CS601, Lecture 17/10/2022 — Numerical Solution for a 2D problem using
FDM

The previous lecture focused on computing the numerical solution for two example problems that
are modeled using PDEs and for which the boundary (and initial) conditions given. This lecture
introduces you to the 2D problem (so far, we have been looking at 1D problems) and also some
terminology along the way.

Conditionally stable and unconditionally stable methods: recall that while deriving the
difference equations, we truncated the Taylor series, and this resulted in truncation error. Also
recall that we may have an analytical solution (4) for a PDE and that the analytical solution is
typically expensive to compute and may or may not exist for all the problems. Hence, we use a
numerical solution (D). The numerical solution will have the truncation error. When this numerical
solution is implemented in computer with finite accuracy, a round-off error is also introduced
additionally. So, we have:

round-off error=€¢ = N—-D
n+1
we say that the algorithm is stable if Ee—n <1

if this were not the case, then it would mean that the error at time step t = n + 1 is more than the
error at time step t = n. So, the error would continuously increase as time progresses.

For the time marching problem of heat diffusion through 1D rod discussed in the previous lecture,
if we are using the explicit method, then the method is stable only if At <= Ax/C , where Cis a
constant called as wave speed. In other words, if this condition is violated, we could end up
producing a computed result that is impractical / impossible (e.g. temperature at a point on the
rod showing as colder and colder as time progresses.)

For the heat equation problem, if we are using the explicit method, the method is stable only if
At <= Ax?/2a.

The implicit method (Crank-Nicholson) discussed in previous class requires imposition of no such
condition on time step At. Hence, the implicit methods are referred to as unconditionally stable
methods. Being an unconditionally stable method, can a method choose any value At ? Not
actually. Because, if you chose a large value of time step At, you could lose accuracy of the result
that you produce (e.g. suppose you chose At = 10mins, you can compute the temperature at a
point on the rod after 10 mins with computation that time-stepped once. However, it is very likely
that this computation would not be accurate.).

The explicit methods used in time-marching problems are also referred to as conditionally stable
methods because of the requirement of a condition on the time step At.

For problems that do not have time as an independent variable (i.e. spatial problems), what errors
we can expect? Only the truncation error or discretization error. We do not have any concept of
imposition of a condition on the spatial variables here.



2D Heat Conduction Problem:

The following PDE models this problem:

9%u 9%u
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where u(x, y) is the dependent variable dependent on spatial variables x and y.

The above equation is an example of an elliptic PDE and is also called as Laplace equation. If
the RHS of above equation is non-zero and is u(x, y), then the equation is also called as Poisson
equation.

When you discretize the 2D domain, you get a small rectangle as the sub-domain. Contrast this
with 1D problems where you got a line as a sub-domain. In structured grids the shape and size
of the sub-domain is same. In unstructured grids this is not the case. The right-hand-side of the
following figure illustrates the discretization of a 2D rectangular domain and the resulting sub-
domains. We have multiple grid points, each identified with a pair (i, j), where the i denotes the
index along the x direction and j denotes the index along the y direction. The left-hand-side of
the figure focuses on a grid point (2,2). The value of the dependent variable at a grid point (x, y)
is shown as u(x,y) and denoted by u,,. The discretization steps along the x and y direction are
6x and &y respectively. We can choose the values of éx an §y (can be same or different).
Typically, they are the same value.
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u; denotes the dependent variable at grid point (i.j)

Numerical solution for PDE of equation (1):
. . . ou Ju
Using difference equations for P and % we have

Ju  u(x + 6x) — 2u(x) + u(x — 6x) ou  u(y+96y) —2u(y) + u(y — 6y)

dx 8x ’ dy Sy
_— . . . 2%u 2%u
Similarly, using difference equations for 357 and %7 we have

0%u 5 (u(x + 6x, y) — 2u(x, y) + u(x — 6x,y))
ax2 (6x)2



0%u N (ulx,y + 6y) — 2u(x, y) + u(x,y — 8y))
ay? "~ (6y)?

Substituting the above in equation (1):

(u(x + &x, y) — 2u(x, y) + u(x — dx, y))
(6x)?

+

(u(x,y + 6y) — 2ulx, y) + ulx,y — Sy))
(6y)?

(u(x +6x, y) + u(x,y +8y) —4u(x, y) + u(x — 6x,y) + ulx,y — 6y)) 2)
(h)?

The above equation is also called as algebraic equation.

For each grid point, write equation (2) and obtain a system of equations.

