CS601, Lecture 31/10/2022 and Half of 3/11/2022 — Finite Element Method
contd. (2D problems)

The main topic of today’s class is 2D steady state diffusion problem. The problem is as illustrated
below:
Y = [},= Part of the boundary, where

i 0=q, boundary congitions are specified.
Here, Tr,, = T, meaning the
temperature is known at boundary [},.

* [,=Part of the boundary, where flux is
specified.

* Flux=q =q, =incoming or outgoing heat
energy

* f(x.y) = Heat source

* Note:T' =T, + I}, represents entire
boundary.

Problem: find the temperature T at any
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The steady state heat diffusion equation is given by:
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When f(x,y) = 0, the above equation becomes K (6x2 + 6y2) = (0 and is also called a
Laplace’s equation.
We also know that at some boundary T, :

Tr. =T (2)

u

And the Neumann B.C. along boundary I, (7, and ﬁy are unit vectors along x and y direction
resp.)

K(aTA +aTA ) (3)
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(1), (2), and (3) represent the strong-form of the steady-state 2D heat diffusion problem.

The first step in the FEM approach is to transform the strong-form to weak-form. This is done by
integrating the product of the weight function and the residual over the domain and equating to

zeroi.e.
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Road to obtaining weak-form:

)+f(x,y)> =0 — (4



We know that:

0 [ aT] _K6w6T+ KBZT
ox 1% ax 1 T Naxax T axz
0 [ KaT]_ aa)aT+ 0%T
oyl oy 1™ “ayay T " 9y
Substituting for the second-order partial derivative term in (4):
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A little bit of background (on Gauss Divergence Theorem):
e A function that takes in e.g. two variables (x, y in 2D) and outputs one value given by
f(x,y) is called a scalar-valued function.
e A function that takes in e.g. two variables (x, y in 2D) and outputs a vector in (x,y), i.e.
the value of f(x,y) is a vector, is called a vector-valued function.
of
g;], where the vector components are

oy
partial derivatives of the function f, we call such a vector-valued function the gradient or

V (nabla). Vf = (a—f a—f) = a—fﬁx + Z—gﬁy , where 71, and 7i,, are unit vectors along x

ox’ dy ox
and y direction resp.
. : . . 9f @
o Divergence of a vector field V . (f, f,) is a scalar-valued function é + é

e Let a be a vector field. Then, the Gauss divergence theorem relates the surface integral
(2D) to boundary/contour/line integral (1D) through the divergence operator:

f V.a d() =.[ a; ﬁldF
Q r

Applying Gauss divergence theorem in (5):

e Suppose we define a function that outputs a vector
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Stiffness matrix
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Boundary condition term
(vector) contains coefficient
of weight function
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The stiffness matrix is identified by the bilinear term —— 0r ——

Jx 0x dy dy
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Force vector

(6) is the weak-form equation. Note that this is the general equation. In summary, we have
started with governing equations which are in the strong-form. Next, we used chain-rule /
integration by parts to reduce the degree of the equation e.g. to substituting second-order with
first-order derivative terms. Next, we find the boundary term, primary, and secondary variables.
To do this, for the 2D problem, we apply the Gauss-divergence theorem to convert the domain or
surface integral to boundary integral to obtain the weak-form equation.

Next, we write elemental equations. To do this, first discretize the domain into N-sided elements,
where each element is assumed to have N nodes. After elemental equations for all the elements
of the domain are written, perform assembly to construct the global stiffness matrix, boundary
term vector, and force vector. Note that the elements of the Global stiffness matrix and force
vector involve computation of integrals over limits in the physical domain. Analytically solving



the integrals is too difficult or not possible often. Hence, to numerically solve the integrals,
Gauss-Quadrature method is used. The details of this method were discussed in the last class.

The equation written in (6) has the symbolic weight function (w) for a general n-sided element.
These symbolic weight functions are to be replaced by the shape functions (N;)s that were derived
for triangular elements. Thus, we obtained 3 equations per element consisting of 3 bilinear integral
terms on the LHS. In other words, the elemental stiffness matrix was 3x3.

Then, the assembly is done combining such 3x3 matrices. While doing this, we should consider
constraints / requirements to be met while ensuring the continuity of the solution at nodes common
to elements.

