
CS601, Lecture 31/10/2022 and Half of 3/11/2022 – Finite Element Method 
contd. (2D problems) 

 

The main topic of today’s class is 2D steady state diffusion problem. The problem is as illustrated 

below: 

 
 

The steady state heat diffusion equation is given by: 

 

Κ(
 𝜕2𝑇

𝜕𝑥2
+

 𝜕2𝑇

𝜕𝑦2
) + 𝑓(𝑥, 𝑦)  = 0 

When 𝑓(𝑥, 𝑦)  = 0, the above equation becomes Κ(
 𝜕2𝑇

𝜕𝑥2
+

 𝜕2𝑇

𝜕𝑦2) = 0 and is also called as 

Laplace’s equation. 

We also know that at some boundary Γ𝑢 :  
𝑇Γ𝑢

=  �̃� 

And the Neumann B.C. along boundary Γ𝑞 (�̂�𝑥 and �̂�𝑦 are unit vectors along x and y direction 

resp.) 

Κ(
𝜕𝑇

𝜕𝑥
�̂�𝑥 +

𝜕𝑇

𝜕𝑦
�̂�𝑦) = 𝑞𝑛 

(1), (2), and (3) represent the strong-form of the steady-state 2D heat diffusion problem. 

The first step in the FEM approach is to transform the strong-form to weak-form. This is done by 

integrating the product of the weight function and the residual over the domain and equating to 

zero i.e. 

∫ 𝜔 𝑅 = 0
Ω

 

=      ∫ 𝜔 ( Κ (
 𝜕2𝑇

𝜕𝑥2
+

 𝜕2𝑇

𝜕𝑦2) + 𝑓(𝑥, 𝑦))  = 0
Ω

 

 
Road to obtaining weak-form: 

 

(1) 

(2) 

(3) 

(4) 



We know that: 

𝜕

𝜕𝑥
[𝜔Κ

𝜕𝑇

𝜕𝑥
 ] = Κ

𝜕𝜔

𝜕𝑥

𝜕𝑇

𝜕𝑥
+ 𝜔Κ 

𝜕2T 

𝜕𝑥2
 

𝜕

𝜕𝑦
[𝜔Κ

𝜕𝑇

𝜕𝑦
 ] = Κ

𝜕𝜔

𝜕𝑦

𝜕𝑇

𝜕𝑦
+ 𝜔Κ 

𝜕2T 

𝜕𝑦2
 

  

Substituting for the second-order partial derivative term in (4): 

−∫ Κ
∂ω

∂x

∂T

∂x
 dΩ

Ω

+ ∫
∂

∂x
(𝜔Κ

∂T

∂x
)  dΩ 

Ω

− ∫ Κ
∂ω

∂y

∂T

∂y
 dΩ + ∫

∂

∂y
(𝜔Κ

∂T

∂y
)  dΩ + ∫ 𝜔𝑓dΩ = 0  

Ω

 
ΩΩ

 

 

A little bit of background (on Gauss Divergence Theorem):  

• A function that takes in e.g. two variables (x,y in 2D) and outputs one value given by 

𝑓(𝑥, 𝑦) is called a scalar-valued function.  

• A function that takes in e.g. two variables (x,y in 2D) and outputs a vector in (x,y), i.e. 

the value of 𝑓(𝑥, 𝑦) is a vector, is called a vector-valued function. 

• Suppose we define a function that outputs a vector [

𝜕𝑓

𝜕𝑥
𝜕𝑓

𝜕𝑦

], where the vector components are 

partial derivatives of the function 𝑓, we call such a vector-valued function the gradient or 

∇ (nabla). 𝛻𝑓 = (
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
) =  

𝜕𝑓

𝜕𝑥
�̂�𝑥 +

𝜕𝑓

𝜕𝑦
�̂�𝑦   , where �̂�𝑥 and �̂�𝑦 are unit vectors along x 

and y direction resp. 

