
CS601, Lecture 17/10/2022 – Numerical Solution for a 2D problem using

FDM

The previous lecture focused on computing the numerical solution for two example problems that

are modeled using PDEs and for which the boundary (and initial) conditions given. This lecture

introduces you to the 2D problem (so far, we have been looking at 1D problems) and also some

terminology along the way.

Conditionally stable and unconditionally stable methods: recall that while deriving the

difference equations, we truncated the Taylor series, and this resulted in truncation error. Also

recall that we may have an analytical solution (𝐴) for a PDE and that the analytical solution is

typically expensive to compute and may or may not exist for all the problems. Hence, we use a

numerical solution (𝐷). The numerical solution will have the truncation error. When this numerical

solution is implemented in computer with finite accuracy, a round-off error is also introduced

additionally. So, we have:

round-off error = 𝜖 = 𝑁 − 𝐷

we say that the algorithm is stable if
𝜖𝑛+1

𝜖𝑛 ≤ 1

if this were not the case, then it would mean that the error at time step 𝑡 = 𝑛 + 1 is more than the

error at time step 𝑡 = 𝑛. So, the error would continuously increase as time progresses.

For the time marching problem of heat diffusion through 1D rod discussed in the previous lecture,

if we are using the explicit method, then the method is stable only if Δ𝑡 <= Δ𝑥/𝐶 , where C is a

constant called as wave speed. In other words, if this condition is violated, we could end up

producing a computed result that is impractical / impossible (e.g. temperature at a point on the

rod showing as colder and colder as time progresses.)

For the heat equation problem, if we are using the explicit method, the method is stable only if

Δ𝑡 <= Δ𝑥2/2𝛼.

The implicit method (Crank-Nicholson) discussed in previous class requires imposition of no such

condition on time step Δ𝑡. Hence, the implicit methods are referred to as unconditionally stable

methods. Being an unconditionally stable method, can a method choose any value Δ𝑡 ? Not

actually. Because, if you chose a large value of time step Δ𝑡, you could lose accuracy of the result

that you produce (e.g. suppose you chose Δ𝑡 = 10𝑚𝑖𝑛𝑠, you can compute the temperature at a

point on the rod after 10 mins with computation that time-stepped once. However, it is very likely

that this computation would not be accurate.).

The explicit methods used in time-marching problems are also referred to as conditionally stable

methods because of the requirement of a condition on the time step Δ𝑡.

For problems that do not have time as an independent variable (i.e. spatial problems), what errors

we can expect? Only the truncation error or discretization error. We do not have any concept of

imposition of a condition on the spatial variables here.

2D Heat Conduction Problem:

The following PDE models this problem:

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 0,

where 𝑢(𝑥, 𝑦) is the dependent variable dependent on spatial variables 𝑥 and 𝑦.

The above equation is an example of an elliptic PDE and is also called as Laplace equation. If

the RHS of above equation is non-zero and is 𝑢(𝑥, 𝑦), then the equation is also called as Poisson

equation.

When you discretize the 2D domain, you get a small rectangle as the sub-domain. Contrast this

with 1D problems where you got a line as a sub-domain. In structured grids the shape and size

of the sub-domain is same. In unstructured grids this is not the case. The right-hand-side of the

following figure illustrates the discretization of a 2D rectangular domain and the resulting sub-

domains. We have multiple grid points, each identified with a pair (𝑖, 𝑗), where the 𝑖 denotes the

index along the 𝑥 direction and 𝑗 denotes the index along the 𝑦 direction. The left-hand-side of

the figure focuses on a grid point (2,2). The value of the dependent variable at a grid point (𝑥, 𝑦)

is shown as 𝑢(𝑥, 𝑦) and denoted by 𝑢𝑥𝑦. The discretization steps along the 𝑥 and 𝑦 direction are

𝛿𝑥 and 𝛿𝑦 respectively. We can choose the values of 𝛿𝑥 an 𝛿𝑦 (can be same or different).

Typically, they are the same value.

