total mass (TM) of all the particles it contains.

3) For each particle, traverse the QuadTree to compute the force on it,

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

https://sites.google.com/lbl.gov/cs267-spr2019/

Barnes-Hut: Algorithm (step 2)

43

Slide based on : CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Goal: Compute the Center of Mass (CM) and Total Mass (TM) of all the
particles in each node of the QuadTree. (TM, CM) = Compute_Mass(root)

(TM, CM) = Compute_Mass(n) //compute the CM and TM of node n

if n contains 1 particle
//TM and CM are identical to the particle’s mass and location
store (TM, CM) at n
return (TM, CM)

else
for each child c(j) of n //j = 1,2,3,4

(TM(j), CM(j)) = Compute_Mass(c(j))
endfor
TM = TM(1) + TM(2) + TM(3) + TM(4)
//the total mass is the sum of the children’s masses
CM = (TM(1)*CM(1) + TM(2)*CM(2) + TM(3)*CM(3) + TM(4)*CM(4)) / TM
//the CM is the mass-weighted sum of the children’s centers of mass
store (TM, CM) at n
return (TM, CM)

end if

https://sites.google.com/lbl.gov/cs267-spr2019/

Barnes-Hut: Algorithm (step 2 cost)

(2D for simplicity)

44

1) Build the QuadTree using QuadTreeBuild

… already described, cost = O(N log N) or O(b N)

2) For each node/subsquare in the QuadTree, compute the

Center of Mass (CM) and total mass (TM) of all the particles it contains.

… cost = O(number of nodes in the tree) = O(N log N) or O(b N)

3) For each particle, traverse the QuadTree to compute the force on it,

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

https://sites.google.com/lbl.gov/cs267-spr2019/

Barnes-Hut: Algorithm (step 3)

45

Slide based on : CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Goal: Compute the force on each particle by traversing the tree. For each

particle, use as few nodes as possible to compute force, subject to accuracy constraint.

• For each node = square, can approximate force on particles outside the

node due to particles inside node by using the node’s CM and TM

• This will be accurate enough if the node if “far away enough” from the

particle

• Need criterion to decide if a node is far enough from a particle

– D = side length of node

– r = distance from particle to CM of node

• q = user supplied error tolerance < 1

– Use CM and TM to approximate force of node on box if D/r < q

https://sites.google.com/lbl.gov/cs267-spr2019/

Barnes-Hut: Algorithm (step 3)

46

Slide based on : CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

function f = TreeForce(k, n)
//compute force on particle k due to all particles inside node n (except k)
f = 0
if n contains one particle (not k) //evaluate directly

return f = force computed using direct formula
else

r = distance from particle k to CM of particles in n
D = size of n
if D/r < q //ok to approximate by CM and TM

return f = computed approximately using CM and TM
else //need to look inside node

for each child c(j) of n //j=1,2,3,4
f = f + TreeForce (k, c(j))

end for
return f

end if
end if

//for each particle, traverse the QuadTree to compute the force on it
for k = 1 to N

f(k) = TreeForce(k, root)
//compute force on particle k due to all particles inside root (except k)

endfor

https://sites.google.com/lbl.gov/cs267-spr2019/

Barnes-Hut: step 3 example

X

Y

47Nikhil Hegde

• Example: Assume 𝜃 ≥ 1. In practice 𝜃 < 1.

Point 1

Point 1: is 𝐷/𝑟 < 𝜃 ?

𝐷

𝐷
assume: (TM, CM)

𝑟
No. Compute force due to each
child of the root node (i.e.
particles in each quadrant of
the square). Start with child
1: c(1).

What is the force on Point 1 due to all
other points in the box with black-boundary?

Barnes-Hut: step 3 example

X

Y

48Nikhil Hegde

• Example: Assume 𝜃 ≥ 1. In practice 𝜃 < 1.

Point 1

Point 1: is 𝐷/𝑟 < 𝜃 ?

𝐷

𝐷

assume: (TM, CM)

𝑟
Yes. Approximate force due to
each particle contained in the
black-boundary box by the TM
and CM of the box.

What is the force on Point 1 due to all
other points in the box with black-boundary?

Barnes-Hut: step 3 example

X

Y

49Nikhil Hegde

• Example: Assume 𝜃 ≥ 1. In practice 𝜃 < 1.

Point 1

Point 1: is 𝐷/𝑟 < 𝜃 ?