• Divergence of a vector field ∇  .  (𝑓𝑥, 𝑓𝑦) is a scalar-valued function 
𝜕𝑓

𝜕𝑥
+

𝜕𝑓

𝜕𝑦
 

• Let a be a vector field. Then, the Gauss divergence theorem relates the surface integral 

(2D) to boundary/contour/line integral (1D) through the divergence operator: 

∫ ∇. 𝑎 𝑑Ω =
Ω

∫ 𝑎𝑖  �̂�𝑖𝑑Γ
Γ

 

 

 

Applying Gauss divergence theorem in (5): 

  

(5) 



 

 

−∫ Κ
∂ω

∂x

∂T

∂x
 dΩ

Ω

+ ∫
∂

∂x
(𝜔Κ

∂T

∂x
)  dΩ 

Ω

− ∫ Κ
∂ω

∂y

∂T

∂y
 dΩ 

Ω

+ ∫
∂

∂y
(𝜔Κ

∂T

∂y
)  dΩ

Ω

+ ∫ 𝜔𝑓dΩ = 0  
Ω

  

 

=∫ Κ
∂ω

∂x

∂T

∂x
 dΩ + ∫ Κ

∂ω

∂y

∂T

∂y
 dΩ = 

Ω
∫ Κω [ 

∂T

∂y
�̂�𝑦 +

∂T

∂x
�̂�𝑥] dΓ + ∫ 𝜔𝑓dΩ  

Ω
 

ΓΩ
 

 

=∫ Κ (
∂ω

∂x

∂T

∂x
+

∂ω

∂y

∂T

∂y
) dΩ = ∫ Κω[ 

∂T

∂y
�̂�𝑦 +

∂T

∂x
�̂�𝑥] dΓ + ∫ 𝜔𝑓dΩ  

Ω
 

ΓΩ
 

 

 

 

 

 

 

The stiffness matrix is identified by the bilinear term 
∂ω

∂x

∂T

∂x
 or 

∂ω

∂y

∂T

∂y
 

(6) is the weak-form equation. Note that this is the general equation. In summary, we have 

started with governing equations which are in the strong-form. Next, we used chain-rule / 

integration by parts to reduce the degree of the equation e.g. to substituting second-order with 

first-order derivative terms. Next, we find the boundary term, primary, and secondary variables. 

To do this, for the 2D problem, we apply the Gauss-divergence theorem to convert the domain or 

surface integral  to boundary integral to obtain the weak-form equation.  

Next, we write elemental equations. To do this, first discretize the domain into N-sided elements, 

where each element is assumed to have N nodes. After elemental equations for all the elements 

of the domain are written, perform assembly to construct the global stiffness matrix, boundary 

term vector, and force vector. Note that the elements of the Global stiffness matrix and force 

vector involve computation of integrals over limits in the physical domain. Analytically solving 

∫ Κ𝜔
𝜕𝑇

𝜕𝑥
�̂�𝑥𝑑Γ

Γ

 

∫ Κ𝜔
𝜕𝑇

𝜕𝑦
�̂�𝑦𝑑Γ

Γ

 

Stiffness matrix Boundary condition term 

(vector) contains coefficient 

of weight function 

Κ [ 
∂T

∂y
�̂�𝑦 +

∂T

∂x
�̂�𝑥] 

Force vector 

(6) 



the integrals is too difficult or not possible often. Hence, to numerically solve the integrals, 

Gauss-Quadrature method is used. The details of this method were discussed in the last class. 

The equation written in (6) has the symbolic weight function (ω) for a general n-sided element. 

These symbolic weight functions are to be replaced by the shape functions (𝑁𝑖)s that were derived 

for triangular elements. Thus, we obtained 3 equations per element consisting of 3 bilinear integral 

terms on the LHS. In other words, the elemental stiffness matrix was 3x3. 

 

Then, the assembly is done combining such 3x3 matrices. While doing this, we should consider 

constraints / requirements to be met while ensuring the continuity of the solution at nodes common 

to elements.  

 

Before we write the elemental equations, we need to discretize the domain. The picture illustrates 

an example: 

 

 

 

Writing the weak-form equation of (6) for the element’s domain Ωe 

∫ Κ(
∂ω

∂x

∂Te

∂x
+

∂ω

∂y

∂Te

∂y
)dΩe  = ∫ Κω[ 

∂Te

∂y
�̂�𝑦 +

∂Te

∂x
�̂�𝑥] dΓe + ∫ 𝜔𝑓dΩe  

Ω𝑒

 
ΓeΩe

 

 

Where, Te denotes the approximate solution (temperature) within the element’s domain, and Γe 

denotes element’s boundary. 

The above equation can also be written as: 

∫ 𝛫 (
𝜕𝜔

𝜕𝑥

𝜕𝑇𝑒

𝜕𝑥
+

𝜕𝜔

𝜕𝑦

𝜕𝑇𝑒

𝜕𝑦
)𝑑𝛺𝑒  = ∫ 𝜔�̂�𝑛𝑑𝛤𝑒 + ∫ 𝜔𝑓𝑑𝛺𝑒   

𝛺𝑒

 
𝛤𝑒𝛺𝑒

 

Where, �̂�𝑛 denotes the flux for the element. Note that this flux is different from the flux 𝑞𝑛 

specified for the entire domain. 

