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The previous lecture started with the FEM approach to solving PDEs. First, the method of 

weighted residuals was discussed and then the original PDE in strong-form was transformed to a 

weak-form equation. This lecture discusses applying the ideas discussed in the previous lecture 

to the FEM approach. First, the high-level steps of the FEM approach are listed, then the concept 

of element, shape functions, and the system of equations are discussed in the context of a 1D 

rod problem.  

The steps in the FEM approach are: 

1) construct the weak-form of the PDE 

2) assume the form of approximate solution for a typical element. More on element in the 

next paragraph.  

3) Derive finite element equations by substituting approximated solution in the weak form 

An element is a resulting sub-domain obtained after the discretization step. Each element 
contains nodes (grid points in the FDM context. In FEM context, a node is not exactly a grid point. 
A grid point makes sense only in the FDM context while in the FEM context, an element is used.  
An element can contain nodes at the boundaries or internally. The number of nodes per element 
depends on the approximate solution considered. You will see this later in the example. 
 
The approximate solution (in step 2 above) considered must satisfy the following properties: 

• Continuous and differentiable 

• Complete (e.g. 𝑓(𝑥) = 𝑐1 + 𝑐2𝑥 is a complete linear function. 𝑔(𝑥) = 𝑐1𝑥 + 𝑐2𝑥2 is not a 
complete quadratic function.) 
 

Consider a 2-node rod element: 

  

 

 
𝑥𝐴 and 𝑥𝐵 are the spatial coordinates. The element is of length ℎ𝑒 = 𝑥𝐵 − 𝑥𝐴 

Let the approximate solution for element e, 𝑢𝑒, be a linear function 𝑓(𝑥)  =  𝑐1 + 𝑐2𝑥. So, the 
approximate solution at points 𝑥𝐴 and 𝑥𝐵are given by the equations: 

𝑢1
𝑒 =  𝑐1 + 𝑐2𝑥𝐴 

𝑢2
𝑒 =  𝑐1 + 𝑐2𝑥𝐵 

Writing in matrix form: 

[
1 𝑥𝐴

1 𝑥𝐵
] [

𝑐1
𝑐2

] = [
𝑢1

𝑒

𝑢2
𝑒] 

yields: 

𝑐1 = 𝑢1
𝑒 −

(𝑢2
𝑒 − 𝑢1

𝑒)

𝑥𝐵 − 𝑥𝐴
 𝑥𝐴 

𝑐2 =
(𝑢2

𝑒 − 𝑢1
𝑒)

𝑥𝐵 − 𝑥𝐴
 

Substituting for c1 and c2 in the approximated solution 𝑐1 + 𝑐2𝑥: 

Node 1(𝑥𝐴) Node 2(𝑥𝐵) 
Element 



𝑐1 + 𝑐2𝑥 =
𝑢1

𝑒(𝑥𝐵 − 𝑥)

(𝑥𝐵 −𝑥𝐴)
+

𝑢2
𝑒(𝑥− 𝑥𝐴)

(𝑥𝐵 − 𝑥𝐴)
 

 
Let us denote the approximated solution as 𝑢̃. Then 𝑢̃ =𝑁1(𝑥)𝑢1 + 𝑁2(𝑥)𝑢2, where  𝑁1, 𝑁2, are the 
shape functions or weight functions or interpolation functions. The element is called as a 2-noded 
linear element.  
Note that these are functions of 𝑥.  

At point 𝑥𝐵, the value of function 𝑁1 = 0 and point 𝑥𝐴 the value of function 𝑁1 = 1 

At point 𝑥𝐵, the value of function 𝑁2 = 1 and point 𝑥𝐴 the value of function 𝑁2 = 0 
We denote 𝑢̃ as: 

𝑢̃  =  𝑁1𝑢1 + 𝑁2𝑢2    
or written in terms of longitudinal displacement: 

𝑢̃(𝑥)  =  𝑁1(𝑥)𝑢1 + 𝑁2(𝑥)𝑢2 
𝑢1 and  𝑢2 are displacements at the Nodes 1 and 2 resp. These are called nodal / elemental 
displacements.   

 
Remark: we can choose an internal node in our element. In this case, we will have 3 nodes, and 
the approximated solution must be a quadratic when we have 3 nodes. For better accuracy, we 
can increase the polynomial degree (and also the internal nodes commensurately) or decrease 
the mesh size (𝑥𝐵 − 𝑥𝐴). In practice, increasing the polynomial degree is more expensive to 
compute. 