𝐷

𝐷

assume: (TM, CM)

𝑟 Yes. Approximate force due to
each particle contained in the
black-boundary box by the TM
and CM of the box.

What is the force on Point 1 due to all
other points in the box with black-boundary?

Barnes-Hut: step 3 example

X

Y

50Nikhil Hegde

• Example: Assume 𝜃 ≥ 1. In practice 𝜃 < 1.

Point 1

Point 1: is 𝐷/𝑟 < 𝜃 ?

𝐷
𝐷

(TM, CM)

𝑟
Contains 1 particle / leaf
node. Compute force using
direct formula.

What is the force on Point 1 due to all
other points in the box with black-boundary?

Barnes-Hut: step 3 example

X

Y

51Nikhil Hegde

• Example: Assume 𝜃 ≥ 1. In practice 𝜃 < 1.

Point 2

Point 2: is 𝐷/𝑟 < 𝜃 ?

𝐷

𝐷

assume: (TM, CM)
𝑟

Traverse the tree for particle 2.

What is the force on Point 2 due to all
other points in the box with black-boundary?

Barnes-Hut: Algorithm (step 3 cost)

52

Slide based on : CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

• Correctness follows from recursive accumulation

of force from each subtree

– Each particle is accounted for exactly once, whether it

is in a leaf or other node

• Complexity analysis

– Cost of TreeForce(k, root) = O(depth of leaf

containing k in the QuadTree)

– Proof by Example (for q>1):

• For each undivided node = square, (except

one containing k), D/r < 1 < q

• There are at most 3 undivided nodes at each

level of the QuadTree.

–There is O(1) work per node

–Cost = O(level of k)

Total cost = O(Sk level of k) = O(N log N)

Strongly depends on q

https://sites.google.com/lbl.gov/cs267-spr2019/

Barnes-Hut: Algorithm (step 3 cost)

(2D for simplicity)

53

1) Build the QuadTree using QuadTreeBuild

… already described, cost = O(N log N) or O(b N)

2) For each node/subsquare in the QuadTree, compute the

Center of Mass (CM) and total mass (TM) of all the particles it contains.

… cost = O(number of nodes in the tree) = O(N log N) or O(b N)

3) For each particle, traverse the QuadTree to compute the force on it,

… cost depends on accuracy desired (𝜃) but still

O(N log N) or O(bN)

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

https://sites.google.com/lbl.gov/cs267-spr2019/

N-Body Simulation: Big Picture

• Recall:

Nikhil Hegde 54

t=0
while(t<tfinal) {
//initialize forces

//Accumulate forces
BH(steps 1 to 3)

//Integrate equations of motion

//Update time counter
t = t + Δ𝑡

}

Fast Multipole Method (FMM)

• Can we make the complexity independent of the accuracy

parameter (𝜃) ? FMM achieves this.
– "Rapid Solution of Integral Equations of Classical Potential Theory", V. Rokhlin, J.

Comp. Phys. v. 60, 1985 and

– "A Fast Algorithm for Particle Simulations", L. Greengard and V. Rokhlin, J.

Comp. Phys. v. 73, 1987.

• Similar to BH:
– uses QuadTree and the divide-conquer paradigm

• Different from BH:
– Uses more than TM and CM information in a box. So, computation

is expensive and accurate than BH.

– The number of boxes evaluated is fixed for a given accuracy

parameter

– Computes potential and not the Force as in BH

55Nikhil Hegde

Background: Potential

• Force on a particle at (𝑥, 𝑦, 𝑧) due to a particle at origin

∝ −
𝑥,𝑦,𝑧

𝑟3
(This is called inverse-square law. Gravitational and

electrostatic forces obey this.) where, 𝑟 = 𝑥2 + 𝑦2 + 𝑧2

• Force is a vector. Potential is a scalar. Hence, potential is

simple to deal with.

Potential Φ 𝑥, 𝑦, 𝑧 = −
1

𝑟

• Negative of the gradient of potential = force

−∇Φ 𝑥, 𝑦, 𝑧 = −
𝑑

𝑑𝑥
−

1

𝑟
,
𝑑

𝑑𝑦
−

1

𝑟
,
𝑑

𝑑𝑧
−

1

𝑟

56Nikhil Hegde

Background: Potential

• In 2D, potential Φ 𝑥, 𝑦 = log 𝑟

• Suppose we have N points (at 𝑧1, 𝑧2, … , 𝑧𝑁, where 𝑧𝑖 =
(𝑥𝑖 , 𝑦𝑖)) in a plane with masses 𝑚1, 𝑚2, … ,𝑚𝑁 resp.

then, their potential at 𝑧 = (𝑥, 𝑦) is given by:

Φ 𝑥, 𝑦 =

𝑖=1

𝑁

𝑚𝑖 log 𝑥 − 𝑥𝑖
2 + 𝑦 − 𝑦𝑖

2

57Nikhil Hegde

Goal: evaluate Φ 𝑥, 𝑦 and its derivatives at N points

(𝑧1, 𝑧2, … , 𝑧𝑁) in O(N) time.

