
1

CS601: Software Development for

Scientific Computing
Autumn 2022

Week1: Overview

Let us listen to Jack Dongarra

• https://youtu.be/Oe9LRKoE6L0

2

https://youtu.be/Oe9LRKoE6L0

3

Course Takeaways (intended)

• Non-CS majors:

1. Write code and

2. Develop software (not just write standalone code)

• Numerical software

• CS-Majors:

In addition to the above two:

3. Learn to face mathematical equations and

implement them with confidence

4

What is this course about?

Software Development

Scientific Computing

+

5

This course NOT about..

• Software Engineering

• Systematic study of Techniques, Methodology, and

Tools to build correct software within time and

price budget (topics covered in CS305)

• People, Software life cycle and management etc.

• Scientific Computing

• Rigorous exploration of numerical methods, their

analysis, and theories

• Programming models (topics covered in CS410)

6

Who this course is for?

• You are interested in scientific computing

• You are interested in high-performance

computing

• You want to build / add to a large software

system

7

Software Development

• Software development is the process of conceiving,
specifying, designing, programming, documenting,
testing, and bug fixing involved in creating and
maintaining applications, frameworks, or other
software components.

Software development is a process of writing and maintaining the
source code, but in a broader sense, it includes all that is involved
between the conception of the desired software through to the
final manifestation of the software, …

- Wikipedia on “Software Development”

8

Scientific Computing

• Also called computational science

– Development of models to understand systems
(biological, physical, chemical, engineering,
humanities)

Collection of tools, techniques, and theories required to solve
on a computer mathematical models of problems in science and
engineering

9

Why C++ ?

• C/C++/Fortran codes form the majority in

scientific computing codes

• Catch a lot of errors early (e.g. at compile-time

rather than at run-time)

• Has features for object-oriented software

development

• Known to result in codes with better

performance

Let us dive into an example….

10

• n! = n x (n-1) x (n-2) x . . . x 3 x 2 x 1

(n–1)! = (n-1) x (n-2) x . . . x 3 x 2 x 1

therefore,

Definition1: n! = n x (n-1)!

is this definition complete?

• plug 0 to n and the equation breaks.

Example - Factorial

n x (n-1)! when n>=1

1 when n=0
n!=

Definition2:

11

12

Exercise 1

• Does this code implement the definition of

factorial correctly?

int fact(int n){
if(n==0)

return 1;

return n*fact(n-1);

}

Definition2:

is this definition complete?

• n! is not defined for negative n

Example - Factorial

n x (n-1)! when n>=1

1 when n=0
n!=

13

14

Solution - Factorial

int fact(int n){
if(n<0)

return ERROR;
if(n==0)

return 1;

return n*fact(n-1);

}

15

Exercise 2

• In how many flops does the code execute?

assume 1 flop = 1 step executing any arithmetic

operation

int fact(int n){
if(n<0)

return ERROR;
if(n==0)

return 1;

return n*fact(n-1);

}

16

Exercise 3

• Does the code yield correct results for any n?

int fact(int n){
if(n<0)

return ERROR;
if(n==0)

return 1;

return n*fact(n-1);

}

17

Who this course is for?

• Anybody who wishes to develop

“computational thinking”
• A skill necessary for everyone, not just computer

programmers

• An approach to problem solving, designing

systems, and understanding human behavior that

draws on concepts fundamental to computer

science.

18

Computational Thinking -

Examples
• How difficult is the problem to solve? And what is the

best way to solve?

• Modularizing something in anticipation of multiple users

• Prefetching and caching in anticipation of future use

• Thinking recursively

• Reformulating a seemingly difficult problem into one
which we know how to solve by reduction, embedding,
transformation, simulation

– Are approximate solutions accepted?

– False positives and False negatives allowed? etc.

• Using abstraction and decomposition in tackling large
problem

• …

19

Computational Thinking – 2 As

• Abstractions

– Our “mental” tools

– Includes: choosing right abstractions, operating at

multiple layers of abstractions, and defining relationships

among layers

• Automation

– Our “metal” tools that amplify the power of “mental” tools

– Is mechanizing our abstractions, layers, and relationships

• Need precise and exact notations / models for the “computer”

below (“computer” can be human or machine)

20

Computing - 2 As Combined

• Computing is the automation of our abstractions

• Provides us the ability to scale

– Make infeasible problems feasible

• E.g. SHA-1 not safe anymore

– Improve the answer’s precision

• E.g. capture the image of a black-hole

Summary: choose the right abstraction and

computer

21

Recap

• Need to be precise

– recall: n! = 1 for n=0, not defined for negative n

• Choosing right abstractions

– recall: use of recursion, correct data type

• Ability to define the complexity

– recall: flop calculation

• Next?

22

Recap

• Need to be precise

– recall: n! = 1 for n=0, not defined for negative n

• Choosing right abstractions

– recall: use of recursion, correct data type

• Ability to define the complexity

– recall: flop calculation

• Choose the right “computer” for mechanizing the

abstractions chosen

Scientific Software - Characteristics

• The answer is not a typical yes/no, red/blue/green

• The answer varies continuously. Think of computing the

value of pi = 3.141592…

• Uses approximations. Think of discretization

• Employs efficient kernels

– Kernels are core operations that are executed very frequently

• Should be able to adapt to change.