Numerical solution for PDE of equation (1):

Using difference equations for
𝜕𝑢

𝜕𝑥
 and

𝜕𝑢

𝜕𝑦
, we have

𝜕𝑢

𝜕𝑥
=

𝑢(𝑥 + 𝛿𝑥) − 2𝑢(𝑥) + 𝑢(𝑥 − 𝛿𝑥)

𝛿𝑥
,

𝜕𝑢

𝜕𝑦
=

𝑢(𝑦 + 𝛿𝑦) − 2𝑢(𝑦) + 𝑢(𝑦 − 𝛿𝑦)

𝛿𝑦

Similarly, using difference equations for
𝜕2𝑢

𝜕𝑥2 and
𝜕2𝑢

𝜕𝑦2, we have

𝜕2𝑢

𝜕𝑥2
≈

(𝑢(𝑥 + 𝛿𝑥, 𝑦) − 2𝑢(𝑥, 𝑦) + 𝑢(𝑥 − 𝛿𝑥, 𝑦))

(𝛿𝑥)2

(1)

𝜕2𝑢

𝜕𝑦2
≈

(𝑢(𝑥, 𝑦 + 𝛿𝑦) − 2𝑢(𝑥, 𝑦) + 𝑢(𝑥, 𝑦 − 𝛿𝑦))

(𝛿𝑦)2

Substituting the above in equation (1):

(𝑢(𝑥 + 𝛿𝑥, 𝑦) − 2𝑢(𝑥, 𝑦) + 𝑢(𝑥 − 𝛿𝑥, 𝑦))

(𝛿𝑥)2

 +

(𝑢(𝑥, 𝑦 + 𝛿𝑦) − 2𝑢(𝑥, 𝑦) + 𝑢(𝑥, 𝑦 − 𝛿𝑦))

(𝛿𝑦)2

 =

(𝑢(𝑥 + 𝛿𝑥, 𝑦) + 𝑢(𝑥, 𝑦 + 𝛿𝑦) − 4𝑢(𝑥, 𝑦) + 𝑢(𝑥 − 𝛿𝑥, 𝑦) + 𝑢(𝑥, 𝑦 − 𝛿𝑦))

(ℎ)2

The above equation is also called as algebraic equation.

For each grid point, write equation (2) and obtain a system of equations.

IMPORTANT: it is absolutely critical to number the grid points in such a way that you get a nice

structure to the matrix A. if you do not number the grid points properly, your non-zeros will be

scattered all over the matrix. If the numbering is incorrect, your computation will not be able to

exploit the structure inherent in the matrix. However, your solution will still be as expected.

Once you have a system of equations, how does this system of equations look like and how to

solve them?

Next: slides from previous years’ offering of CS601

(2)

Elliptic Equation – Numerical Solution

• Representing 𝑢(𝑥, 𝑦)

Nikhil Hegde 6

𝛿𝑦

𝑗 = 1

𝑖 = 1 𝑖 = 2 . . .

𝑥 − 𝛿𝑥

𝒚

𝒙

𝑗 = 2

𝑥

𝑥 + 𝛿𝑥

𝑦 + 𝛿𝑦

𝑦 − 𝛿𝑦

𝑦

𝛿𝑥 𝛿𝑥

𝛿𝑦

𝒖(𝒙, 𝒚) Notation: ui,j

Elliptic Equation – Numerical Solution

• Representing 𝑢(𝑥 − 𝛿𝑥, 𝑦)

Nikhil Hegde 7

𝛿𝑦

𝑗 = 1

𝑖 = 1 𝑖 = 2 . . .

𝑥 − 𝛿𝑥

𝒚

𝒙

𝑗 = 2

𝑥

𝑥 + 𝛿𝑥

𝑦 + 𝛿𝑦

𝑦 − 𝛿𝑦

𝑦

𝛿𝑥 𝛿𝑥

𝛿𝑦

𝒖(𝒙 − 𝜹𝒙, 𝒚) Notation: ui-1,j

Elliptic Equation – Numerical Solution

• Representing 𝑢(𝑥 + 𝛿𝑥, 𝑦)

Nikhil Hegde 8

𝛿𝑦

𝑗 = 1

𝑖 = 1 𝑖 = 2 . . .