Also, 𝑇𝑒 can be written as: ∑ 𝑁𝑖𝑇𝑖
𝑒𝑛

𝑖=1   

• where, 𝑇𝑖
𝑒 is the temperature at the ith node of the element (Similar to what we did in class 

on 5/10 when we approximated the displacement, 𝑢(𝑥), between the nodes of an element 

(7) 



in terms of nodal displacements using linear functions:  
�̃�(𝑥)  =  𝑁1(𝑥)𝑢1 + 𝑁2(𝑥)𝑢2)  

• and 𝑁𝑖 are shape functions (now of two variabes 𝑁𝑖(𝑥, 𝑦)). 

 

As per the Galerkin approach, 𝜔 can be replaced with 𝑁𝑖. Rewriting (7): 

∫ 𝛫 (
𝜕𝑁𝑖

𝜕𝑥

𝜕𝑇𝑒

𝜕𝑥
+

𝜕𝑁𝑖

𝜕𝑦

𝜕𝑇𝑒

𝜕𝑦
)𝑑𝛺𝑒  = ∫ 𝑁𝑖�̂�

𝑛𝑑𝛤𝑒 + ∫ 𝑁𝑖𝑓𝑑𝛺𝑒   
𝛺𝑒

 
𝛤𝑒𝛺𝑒

 

 

Substituting for 𝑇𝑒 = ∑ 𝑁𝑖𝑇𝑖
𝑒𝑛

𝑖=1  the above equation: 

∫ 𝛫 (
𝜕𝑁𝑖

𝜕𝑥

𝜕

𝜕𝑥
∑𝑁𝑗𝑇𝑗

𝑒

𝑛

𝑗=1

+
𝜕𝑁𝑖

𝜕𝑦

𝜕

𝜕𝑦
∑𝑁𝑗𝑇𝑗

𝑒

𝑛

𝑗=1

)𝑑𝛺𝑒  = ∫ 𝑁𝑖�̂�
𝑛𝑑𝛤𝑒 + ∫ 𝑁𝑖𝑓𝑑𝛺𝑒   

𝛺𝑒

 
𝛤𝑒𝛺𝑒

 

 
The summation symbol can be omitted (as per the conventional notations) to represent the above 

equation as: 

∫ 𝛫 (
𝜕𝑁𝑖

𝜕𝑥

𝜕𝑁𝑗

𝜕𝑥
+

𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑗

𝜕𝑦
) 𝑇𝑗

𝑒𝑑𝛺𝑒  = ∫ 𝑁𝑖�̂�
𝑛𝑑𝛤𝑒 + ∫ 𝑁𝑖𝑓𝑑𝛺𝑒   

𝛺𝑒

 
𝛤𝑒𝛺𝑒

 

 

The 𝑇𝑗
𝑒 term can be factored out because the nodal temperature is assumed to be a constant 

(unknown). 

 

The above equation is sometimes compactly written as: 

𝐾𝑖𝑗𝑇𝑗
𝑒 = 𝑞𝑖 + 𝑓𝑖 

where,  𝐾𝑖𝑗 = ∫ Κ
𝜕𝑁𝑖

𝜕𝑥

𝜕𝑁𝑗

𝜕𝑥
+

𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑗

𝜕𝑦Ω𝑒 𝑑𝛺𝑒 

 
Equation (3) needs to be written for all nodes of an element and the exercise needs to be repeated 

for all elements of the domain.  The matrices obtained w.r.t. an element need to be assembled 

afterwards. 

 

For an n-sided element: 

𝑇 =  𝑁1𝑇1 + 𝑁2𝑇2+.  .  . +𝑁𝑛𝑇𝑛 
Hence,  

𝜕𝑇

𝜕𝑥
 =

𝜕𝑁1 

𝜕𝑥
𝑇1 +

𝜕𝑁2 

𝜕𝑥
𝑇2+.  .  . +

𝜕𝑁𝑛 

𝜕𝑥
𝑇𝑛 

𝜕𝑇

𝜕𝑦
 =

𝜕𝑁1 

𝜕𝑦
𝑇1 +

𝜕𝑁2 

𝜕𝑦
𝑇2+.  .  . +

𝜕𝑁𝑛 

𝜕𝑦
𝑇𝑛 

  

(8) 



 
Rewriting in Ax=b form: 

[
 
 
 
 
𝜕𝑇
𝜕𝑥
𝜕𝑇
𝜕𝑦]

 
 
 
 

=

[
 
 
 
 
𝜕𝑁1 

𝜕𝑥
𝜕𝑁2 

𝜕𝑥
.  .  .