– Writing everything from scratch is not an option

• Deals with large-scale problems

– Lot of input/output data or both

– Computationally hard

23

General Approach to Solving a

Computational Problem

1. Problem statement: more precise this is, the easier it

is to design and implement

2. Solution Algorithm: exactly how is the problem going

to be solved

3. Implementation: breaking the algorithm into

manageable pieces and putting it all together to solve

the problem using a language of choice.

4. Verification: checking that the implementation solves

the original problem.

1. Often most difficult step, because you don’t know the correct

answer.

24

25

Toward Scientific Software

• Necessary Skills:

– Understanding the mathematical problem

– Understanding numerics

– Designing algorithms and data structures

– Selecting language and using libraries and tools

– Verify the correctness of the results

– Quick learning of new programming languages

• E.g. Regent

https://regent-lang.org/

26

Exercise

Compute root(s) of:

x = cos x; x ϵ ℝ

roots, also called zeros, is the value of the

argument/input to the function when the function output
vanishes i.e. becomes zero

27

Mathematical Problem

• let 𝑦 = 𝑓 𝑥

𝑓 𝑥 = cos 𝑥 − 𝑥

• At x = xn , the value of y is 𝑓 𝑥𝑛 . The coordinates of the

point are (xn , 𝑓 𝑥𝑛) = known point.

• From calculus: derivative of a function of single variable

at a chosen input value, when it exists, is the slope of

the tangent to the graph at that input value.

– 𝑓′ 𝑥𝑛 is the slope of the line that is tangent to 𝑓 𝑥 at xn

credit: wikipedia

28

Mathematical Problem

• From high-school math: point-slope formula for equation

of a line

• Substituting with:

– (xn , 𝑓 𝑥𝑛) = known point

– 𝑓′ 𝑥𝑛 = slope

Equation of the tangent line to graph of 𝒇 𝒙 at xn :

y – 𝑓 𝑥𝑛 = 𝑓′ 𝑥𝑛 (x − xn)

y − y1 = m(x − x1),

given the slope m and any known point (x1, y1)

29

Mathematical Problem

• Interested in finding roots i.e. value of x at y=0 i.e. at
point (xnp1, 0).

• Substituting in the equation of the tangent line,

y – 𝑓 𝑥𝑛 = 𝑓′ 𝑥𝑛 (x − xn)

= −𝑓 𝑥𝑛 = 𝑓′ 𝑥𝑛 (xnp1 − xn)

= 𝒙𝒏𝒑𝟏 = 𝒙𝒏 − 𝒇 𝒙𝒏 / 𝒇′ 𝒙𝒏

30

Mathematical Problem

• Visualizing

(source: https://en.wikipedia.org/wiki/Newton’s_method) :

The function f is shown in blue and the tangent line is in

red. We see that xn + 1 is a better approximation than xn

for the root x of the function f.

https://en.wikipedia.org/wiki/Newton’s_method

31

Mathematical Problem

𝒙𝟐 = 𝒙𝟏 − 𝒇 𝒙𝟏 / 𝒇′ 𝒙𝟏
𝒙𝟑 = 𝒙𝟐 − 𝒇 𝒙𝟐 / 𝒇′ 𝒙𝟐
𝒙𝟒 = 𝒙𝟑 − 𝒇 𝒙𝟑 / 𝒇′ 𝒙𝟑
. . .

32

Numerical Analysis

Talk to domain experts

• Choosing the initial value of x

• Does the method converge ?

• What is an acceptable approximation?

• etc.

33

Designing Algorithms and Data

Structures
• Start with x1

𝒙𝟐 = 𝒙𝟏− 𝒇 𝒙𝟏 / 𝒇′ 𝒙𝟏
𝒙𝟑 = 𝒙𝟐− 𝒇 𝒙𝟐 / 𝒇′ 𝒙𝟐
𝒙𝟒 = 𝒙𝟑− 𝒇 𝒙𝟑 / 𝒇′ 𝒙𝟑
. . .

• Repeat for up to maxIterations

• Check for xn+1 – xn to be “sufficiently small”

• Choose appropriate data types for x

34

Selecting libraries and tools

• E.g. use the math library in C++ (cmath)

35

Verify the correctness of results

• Compare with ‘gold’ code / benchmark

• Compare with empirical data

36

Real Numbers ℝ

• Most scientific software deal with Real numbers.

Our toy code dealt with Reals
– Numerical software is scientific software dealing with

Real numbers

• Real numbers include rational numbers (integers

and fractions), irrational numbers (pi etc.)

• Used to represent values of continuous quantity

such as time, mass, velocity, height, density etc.

– Infinitely many values possible

– But computers have limited memory. So, have to use

approximations.