𝑥 − 𝛿𝑥

𝒚

𝒙

𝑗 = 2

𝑥

𝑥 + 𝛿𝑥

𝑦 + 𝛿𝑦

𝑦 − 𝛿𝑦

𝑦

𝛿𝑥 𝛿𝑥

𝛿𝑦

𝒖(𝒙 + 𝜹𝒙, 𝒚) Notation: ui+1,j

Elliptic Equation – Numerical Solution

• Representing 𝑢(𝑥, 𝑦 − 𝛿𝑦)

Nikhil Hegde 9

𝛿𝑦

𝑗 = 1

𝑖 = 1 𝑖 = 2 . . .

𝑥 − 𝛿𝑥

𝒚

𝒙

𝑗 = 2

𝑥

𝑥 + 𝛿𝑥

𝑦 + 𝛿𝑦

𝑦 − 𝛿𝑦

𝑦

𝛿𝑥 𝛿𝑥

𝛿𝑦

𝒖(𝒙, 𝒚 − 𝜹𝒚)

Notation: ui,j-1

Elliptic Equation – Numerical Solution

• Representing 𝑢(𝑥, 𝑦 + 𝛿𝑦)

Nikhil Hegde 10

𝛿𝑦

𝑗 = 1

𝑖 = 1 𝑖 = 2 . . .

𝑥 − 𝛿𝑥

𝒚

𝒙

𝑗 = 2

𝑥

𝑥 + 𝛿𝑥

𝑦 + 𝛿𝑦

𝑦 − 𝛿𝑦

𝑦

𝛿𝑥 𝛿𝑥

𝛿𝑦

𝒖(𝒙, 𝒚 + 𝜹𝒚)

Notation: ui,j+1

Elliptic Equation – Numerical Solution

• Rewriting:

𝑢 𝑥 + 𝛿𝑥, 𝑦 + 𝑢 𝑥, 𝑦 + 𝛿𝑦 − 4𝑢 𝑥, 𝑦 + 𝑢 𝑥 − 𝛿𝑥, 𝑦 + 𝑢 𝑥, 𝑦 − 𝛿𝑦

ℎ 2

= 𝑓(𝑥, 𝑦)

ui+1,j + ui,j+1 - 4ui,j + ui-1,j + ui,j-1 = fi,j
h2

Nikhil Hegde 11𝑖

𝑗 5-point stencil
ui,j

Elliptic Equation – Computing Stencil

• Consider the boundary-value problem:

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 in the square 0 < 𝑥 < 1, 0 < 𝑦 < 1

𝑢 = 𝑥2𝑦 on the boundary, ℎ = 1/3

ui+1,j + ui,j+1 - 4ui,j + ui-1,j + ui,j-1 = 0

h2

Nikhil Hegde 12
𝑖

𝑗

u01u00 u20 u30

u11u01 u21 u31

u12u02 u22 u32

u13u03 u23 u33

𝑖

𝑗

00 0 0

u110 u21 1/3

u120 u22 2/3

1/90 4/9 1

Elliptic Equation – Computing Stencil

• Computing u11

Nikhil Hegde 13

𝑖

𝑗

00 0 0

u110 u21 1/3

u120 u22 2/3

1/90 4/9 1

u21 + u12 - 4u11 + u01 + u10 = 0

u21 + u12 - 4u11 + 0 + 0 = 0

(ui+1,j + ui,j+1 - 4ui,j + ui-1,j + ui,j-1 = 0)

Elliptic Equation – Computing Stencil

• Computing u21

Nikhil Hegde 14

𝑖

𝑗

00 0 0

u110 u21 1/3

u120 u22 2/3

1/90 4/9 1

u31 + u22 - 4u21 + u11 + u20 = 0

1/3 + u22 - 4u21 + U11 + 0 = 0

(ui+1,j + ui,j+1 - 4ui,j + ui-1,j + ui,j-1 = 0)

Elliptic Equation – Computing Stencil

• Computing u12

Nikhil Hegde 15

𝑖

𝑗

00 0 0

u110 u21 1/3

u120 u22 2/3

1/90 4/9 1

u22 + u13 - 4u12 + u02 + u11 = 0

u22 + 1/9 - 4u12 + 0 + u11 = 0

(ui+1,j + ui,j+1 - 4ui,j + ui-1,j + ui,j-1 = 0)