Before we write the elemental equations, we need to discretize the domain. The picture illustrates
an example:

=+ () is the domain of an element e

Writing the weak-form equation of (6) for the element’s domain (),

J K(amaTe+awaTe>dQe _j . [aTeA +6TeA]dre+j .
e \0x 0x 0y 0dy  Jpe » dy Ty T x M Qewf

Where, T® denotes the approximate solution (temperature) within the element’s domain, and I'®
denotes element’s boundary.

The above equation can also be written as:

j K <6a) AR aTe) dne f qdre + J fdae

= w w — (7
ge \0x Ox 0y 0y re d o€
Where, g™ denotes the flux for the element. Note that this flux is different from the flux q™
specified for the entire domain.

Also, T¢ can be written as: },i-; N;Tf
e where, T¢ is the temperature at the i node of the element (Similar to what we did in class
on 5/10 when we approximated the displacement, u(x), between the nodes of an element



in terms of nodal displacements using linear functions:
a(x) = Ni(x)uy + Np(x)uy)
e and N; are shape functions (now of two variabes N;(x, y)).

As per the Galerkin approach, w can be replaced with N;. Rewriting (7):

j K(aNi or* | oM. aTe> d0° = j N,gndre + f N, fdne
ge \0x dx = dy 0y re P

Substituting for T¢ = Y[~ ; N;T£ the above equation:

n

f K aNiaz:NTe+aNia nNTe dne—f NA“dI“e+j N;fd¢
ge \OxoxZs 7 9y 0y £ 7 e f

e
j=1 .

The summation symbol can be omitted (as per the conventional notations) to represent the above
equation as:

j <6Nl- dN; ON;ON;
K +
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>T;dae = J N,gndre + j N;fdQe
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The T term can be factored out because the nodal temperature is assumed to be a constant
(unknown).

The above equation is sometimes compactly written as:
KijT7 = q; + f; (8

ON;ON;  ON; 0N,
where, K;;j = [ . K———* L
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Equation (3) needs to be written for all nodes of an element and the exercise needs to be repeated
for all elements of the domain. The matrices obtained w.r.t. an element need to be assembled
afterwards.

For an n-sided element:
T = N,T; + N,T,+. . .+N, T,

Hence,
or _ Ny, N N
dx  ox Y oax 27 gx ™
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Rewriting in Ax=b form:

o) [Ny Ny aNur,
dx| _| Ox dx ~°  Ox ||T,
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Call this matrix as B /
Define a matrix C as: [Ig I(é] then,

Kij == f BTCB d.Qe
Qe
where, BT denotes transpose of the matrix B.

Deriving shape functions for a triangular element, n=3 (n=3 sides):

e
(xluJ’1)T1
1
T3 /> 3\T5
(x2,¥2) (x3,¥3)

T = C;+Cyx+Cyy

TS = C; + Cyxqy + C3y,
T; = C; + Cyxy + C3y,
T; = C + Cyx3+ C3y,

Solving for C; , C,, and C; (in terms of x and y), and substitutingin T = C; + C;x + C3y
we get

T=()TF+O T+ T5

I

Denotes: Ny N, N3

1

N, = —
17 24

[(x2y3 — x3¥2) + (V2 — ¥3)x + (x3 — x3)¥]



1

N, = e [(x3y1 —x1¥3) + (V3 — y1)x + (x; — x3) Y]
1
N3 = Sac [(c1y2 — x21) + (1 — ¥2)x + (X2 — x1)Y]

Where, A° is the area of the triangular element.

For the above N;’s, the elements of the B matrix are constants (i.e. not a function of x or y
because N;s are linear functions of x or y and the partial derivatives of N;s give out
constants.) Such a constant matrix is called in the literature as “Constant strain triangular
element”.

Once such matrix is obtained for all elements, we do the assembly. While doing assembly,
first number the nodes in anti-clockwise in local node numbering as shown:

4 3 4 3
elem2
elem1
1 2 1 2
Global numbering Local numbering of nodes
of nodes

To maintain continuity of the solution obtained (i.e. temperature at nodes common to
elements must be same and the flux should be zero on the common edges - there are two
common nodes 2 and 4):

T, = Tfl (meaning temperature at node 1 in global numbering = temperature at node 1
of element 1)

T, = T,* =T,?
T, =Tt = T)?

Regrading flux term (q; in Eqn. (8)):
At node number 2 (global numbering):
The outflux of node 2 in element 1 + outflux of node 2 in element 2 =0
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Similarly, at node number 4 (global numbering):
The outflux of node 3 in element 1 + outflux of node 1 in element2 =0

fz 3N3QZ—3dr2_3 +J Nyqq_,dI*~2
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