
CS601, Lecture 18/10/2022 – Finite Element Method 

 

This lecture begins with an introduction to an approach to solving PDES. This approach is called 

Finite Element Method (FEM).  

Introduction: FDM is not practical/accurate approach to solve for all domains and all situations. 

Few reasons why FDM is not practical are as follows: 

• Domain structure: FDM cannot handle accurately domains with irregular 

geometry/shapes. E.g., a domain with a curved boundary, domain with holes (with 

irregular boundaries).    

• Truncation error: what is the guarantee that successive derivatives of the unknown 

function (e.g., 𝑢 in 𝐸𝐴
𝑑2𝑢

𝑑𝑥2
+ 𝐹) decrease in magnitude when we write the Taylor series 

approximation? for e.g., 𝑓(𝑥)  =  𝑒𝑥, the magnitude remains the same. As a result, when 

we ignore the higher order terms of the Taylor series and truncate the series, the numerical 

error / truncation error might be significant.    

• Other physical properties: when there are additional mechanical engineering properties 

that need to be satisfied, FDM doesn't consider these. 

FEM is a method of solving PDEs that overcomes the shortcomings of FDM to solve practical 

engineering problems in mechanical, electrical engineering, physics, aerospace engineering, 

among others. 

Example: 1D structural problem 

𝐸𝐴
𝑑2𝑢

𝑑𝑥2
+ 𝐹 = 0 

The above equation is also called as equilibrium equation. Typically, F is given as 𝑏𝐴, where 𝑏 is 

the body force per unit area and 𝐴 is the area. In this problem, the goal is to find stresses and 

strains at different points on the rod, which is fixed at one end and is subjected to a force at the 

other end. An illustration is shown below: 

 

We have: Stress (𝜎) / Strain (𝜖) = E (Young’s modulus) 

     Strain (𝜖)  = change in length / original length = 
𝜕𝑢

𝑑𝑥
 

Substituting: 𝐸
𝜕𝑢
𝑑𝑥

= 𝜎  

(1) 



To solve the PDE shown in (1), we need boundary conditions. Typical boundary conditions look 

like: 

 At 𝑥 = 0, 𝑢 = 0 

  At 𝑥 = 𝐿, 𝑢 = 𝐸𝐴𝜕𝑢/𝜕𝑥 (the value is specified)      

The PDE of equation (1) together with the boundary conditions in (2) is called as strong-form of 

the PDE equation. Suppose, 𝑢̃ is an approximate solution. Being approximate in nature, 𝑢̃ will not 

satisfy the equation (1) at all points x i.e.  

𝐸𝐴
𝑑2𝑢̃

𝑑𝑥2
+ 𝐹 = 𝑅  

We say that 𝑢̃ has an associated error or Residual 𝑅. The goal is to minimize the residual. The 

method to minimize the residual is called as weighted residual method. This method simply 

multiplies the residual with a weighted function, takes the integral and equates to 0. 

∫ 𝜔 𝑅 = 0 

This approach is also called as Galerkin approach. 𝜔 are called as weight functions or shape 

functions. Substituting for R from (3) in the above equation, 

∫ 𝜔 (𝐸𝐴
𝑑2 𝑢̃ 

𝑑𝑥2
+ 𝐹) = 0 

 

=∫ 𝜔 𝐸𝐴
𝑑2 𝑢 

𝑑𝑥2
 𝑑Ω 

Ω
+ ∫ 𝜔 𝐹 𝑑Ω

Ω
= 0, where ∫

Ω
 denotes integral over the domain Ω. 

For the 1D rod problem, this is integral over 0 to 𝐿. 
 

We can substitute for 𝜔 
𝑑2 𝑢 

𝑑𝑥2  in the first term above with the following information from chain 

rule of differentiation:  

    
𝑑

𝑑𝑥
[𝜔

𝑑𝑢

𝑑𝑥
 ] =

𝑑𝜔

𝑑𝑥

𝑑𝑢

𝑑𝑥
+ 𝜔 

𝑑2 𝑢 

𝑑𝑥2
 

Substituting: 

∫
𝑑

𝑑𝑥
(𝜔𝐸𝐴

𝑑𝑢̃

𝑑𝑥
) 𝑑Ω 

Ω

− ∫ 𝐸𝐴
𝑑𝜔

𝑑𝑥

𝑑𝑢̃

𝑑𝑥
 𝑑Ω 

Ω

+ ∫ 𝜔 𝐹 𝑑Ω = 0 

 
Rearranging terms:   

[𝜔𝐸𝐴
𝑑𝑢̃

𝑑𝑥
]

0

𝐿

+ ∫ 𝜔 𝐹 𝑑Ω
Ω

= ∫ 𝐸𝐴
𝑑𝜔

𝑑𝑥

𝑑𝑢̃

𝑑𝑥
 𝑑Ω 

Ω

 

 

In the above equation, [𝜔𝐸𝐴
𝑑𝑢

𝑑𝑥
]

0

𝐿
is called the boundary term. The coefficient of the weight 

function in the boundary term represents the Neumann BC.  This coefficient is also called as 

(2) 

(3) 

(4) 



secondary variable. 𝐸𝐴
𝑑𝑢

𝑑𝑥
  is the coefficient in the boundary term and is the secondary variable 

above. 𝜔 represents Dirichlet BC and is also called as primary variable. 𝜔 denotes the unknown 

function 𝑢,  at boundaries. Whenever u=0 (from (2) 𝑢 = 0 at 𝑥 = 0), set 𝜔 = 0 . Applying this in 

(4) we get: 

[𝜔𝐸𝐴
𝑑𝑢̃

𝑑𝑥
]

𝐿
+ ∫ 𝜔 𝐹 𝑑𝑥

𝐿

0

= ∫ 𝐸𝐴
𝑑𝜔

𝑑𝑥

𝑑𝑢̃

𝑑𝑥
 𝑑𝑥 

𝐿

0

 

 

Equation (4) is called as weak-form of the PDE. The equation in (1) contains a second-order 

derivative term. This means that there is a requirement that 𝑢 must be differentiable twice so 

that 𝑢 is continuous (at all points x, 𝜕2𝑢/𝜕𝑥2 is real). In equation (3), this requirement is weakened 

in the sense that there are only first-order derivative terms. So, it is sufficient if 𝑢 is differentiable 

once. 

(4) 