 
Recall the weak-form equation for the rod: 

[𝜔𝐸𝐴
𝑑𝑢̃

𝑑𝑥
]
0

𝐿

+ ∫ 𝜔 𝐹 𝑑Ω
Ω

= ∫ 𝐸𝐴
𝑑𝜔

𝑑𝑥

𝑑𝑢̃

𝑑𝑥
 𝑑Ω 

Ω

 

 

Substituting for 𝜔 with 𝑁1 and 𝑁2. in the “weak-form” equation, we get the following two equations: 

[𝑁1𝐸𝐴
𝑑𝑢̃

𝑑𝑥
]
0

𝐿

+ ∫ 𝑁1 𝐹 𝑑Ω
Ω

= ∫ 𝐸𝐴
𝑑𝑁1

𝑑𝑥

𝑑

𝑑𝑥
(𝑁1𝑢1 + 𝑁2𝑢2 ) 𝑑Ω 

Ω

 

 

[𝑁2𝐸𝐴
𝑑𝑢̃

𝑑𝑥
]
0

𝐿

+ ∫ 𝑁2 𝐹 𝑑Ω
Ω

= ∫ 𝐸𝐴
𝑑𝑁2

𝑑𝑥

𝑑

𝑑𝑥
(𝑁1𝑢1 + 𝑁2𝑢2 ) 𝑑Ω 

Ω

 

 
Considering the first equation, rewriting, and expanding (note the color coding is for readability 

only): 

[𝑁1𝐸𝐴
𝑑𝑢

𝑑𝑥
]
0

𝐿
+ ∫ 𝑁1 𝐹 𝑑Ω

Ω
= ∫ 𝐸𝐴

𝑑𝑁1

𝑑𝑥

𝑑

𝑑𝑥
(𝑁1𝑢1 + 𝑁2𝑢2 ) 𝑑Ω 

Ω
   (LHS=RHS) 

 ∫ 𝐸𝐴
𝑑𝑁1

𝑑𝑥

𝑑

𝑑𝑥
(𝑁1𝑢1 + 𝑁2𝑢2 ) 𝑑Ω 

Ω
= [𝑁1𝐸𝐴

𝑑𝑢

𝑑𝑥
]
0

𝐿
+ ∫ 𝑁1 𝐹 𝑑Ω

Ω
   (RHS=LHS) 

 ∫ EA 
𝑑𝑁1

𝑑𝑥

𝑑𝑁1

𝑑𝑥
u1 𝑑Ω 

Ω
+ ∫ EA 

𝑑𝑁1

𝑑𝑥

𝑑𝑁2

𝑑𝑥
u2 𝑑Ω 

Ω
= [𝑁1𝐸𝐴

𝑑𝑢

𝑑𝑥
]
0

𝐿
+ ∫ 𝑁1 𝐹 𝑑Ω

Ω
 



Similarly considering the second equation, rewriting, and expanding: 

∫ EA 
𝑑𝑁2

𝑑𝑥

𝑑𝑁1

𝑑𝑥
u1 𝑑Ω 

Ω
+ ∫ EA 

𝑑𝑁2

𝑑𝑥

𝑑𝑁2

𝑑𝑥
u2 𝑑Ω 

Ω
= [𝑁2𝐸𝐴

𝑑𝑢

𝑑𝑥
]
0

𝐿
+ ∫ 𝑁2 𝐹 𝑑Ω

Ω
 

Using shorter notation on the LHS for the two equations expanded: 

𝐾11𝑢1 + 𝐾12𝑢2 = [𝑁1𝐸𝐴
𝑑𝑢̃
𝑑𝑥

]
0

𝐿

+ ∫ 𝑁1 𝐹 𝑑𝑥
𝐿

0
 

𝐾21𝑢1 + 𝐾22𝑢2 = [𝑁2𝐸𝐴
𝑑𝑢̃
𝑑𝑥

]
0

𝐿

+ ∫ 𝑁2 𝐹 𝑑𝑥
𝐿

0
 

Where, 𝐾𝑖𝑗 = ∫ 𝐸𝐴
𝑑𝑁𝑖

𝑑𝑥

𝑑𝑁𝑗

𝑑𝑥
𝑑𝑥

𝐿

0
 and Ω ranges from 0 to 𝐿 (dΩ becomes dx because of the 

domain is 1D). 

-----------------------------This was not discussed in the lecture but will follow.------------------ 

The Equations 1 and 2 can be expressed in Ax=B form (A is matrix, x is vector, and B is a vector) 

as: 

 

[
𝐾11 𝐾12

𝐾21 𝐾22
] [

𝑢1

𝑢2
] =

[
 
 
 
 
 [𝑁1𝐸𝐴

𝑑𝑢̃
𝑑𝑥

]
0

𝐿

+ ∫ 𝑁1 𝐹 𝑑𝑥
𝐿

0

[𝑁2𝐸𝐴
𝑑𝑢̃
𝑑𝑥

]
0

𝐿

+ ∫ 𝑁2 𝐹 𝑑𝑥
𝐿

0 ]
 
 
 
 
 

 

 

  

 

 

 

(1) 

(2) 

Stiffness matrix 

Force vector  displacements  