FMM Algorithm

Nikhil Hegde 58

1. Build the quadtree containing all the points.
2. Traverse the quadtree from bottom to top,

computing Outer(n) for each square n in the
tree.

3. Traverse the quadtree from top to bottom,
computing Inner(n) for each square in the
tree.

4. For each leaf, add the contributions of
nearest neighbors and particles in the leaf
to Inner(n)

what is Outer(n) and Inner(n) ?

Well Separated Regions

• Compute the influence of all particles in source region (B)

on every particle in target region (A)

(assumption: A and B are well-separated)

• At each point 𝑝𝑖 in A, compute potential:

Φ 𝑥𝑖 , 𝑦𝑖 = σ𝑝𝑗∈𝐵
𝑚𝑖log |𝑝𝑖 − 𝑝𝑗|

𝑖 = 1 𝑡𝑜 𝑁𝐴, 𝑗 = 1 𝑡𝑜 𝑁𝐵
• Cost: 𝑂(𝑁𝐴𝑁𝐵)

59Nikhil Hegde

AB

Well Separated Regions

• Approximate the potential at every particle in target region

(A) by the potential at CA

• Cost: 𝑂(𝑁𝐴+𝑁𝐵)
60Nikhil Hegde

AB

CB CA

𝑚𝐵 =

𝑝𝑗∈𝐵

𝑚𝑗

Φ 𝑥𝐶𝐴, 𝑦𝐶𝐴 = 𝑚𝐵log |𝐶𝐴 − 𝐶𝐵|

Φ 𝑥𝑖 , 𝑦𝑖 = Φ 𝑥𝐶𝐴, 𝑦𝐶𝐴

We have seen this idea before while looking at BH

Hierarchical Decomposition

• In N-body simulation, every point serves as source as well

as target. How to identify source, target, well-separated

regions?

– Partition the space recursively till every leaf box contains O(1)

number of points

61Nikhil Hegde

FMM Algorithm

Nikhil Hegde 62

1. Build the quadtree containing all the points.
2. Traverse the quadtree from bottom to top,

computing Outer(n) for each square n in the
tree.

3. Traverse the quadtree from top to bottom,
computing Inner(n) for each square in the
tree.

4. For each leaf, add the contributions of
nearest neighbors and particles in the leaf
to Inner(n)

what is Outer(n) and Inner(n) ?

Well Separated Regions

• Compute the influence of all particles in source region (B)

on every particle in target region (A)

(assumption: A and B are well-separated)

• At each point 𝑝𝑖 in A, compute potential:

Φ 𝑥𝑖 , 𝑦𝑖 = σ𝑝𝑗∈𝐵
𝑚𝑖log |𝑝𝑖 − 𝑝𝑗|

𝑖 = 1 𝑡𝑜 𝑁𝐴, 𝑗 = 1 𝑡𝑜 𝑁𝐵
• Cost: 𝑂(𝑁𝐴𝑁𝐵)

63Nikhil Hegde

AB

Well Separated Regions

• Compute the influence of all particles in source region (B)

on every particle in target region (A)

Φ 𝑥𝑝𝑖 , 𝑦𝑝𝑖 = σ𝑝𝑗∈𝐵
𝑚𝑖log |𝑝𝑖 − 𝑝𝑗| , 𝑝𝑖 ∈ 𝐴

64Nikhil Hegde

AB

CACB

𝑚𝐵 =

𝑝𝑗∈𝐵

𝑚𝑗

Φ 𝑥𝐶𝐴, 𝑦𝐶𝐴 = 𝑚𝐵log |𝐶𝐴 − 𝐶𝐵|

Φ 𝑥𝑖 , 𝑦𝑖 = Φ 𝑥𝐶𝐴, 𝑦𝐶𝐴

Applying the 3-step Approximation

• In N-body simulation every point serves as source as well

as target.