Elliptic Equation – Computing Stencil

• Computing u22

Nikhil Hegde 16

𝑖

𝑗

00 0 0

u110 u21 1/3

u120 u22 2/3

1/90 4/9 1

u32 + u23 - 4u22 + u12 + u21 = 0

2/3 + 4/9 - 4u22 + u12 + u21 = 0

(ui+1,j + ui,j+1 - 4ui,j + ui-1,j + ui,j-1 = 0)

Elliptic Equation – Computing Stencil

• System of Equations

Nikhil Hegde 17

𝑖

𝑗

0

0

0 0

u110 u21 1/3

u120 u22 2/3

1/90 4/9 1

2/3 + 4/9 - 4u22 + u12 + u21 = 0

(ui+1,j + ui,j+1 - 4ui,j + ui-1,j + ui,j-1 = 0)

u22 + 1/9 - 4u12 + 0 + u11 = 0

1/3 + u22 - 4u21 + u11 + 0 = 0

u21 + u12 - 4u11 + 0 + 0 = 0

CenterRight Top Left Bottom

Elliptic Equation – Computing Stencil

• Computing System of Equations:

Nikhil Hegde 18

2/3 + 4/9 - 4u22 + u12 + u21 = 0

u22 + 1/9 - 4u12 + 0 + u11 = 0

1/3 + u22 - 4u21 + u11 + 0 = 0

u21 + u12 - 4u11 + 0 + 0 = 0

−4 1 1 0
1 − 4 0 1
1 0 − 4 1
0 1 1 − 4

𝑢11
𝑢21
𝑢12
𝑢22

=

0
−1/3
−1/9
−10/9

Matrix A has only coefficients

Ax=B

A x = B 1
1 -4 1

1

Elliptic Equation – Computing Stencil

• Consider the boundary-value problem (here 𝑢𝑥𝑥 denotes 𝜕2𝑢/𝜕𝑥2):

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 in the square 0 < 𝑥 < 1, 0 < 𝑦 < 1

𝑢 = 𝑥2𝑦 on the boundary, 𝒉 = 𝟏/𝟓

Nikhil Hegde 19

𝑖

𝑗

u01u00 u20 u30

u11u01 u21 u31

u12u02 u22 u32

u13u03 u23 u33

u40 u50

u41 u51

u42 u52

u43 u53u43 u53u33 u43 u53

u14u04 u24 u34 u44 u54

u15u05 u25 u35 u45 u55

Elliptic Equation – Computing Stencil

• Computing stencil (boundary values are all given): 16

unknowns (u11 to u44), So, 16 equations.

Nikhil Hegde 20

𝑖

𝑗

u01u00 u20 u30

u11u01 u21 u31

u12u02 u22 u32

u13u03 u23 u33

u40 u50

u41 u51

u42 u52

u43 u53u43 u53u33 u43 u53

u14u04 u24 u34 u44 u54

u15u05 u25 u35 u45 u55

Elliptic Equation – Computing Stencil

Nikhil Hegde 21

-4 1 0 0 1

1 -4 1 0 0 1

0 1 -4 1 0 0 1

0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

• Lot of Zeros!

• Five non-zero bands

• Top-left to bottom-right diagonals

• Main diagonal is all -4 (from center of the stencil)

• What about others?

Elliptic Equation – Computing Stencil

Nikhil Hegde 22

-4 1 0 0 1

1 -4 1 0 0 1

0 1 -4 1 0 0 1

0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

• Lot of Zeros!

• Five non-zero bands

• Top-left to bottom-right diagonals

• Main diagonal is all -4 (from center of the stencil)

• What about others?

Left

Elliptic Equation – Computing Stencil

Nikhil Hegde 23

-4 1 0 0 1

1 -4 1 0 0 1

0 1 -4 1 0 0 1

0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

• Lot of Zeros!

• Five non-zero bands

• Top-left to bottom-right diagonals

• Main diagonal is all -4 (from center of the stencil)

• What about others?

Right

Elliptic Equation – Computing Stencil

Nikhil Hegde 24

-4 1 0 0 1

1 -4 1 0 0 1

0 1 -4 1 0 0 1

0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

• Lot of Zeros!

• Five non-zero bands

• Top-left to bottom-right diagonals

• Main diagonal is all -4 (from center of the stencil)

• What about others?

Bottom

Elliptic Equation – Computing Stencil

Nikhil Hegde 25

-4 1 0 0 1

1 -4 1 0 0 1

0 1 -4 1 0 0 1

0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

1 0 0 1 -4 1 0 0 1

• Lot of Zeros!