𝜕𝑁𝑛 

𝜕𝑥
𝜕𝑁1 

𝜕𝑦
𝜕𝑁2 

𝜕𝑦
.  .  .  

𝜕𝑁𝑛 

𝜕𝑦 ]
 
 
 
 

[

𝑇1

𝑇2..
𝑇𝑛

] 

 

 

Define a matrix C as: [
Κ 0
0 Κ

] then, 

𝐾𝑖𝑗 = ∫ 𝐵𝑇𝐶𝐵
Ω𝑒

𝑑𝛺𝑒  

where, 𝐵𝑇 denotes transpose of the matrix B. 
 
Deriving shape functions for a triangular element, n=3 (n=3 sides): 

 
 
 

 
𝑇 =  𝐶1 + 𝐶2𝑥 + 𝐶3𝑦 
𝑇1

𝑒  =  𝐶1 + 𝐶2𝑥1 + 𝐶3𝑦1 
𝑇2

𝑒  =  𝐶1 + 𝐶2𝑥2 + 𝐶3𝑦2 
𝑇3

𝑒  =  𝐶1 + 𝐶2𝑥3 + 𝐶3𝑦3 
 
Solving for 𝐶1 , 𝐶2, and 𝐶3 (in terms of x and y), and substituting in 𝑇 =  𝐶1 + 𝐶2𝑥 + 𝐶3𝑦 
we get  

T = (   ) 𝑇1
𝑒  + (  ) 𝑇2

𝑒+ (  ) 𝑇3
𝑒 

 
 
 
 

𝑁1 =
1

2𝐴𝑒
[(𝑥2𝑦3 − 𝑥3𝑦2) + (𝑦2 − 𝑦3)𝑥 + (𝑥3 − 𝑥2)𝑦] 

 

Call this matrix as B  

Denotes:     𝑁1              𝑁2         𝑁3 



𝑁2 =
1

2𝐴𝑒
[(𝑥3𝑦1 − 𝑥1𝑦3) + (𝑦3 − 𝑦1)𝑥 + (𝑥1 − 𝑥3)𝑦] 

 

𝑁3 =
1

2𝐴𝑒
[(𝑥1𝑦2 − 𝑥2𝑦1) + (𝑦1 − 𝑦2)𝑥 + (𝑥2 − 𝑥1)𝑦] 

 
Where,  Ae is the area of the triangular element.  
 
For the above 𝑁𝑖’s, the elements of the B matrix are constants (i.e. not a function of x or y 
because 𝑁𝑖s are linear functions of x or y and the partial derivatives of 𝑁𝑖s give out 
constants.) Such a constant matrix is called in the literature as “Constant strain triangular 
element”. 
 
----------------------------This is not discussed in class. This is for your information------------ 
 
Once such matrix is obtained for all elements, we do the assembly. While doing assembly, 
first number the nodes in anti-clockwise in local node numbering as shown: 

 
 

 
To maintain continuity of the solution obtained (i.e. temperature at nodes common to 
elements must be same and the flux should be zero on the common edges – there are two 
common nodes 2 and 4): 
 
𝑇1  =  𝑇1

𝑒1 (meaning temperature at node 1 in global numbering  = temperature at node 1 
of element 1) 

𝑇4  =  𝑇3
𝑒2 

𝑇2  =  𝑇2
𝑒1 = 𝑇2

𝑒2 

𝑇4  =  𝑇3
𝑒1 = 𝑇1

𝑒2 
 

Regrading flux term (𝑞𝑖 in Eqn. (8)): 
At node number 2 (global numbering): 
The outflux of node 2 in element 1 + outflux of node 2 in element 2 = 0  

∫ 𝑁2𝑞2−3𝑑𝛤2−3 
𝛤2−3

+ ∫ 𝑁2𝑞1−2𝑑𝛤1−2 
𝛤1−2

 



 
Similarly, at node number 4 (global numbering): 
The outflux of node 3 in element 1 + outflux of node 1 in element 2 = 0  

∫ 𝑁3𝑞2−3𝑑𝛤2−3 
𝛤2−3

+ ∫ 𝑁1𝑞1−2𝑑𝛤1−2 
𝛤1−2

 

 