37

Representing Real Numbers

• Real numbers are stored as floating point numbers
(floating point system is a scheme to represent real numbers)

• E.g. floating point numbers:
– 𝜋 = 3.14159,

– 6.03*1023

– 1.60217733*10-19

mantissa

(number ranges from:

1 to b OR 1/b to 1)

base

(e.g. base 10, 8, 2, 16)

exponent

General format: ±x × be

3-digit Calculator

• Suppose base, b=10 and

• 𝑥 = ±𝑑0. 𝑑1𝑑2 × 10𝑒 where ൞

1 ≤ 𝑑0 ≤ 9,
0 ≤ 𝑑1 ≤ 9,

0≤𝑑2≤9
−9≤𝑒≤9

• precision = length of mantissa

– What is the precision here?

• Exercise: What is the smallest positive number?

• Exercise: What is the largest positive number?

• Exercise: When is this representation not enough?

• Exercise: How many numbers can be represented in this

format? 38

IEEE 754 Floating Point System

• Prescribes single, double, and extended

precision formats

39

Precision u Total bits used (sign, exponent, mantissa)

Single 6x10-8 32 (1, 8, 23)

Double 2x10-16 64 (1, 11, 52)

Extended 5x10-20 80 (1, 15, 64)

0 1 …………………8 9……………………………………………… 31

Sign Exponent Mantissa

single precision binary IEEE 754 floating point format

IEEE 754 Floating Point Arithmetic

• if exponent bits e1-e11 are not all 1s or 0s, then the

normalized number

n = ± 1.𝑚1𝑚2. . 𝑚52 2 × 2 𝑒1𝑒2..𝑒11 2 −1023

• Machine epsilon is the gap between 1 and the next

largest floating point number. 2−52 ≈ 10−16 for double.

• Exercise: What is minimum positive normalized double

number?

• Exercise: What is maximum positive normalized double

number? 40

0 1…………………..11 1………………………………………………52

Sign Exponent Mantissa

double precision binary IEEE 754 floating point format

IEEE 754 Floating Point Arithmetic

• if exponent bits e1-e11 are all 0s, then:

the subnormal number

n = ± 𝟎.𝑚1𝑚2. . 𝑚52 2 × 2 𝑒1𝑒2..𝑒11 2 −102𝟐

• if exponent bits e1-e11 are all 1s, then:

we can get –inf, NaN, or +inf based on value of 𝑚1𝑚2. . 𝑚52

– If any m is non-zero, the number is NaN (not a number)

41

0 1…………………..11 1………………………………………………52

Sign Exponent Mantissa

double precision binary IEEE 754 floating point format

IEEE 754 Floating Point Arithmetic

• Order is important

– Floating point arithmetic is not associative

• (x+y)+z not the same as x+(y+z)

• Explicit coding of textbook formula may not be the best

option to solve

– 𝑥2 − 2𝑝𝑥 − 𝑞 = 0 p and q are positive: p=12345678, q=1

– Exercise: find the minimum of the roots.

• Subtracting approximations of two nearby numbers

results in a bad approximation of the actual difference –

catastrophic cancellation
42

43

Floating Point System - Terminology

• Precision (p) - Length of mantissa
– E.g. p=3 in 1.00 x 10-1

• Machine epsilon (ϵmach) – smallest a-1, where a is the

smallest representable number greater than 1
– E.g. ϵmach=1.001 – 1.000 = 0.001.

• Unit roundoff (u) – smallest positive number where the

computed value of 1+u is different from 1
– E.g. suppose p=4 and we wish to compute 1.0000+ 0.0001=1.0001

– But we can’t store the exact result (since p=4). We end up storing

1.000.

– So, computed result of 1+u is same as 1

– Suppose we tried adding 0.0005 instead. 1.0000+0.0005=1.0005

Now, round this: 1.001

u =0.0005

usually u = ½ * ϵmach

44

Scientific Software - Examples

Biology
- Shotgun algorithm expedites sequencing

of human genome

- Analyzing fMRI data with machine

learning

Credit: Wikipedia

Credit: Wikipedia

Chemistry

- optimization and search algorithms to

identify best chemicals for improving

reaction conditions to improve yields

Credit: University of Minnesota

45

Scientific Software - Examples

Geology
- Modeling the Earth’s surface to the core

Credit: Wikipedia

Astronomy
- kd-trees help analyze very large multi-

dimensional data sets

Credit: Kaggle.comEngineering

- Boeing 777 tested via computer

simulation (not via wind tunnel)

46

Scientific Software - Examples

Economics
- ad-placement

Entertainment

- Toy Story, Shrek rendered using data-center nodes

47

Recap: Toward Scientific Software

Physical process

Mathematical model

Algorithm

Software program

Simulation results

48

Scientific Software - Motifs

1. Finite State Machines

2. Combinatorial

3. Graph Traversal

4. Structured Grid

5. Dense Matrix

6. Sparse Matrix

7. FFT

8. Dynamic Programming

9. N-Body (/ particle)

10. MapReduce

11. Backtrack / B&B

12. Graphical Models

13. Unstructured Grid