• Five non-zero bands

• Top-left to bottom-right diagonals

• Main diagonal is all -4 (from center of the stencil)

• What about others?

Top

Computing Stencil – Iterative Methods

• Jacobi and Gauss-Seidel

– Start with an initial guess for the unknowns u0
ij

– Improve the guess u1
ij

– Iterate: derive the new guess, un+1
ij , from old guess

un
ij

• Solution (Jacobi):

– Approximate the value of the center with old values

of (left, right, top, bottom)

26Nikhil Hegde

Background – Jacobi Iteration

• Goal: find solution to system of equations

represented by AX=B

• Approach: find sequence of approximations X0

X1 X2 . . . Xn , which gradually approach X.
– X0 is called initial guess, Xi’s called iterates

• Method:
– Split A into A=L+D+U e.g.

27Nikhil Hegde

−4 1 1 0
1 − 4 0 1
1 0 − 4 1
0 1 1 − 4

=

0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0

+

−4 0 0 0
0 − 4 0 0
0 0 − 4 0
0 0 0 − 4

+

0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0

L D U

Background – Jacobi Iteration

• Compute: AX=B is (L+D+U)X=B
 DX = -(L+U)X+B

 DX(k+1)= -(L+U)Xk+B (iterate step)

 X(k+1)= D-1 (-(L+U)Xk) + D-1B

(As long as D has no zeros in the diagonal X(k+1) is obtained)

• E.g.

−4 0 0 0
0 − 4 0 0
0 0 − 4 0
0 0 0 − 4

𝑢11
𝑢21
𝑢12
𝑢22

= -

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

𝑢11
𝑢21
𝑢12
𝑢22

+

0
−1/3
−1/9
−10/9

,

uij ‘s value in (1)st iteration is computed based on uij values

computed in (0)th iteration
28Nikhil Hegde

01

Background – Jacobi Iteration

• E.g.

−4 0 0 0
0 − 4 0 0
0 0 − 4 0
0 0 0 − 4

𝑢11
𝑢21
𝑢12
𝑢22

= -

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

𝑢11
𝑢21
𝑢12
𝑢22

+

0
−1/3
−1/9
−10/9

,

uij ‘s value in (k+1)st iteration is computed based on uij
values computed in (k)th iteration

• Center’s value is updated. Why?

29Nikhil Hegde

kk+1

𝑖

𝑗 5-point stencil
ui,j

Computing Stencil – Recap

• Jacobi and Gauss-Seidel (Solution approach)

– Start with an initial guess for the unknowns u0
ij

– Improve the guess u1
ij

– Iterate: derive the new guess, un+1
ij , from old guess

un
ij

• Solution (Jacobi):

– Approximate the value of the center with old values

of (left, right, top, bottom)

30Nikhil Hegde

Computing Stencil – Recap

• 𝒖𝒓𝒊𝒈𝒉𝒕 + 𝒖𝒕𝒐𝒑 − 4𝒖𝒄𝒆𝒏𝒕𝒆𝒓 + 𝒖𝒍𝒆𝒇𝒕 + 𝒖𝒃𝒐𝒕𝒕𝒐𝒎 = 𝟎

=> 𝒖𝒄𝒆𝒏𝒕𝒆𝒓 = 𝟏/𝟒(𝒖𝒓𝒊𝒈𝒉𝒕 + 𝒖𝒕𝒐𝒑 + 𝒖𝒍𝒆𝒇𝒕 + 𝒖𝒃𝒐𝒕𝒕𝒐𝒎)

• Applying Jacobi Iteration:

𝒖𝒄𝒆𝒏𝒕𝒆𝒓
(𝒌+𝟏)

= 1/4(𝒖𝒓𝒊𝒈𝒉𝒕
(𝒌)

+ 𝒖𝒕𝒐𝒑
(𝒌)

+ 𝒖𝒍𝒆𝒇𝒕
(𝒌)

+ 𝒖𝒃𝒐𝒕𝒕𝒐𝒎
(𝒌)

)

31Nikhil Hegde

Computing Stencil – Recap

• Example: applying Jacobi Iteration:

𝒖𝒄𝒆𝒏𝒕𝒆𝒓
(𝒌+𝟏)

= 1/4(𝒖𝒓𝒊𝒈𝒉𝒕
(𝒌)

+ 𝒖𝒕𝒐𝒑
(𝒌)

+ 𝒖𝒍𝒆𝒇𝒕
(𝒌)

+ 𝒖𝒃𝒐𝒕𝒕𝒐𝒎
(𝒌)

)

32Nikhil Hegde

𝑖

𝑗

u11 u21 u31

u12 u22 u32

u13 u23 u33

u41

u42

u43u43u33 u43

u14 u24 u34 u44
1) Compute u11 using initial guess for u12 and

u21. u01 and u10 are known from boundary

conditions

Iteration 1

u01

u10

Computing Stencil – Recap

• Example: applying Jacobi Iteration:

𝒖𝒄𝒆𝒏𝒕𝒆𝒓
(𝒌+𝟏)

= 1/4(𝒖𝒓𝒊𝒈𝒉𝒕
(𝒌)

+ 𝒖𝒕𝒐𝒑
(𝒌)

+ 𝒖𝒍𝒆𝒇𝒕
(𝒌)

+ 𝒖𝒃𝒐𝒕𝒕𝒐𝒎
(𝒌)

)

33Nikhil Hegde

𝑖

𝑗

u11 u21 u31

u12 u22 u32

u13 u23 u33

u41

u42

u43u43u33 u43

u14 u24 u34 u44
1) Compute u11 using initial guess for u12 and

u21. u01 and u10 are known from boundary

conditions

Iteration 1

u20

2) Compute u21 using initial guess for

u11,u31, and u22. u20 are known from

boundary conditions

In 2), note that the initial guess for u11 is used even though u11 was

updated just before in 1)

Elliptic Equation – Computing Stencil

• In every iteration, suppose we follow the

computing order as shown (dashed):

Nikhil Hegde 34

𝑖

𝑗

u01u00 u20 u30

u11u01 u21 u31

u12u02 u22 u32

u13u03 u23 u33

u40 u50

u41 u51

u42 u52

u43 u53u43 u53u33 u43 u53

u14u04 u24 u34 u44 u54

u15u05 u25 u35 u45 u55

𝑖

𝑗
ui,j

In any iteration, what are all

the points of a 5-point stencil

already updated while

computing uij ?

Elliptic Equation – Computing Stencil

Nikhil Hegde 35

𝑖

𝑗

u01u00 u20 u30

u11u01 u21 u31

u12u02 u22 u32

u13u03 u23 u33

u40 u50

u41 u51

u42 u52

u43 u53u43 u53u33 u43 u53

u14u04 u24 u34 u44 u54

u15u05 u25 u35 u45 u55

What are the points that are

already computed at ui,j?
uleft,ubottom

ui,j

Background – Gauss-Seidel Iteration

• Compute: AX=B is (L+D+U)X=B
 (L+D)X = -UX+B

 (L+D)X(k+1)= -UXk+B (iterate step)

 X(k+1)= (L+D)-1 (-UXk) + (L+D)-1B

(As long as L+D has no zeros in the diagonal X(k+1) is obtained)

• E.g.

−4 0 0 0
1 − 4 0 0
1 0 − 4 0
0 1 1 − 4

𝑢11
𝑢21
𝑢12
𝑢22

= -

0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0

𝑢11
𝑢21
𝑢12
𝑢22

+

0
−1/3
−1/9
−10/9

36Nikhil Hegde

01

Computing Stencil – Gauss-Seidel

• Gauss-Seidel: Applying for 2D Laplace Equation

𝒖𝒄𝒆𝒏𝒕𝒆𝒓
(𝒌+𝟏)

= 1/4(𝒖𝒓𝒊𝒈𝒉𝒕
(𝒌)

+ 𝒖𝒕𝒐𝒑
(𝒌)

+ 𝒖𝒍𝒆𝒇𝒕
(𝒌+𝟏)

+ 𝒖𝒃𝒐𝒕𝒕𝒐𝒎
(𝒌+𝟏)

)

• Gauss-Seidel: Observations

– For a given problem and initial guess, Gauss-seidel

converges faster than Jacobi

– An iteration in Jacobi can be parallelized

37Nikhil Hegde