How to identify source and target (boxes A and B in

previous slide) i.e. well-separated regions?

Hierarchical decomposition

65Nikhil Hegde

Hierarchical Decomposition

• Level-0 decomposition

• Level-1 decomposition

66Nikhil Hegde

A

A B

C D

Hierarchical Decomposition

• Level-2 decomposition

67Nikhil Hegde

B

A1

A2

A3

A4A5A6A7

Well-separated from B

Can approximate the influence

of points in B on points in Ai s

What do we do about B’s influence on Ni s?

N1 N2 N3

N4 N5

N6 N7 N8

B

Hierarchical Decomposition

• Level-3 decomposition

68Nikhil Hegde

B

A1

A2

A3

A4A5A6A7

Influence of points in Bi s on those in Ai s

already computed at the previous level

(level-2)

N1 N2 N3

N4 N5

N6 N7 N8

B1 B2

B3 B4

Hierarchical Decomposition

• Level-3 decomposition

69Nikhil Hegde

B

A1

A2

A3

A4A5A6A7

Influence of points in Bi s on those in Ai s

already computed at the previous level

(level-2)

N1 N2 N3

N4 N5

N6 N7 N8

B1 B2

B3 B4

n1 n2

n3 n4

n5 n6

n7 n8

n9 n10

n11 n12

n13 n14

n15 n16

n17 n18

n19 n20n21 n22 n23 n24

n25

n26

n27

Well-separated from B4

Influence of B4’s points on nx’s

points can be approximated

What is the max size of interaction list? i.e. max

number of nx s that we can have for any Bi?

nx’s constitute the interaction list for B4.

Hierarchical Decomposition

• Level-3 decomposition

70Nikhil Hegde

B

A1

A2

A3

A4A5A6A7

Influence of points in Bi s on those in Ai s

already computed at the previous level

(level-2)

N1 N2 N3

N4 N5

N6 N7 N8

B1 B2

B3 B4

n1 n2

n3 n4

n5 n6

n7 n8

n9 n10

n11 n12

n13 n14

n15 n16

n17 n18

n19 n20n21 n22 n23 n24

n25

n26

n27

Well-separated from B4

Influence of B4’s points on nx’s

points can be approximated

What do we do about B4’s influence on its neighbors

(white/unshaded boxes)?

Hierarchical Decomposition

• Level-4 decomposition

71Nikhil Hegde

B

A1

A2

A3

A4A5A6A7

Any unshaded box outside can be the

target for computing the influence of points

in (source)

B1 B2

B3 B4

1. Computing Potential for Well-

Separated Regions

1. for level L=2 to last_level

2. for each Box B at level L

3. iList = GetInteractionList(B)

4. for each well-separated box A in iList

//Compute potential

5. potential = 𝑚𝐵log |𝐶𝐴 − 𝐶𝐵|

//Accumulate potential

6. Φ 𝑥𝐶𝐴, 𝑦𝐶𝐴 +=potential

Cost?

72Nikhil Hegde

1. Computing Potential for Well-

Separated Regions

1. for level L=2 to last_level

2. for each Box B at level L

3. iList = GetInteractionList(B)

4. for each well-separated box A in iList

//Compute potential

5. potential = 𝑚𝐵log |𝐶𝐴 − 𝐶𝐵|

//Accumulate potential

6. Φ 𝑥𝐶𝐴, 𝑦𝐶𝐴 +=potential

Prereqs: we need mB, CA, CB details. (step 0)

73Nikhil Hegde

2. Assigning Potential to Points

1. for each Box A at level L=0 to last_level

2. Φ𝑝𝑖 = Φ𝑝𝑖 +Φ𝐶𝐴 (where 𝑝𝑖 ∈ 𝐴 and 𝐶𝐴 is A’s CM)

Cost?

74Nikhil Hegde

3. Assigning Potential to Points (last

level)

1. for each Box B at last_level

2. Φ𝑝𝑖 = Φ𝑝𝑖 +σ𝑝𝑗∈𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝐵)
𝑚𝐵log |𝑝𝑖 − 𝑝𝑗| (where

𝑝𝑖 ∈ 𝐵)

Cost?

75Nikhil Hegde

0. Computing Prereqs

1. for each Box B at level L=0 to last_level

2. 𝑚𝐵 = σ𝑝𝑗∈𝐵
𝑚𝑗

3. //similarly compute CB

Cost?

