
1

CS601: Software Development for

Scientific Computing
Autumn 2022

Week13 (3/11/22): Program Representation

(Grids)

Nikhil Hegde

Program Representation – Structured

Grids

• Grid requirements:
– Grid dimension shall not be hardcoded

• Consequence: implementations must define a compile-time
constant

– Grid step size shall not be hardcoded E.g. h=1/3, h=1/5 etc.
• Consequence: can’t define int arr[m][n]; //m,n to be constant expr.

– A grid point shall be identified with cartesian coordinates /
polar coordinates (e.g. with angle and radius from origin)

• Shall be able to generate a structured grid given number of points,
xi, and eta.

– Shall allow access to any grid point

– Shall allow for implementation of grid operators

2Nikhil Hegde

Structured Grids - Representation

• Because of regular connectivity between cells

– Cells can be identified with indices (x,y) or (x,y,z) and

neighboring cell info can be obtained.

– How about identifying a cell here?

3

Given:

𝜉 = (“Xi”) radius

𝜂 = (“Eta”) angle

Compute:

x =
1

2
+ 𝜉 cos 𝜋𝜂

y =
1

2
+ 𝜉 sin(𝜋𝜂)Nikhil Hegde

class Domain

• We discretize the domain using a grid

Nikhil Hegde 4

class Domain{
public:

generate_grid(int m, int n);
Domain(); // constructor
//...

private:
//...

};

Method GenerateGrid

• What is the shortcoming of the following method?

• Assumes a 2D grid.
Nikhil Hegde 5

void Domain::GenerateGrid(int m, int n) {
if (m <=0 || n<=0)

throw std::invalid_argument(“ERR_generate_grid”);
else if(m > 0) {

//there already exists a grid! Attempt to create a grid again
delete [] x; delete [] y;

}
xlen=m;ylen=n; // initialize members
x=new double[xlen*ylen]; y=new double[xlen*ylen];

}

Grid Function

• We let a grid function to operate on the grid points

– Example of an operator: numerical differentiation

– Different operations possible

– Note: grid function always operates on some grid.

– Many functions may operate on the same grid.

Nikhil Hegde 6

class GridFn{
public:

//...
private:

Domain* d; //denotes aggregation relationship
//...

};

Detour: Relationships among Classes

• Dependencies (“uses”)

• Association / Aggregation (“has a”)

• Generalization (“is a”)

Nikhil Hegde, IIT Dharwad 7

aggregation
association

E.g. Customer uses a MS Word editor
to produce MS Word document

E.g. Apple is a Fruit (Apple and Fruit are
modeled as classes, where Fruit is a super-class
and Apple is a sub-class)

E.g. Every course has a name, credits - aggregation
A student registers for course(s) – association
between student and course

Boundary conditions

• Multiple options: affect the accuracy of the solution

• How to represent boundary conditions?

– Create a separate Solution class

Nikhil Hegde 8

Dirichlet

(essential)

𝑢 Fixed

temperature

Neumann

(Natural)

𝜕𝑢/𝜕𝑛 Energy Flow

Robin (Mixed) 𝜕𝑢/𝜕𝑛 + 𝑓(𝑢) Temperature

dependent flow

Name InterpretationPrescription

Solution

• pseudo-code

Nikhil Hegde 9

Domain dom; // create domain
GridFn g(dom); //create grid function to operate on a domain
Solution u(g) //prepare to compute a solution:
u.initcond() //1) set initial conditions
for(int step=0; step<maxsteps; step++) 2) iterate:
{

u.compute(); //2) compute solution repeatedly
}

1

2

3

4

5

6

7

8

class Solution

• We discretize the domain using a grid

Nikhil Hegde 10

class Solution{
public:

Solution(GridFn* d): sol(d) {}
initcond();
boundarycond();
//… other member functions?

private:
GridFn* sol;

};

What is missing?

• Data array?

– We need to make provision for storing the results of

algebraic equations (temperature, displacements,

stress, strain etc.)

• Type of data as template parameter?

– Does the application accept single-precision results?

Double-precision results?

• Operation on subgrids (Box)?

– When a particular grid function is applied only in a

certain region

Nikhil Hegde 11