76Nikhil Hegde

Total Cost (steps 0 + 1 + 2 + 3)

O(N log N) + O (N) + O(N log N) + O(N)

Can we do better?

77Nikhil Hegde

0’. Computing Prereqs

• Traverse the tree bottom up instead of top-down

for each Box B starting from last_level to L=0

if B is a leaf box

𝑚𝐵 = σ𝑝𝑗∈𝐵
𝑚𝑗

else

𝑚𝐵 = 𝑚𝐵1 +𝑚𝐵2 +𝑚𝐵3 +𝑚𝐵4

//B1-B4 are children of B

Cost?

78Nikhil Hegde

2’. Assigning Potential to Points

1. for each Box A at level L=0 to last_level

2. if A is a leaf box

Φ𝑝𝑖 = Φ𝑝𝑖 +Φ𝐶𝐴 (where 𝑝𝑖 ∈ 𝐴 and 𝐶𝐴 is A’s CM)

else

Φ𝐴1 = Φ𝐴1 +Φ𝐴

Φ𝐴2 = Φ𝐴2 +Φ𝐴

Φ𝐴3 = Φ𝐴3 +Φ𝐴

Φ𝐴4 = Φ𝐴4 +Φ𝐴

//A1-A4 are children of A

Cost?

79Nikhil Hegde

Total Cost (steps 0’ + 1 + 2’ + 3)

O(N) + O (N) + O(N) + O(N)

Problem: low accuracy if source (A) and target (B) are not far

away from each other

Solution: more accurate representations for 𝑚𝐵 and

Φ 𝑥𝐶𝐴, 𝑦𝐶𝐴

80Nikhil Hegde

Multipole expansion

• Like a Taylor series expansion that is accurate when 𝑥2 +
𝑦2 is large (𝑥, 𝑦 are cartesian coordinates of the point)

• For a quadtree box B centered at 𝑥𝐶𝐵, 𝑦𝐶𝐵 , we compute

and store the terms:

81Nikhil Hegde

B

CB 𝑥𝐶𝐵, 𝑦𝐶𝐵

{𝒎𝑩, 𝜶𝟏, 𝜶𝟐, . . . , 𝜶𝒑, 𝒛𝑪𝑩}

𝛼𝑗 =

𝑖=1

𝑁𝐵

𝑚𝑖

𝑧𝑖
𝑗

𝑗

𝑧𝑖means 𝑧𝑖 = |(𝑥𝑖 , 𝑦𝑖)|

Multipole expansion

• We approximate the potential at point z due to B by:

• Because is used to compute

potential outside B, it is called outer expansion
82Nikhil Hegde

Φ 𝑥𝑧, 𝑦𝑧 = 𝑚𝐵 log 𝑧 − 𝐶𝐵 +
𝛼1

𝑧 − 𝐶𝐵
+

𝛼2
𝑧 − 𝐶𝐵

2
+

. . .
+
𝛼𝑝

𝑧 − 𝐶𝐵
𝑝

CB

z

B

{𝒎𝑩, 𝜶𝟏, 𝜶𝟐, . . . , 𝜶𝒑, 𝒛𝑪𝑩}

Multipole expansion

• Similarly, we have the inner expansion

for computing the potential inside the Box due to all other

points outside the box

• Computing outer expansions starts from leaf nodes and

proceeds upwards in the tree.

• Computing inner expansions starts from root node and

proceeds downwards in the tree.

83Nikhil Hegde

{𝑚𝐵, 𝛽1, 𝛽2, . . . , 𝛽𝑝, 𝑧𝐶𝐵}

3-Step Approximation (accurate)

84Nikhil Hegde

AB

CACB

𝑂(𝑝𝑁𝐵)

𝑂(𝑝2)

𝑂(𝑝𝑁𝐴)

FMM Algorithm

Nikhil Hegde 85

1. Build the quadtree containing all the points.
2. Traverse the quadtree from bottom to top,

computing Outer(n) for each square n in the
tree.

3. Traverse the quadtree from top to bottom,
computing Inner(n) for each square in the
tree.

4. For each leaf, add the contributions of
nearest neighbors and particles in the leaf
to Inner(n)

Multipole expansion

• How to obtain the expression for alpha, beta ?

• What is the value of p?

• How to compute alpha and beta?

• Further reading:

86Nikhil Hegde

https://people.eecs.berkeley.edu/~demmel/cs267/lecture27/lecture27.html

https://people.eecs.berkeley.edu/~demmel/cs267/lecture27/lecture27.html