IMPORTANT: it is absolutely critical to humber the grid points in such a way that you get a nice
structure to the matrix A. if you do not number the grid points properly, your non-zeros will be
scattered all over the matrix. If the numbering is incorrect, your computation will not be able to
exploit the structure inherent in the matrix. However, your solution will still be as expected.

Once you have a system of equations, how does this system of equations look like and how to
solve them?

Next: slides from previous years’ offering of CS601



Elliptic Equation — Numerical Solution

* Representing u(x, y)
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Elliptic Equation — Numerical Solution

 Representing u(x — 6x,y)
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Elliptic Equation — Numerical Solution

 Representing u(x + 6x,y)
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Elliptic Equation — Numerical Solution

* Representing u(x,y — dy)
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Elliptic Equation — Numerical Solution

« Representing u(x,y + d8y)

x — O0x x + 6x
\I .|X [ y+5y
_ u(x'yo-l_ 6y) _/
) ' "U. .
PURPSR W G LA Notation: u; 4,4
oy

10



Elliptic Equation — Numerical Solution

* Rewriting:
(u(x +6x,y) + u(lx,y + 6y) —4ulx,y) + ulx — éx,y) + u(x,y — 6y))
(h)?
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Elliptic Equation — Computing Stencll

* Consider the boundary-value problem:
u, + uyy = 0inthesquare0 < x < 1,0 <y <1

u = x%y on the boundary, h = 1/3
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Elliptic Equation — Computing Stencll
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 Computing u,, *
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Elliptic Equation — Computing Stencll

0 1/9 4/9 1
®* o

« Computing u,,
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Elliptic Equation — Computing Stencll

%) 1/9 4/9 1
®

 Computing u,, *
(Ujpg,9 + Uj 440 -4U; 5T U5 5+ Us 5.1 . 0) j 0 U, uzzL *2/3
Uy, + Uz -4Ug; + Ugy + Uy = 0 0 | u, unr J1/3
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Elliptic Equation — Computing Stencll

%) 1/9 4/9 1
®

« Computing u,, °
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Elliptic Equation — Computing Stencll

+ System of Equations A

®
(Ujeq,5 + Ug gua-4U; 5t U5 5+ U 5 - 0) . 0 Uia| Uy, *2/3
J
%) u, uzjr .1/3
Right Top  Center Left Bottom
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1/3+ u,, - 4u,; + u,; + 0 = 0

2/3 + 4/9 -4u,, +u,, + U,; = 0
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Elliptic Equation — Computing Stencll

« Computing System of Equations:

u,, + U, - 4u;; + 0+ 0 = 0O
1/3 + uy,, - 4u,; + U, + 0 = 0
u, + 1/9 - 4u,, + 0+ u;; = 0

2/3+ 4/9 -4u,, +u,, + U,; = 0O

—4 1 1 0\ /uy 0
1 —4 0 1 |[uy|_|( —1/3 Ax=B
10 —4 1)\u, "\ =-1/9
01 1 —4/ \uy, ~10/9
A X = B 1

Matrix A has only coefficients 1 "



Elliptic Equation — Computing Stencll

« Consider the boundary-value problem (nere v, denotes a2u/0x2)
U, + Uy, = 0inthesquare 0 < x < 1,0 <y < 1

u = x*y onthe boundary, h =1/5
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Elliptic Equation — Computing Stencll

Computing stencil (boundary values are all given): 16
unknowns (u,, to u,,), So, 16 equations.

u Ujs Uys Uzs Uys  Uss
05 .
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Elliptic Equation — Com

uting Stencill

-4 11 (0 |O 1
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Lot of Zeros!

Five non-zero bands

Top-left to bottom-right diagonals

Main diagonal is all -4 (from center of the stencil)
What about others?
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uting Stencill

Elliptic Equation — Com

- 1 0 0 1
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» Lot of Zeros! \
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» Top-left to bottom-right diagonals
« Main diagonal is all -4 (from center of the stencil)
« What about others?
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Elllptlc Equatlon — Com

4 0
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Right

Main diagonal is all -4 (from center of the stencil)

What about others?

uting Stencill
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Elliptic Equation — Com

uting Stencill
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Main diagonal is all -4 (from center of the stencil)
What about others?
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Elliptic Equation — Computing Stencll
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Lot of Zeros!
Five non-zero bands
» Top-left to bottom-right diagonals
Main diagonal is all -4 (from center of the stencil)
What about others?

Top
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Computing Stenclil — Iterative Methods

« Jacobi and Gauss-Seidel
— Start with an initial guess for the unknowns u®;
— Improve the guess u?;

— Iterate: derive the new guess, u"!
un”

j » from old guess

 Solution (Jacobi):

— Approximate the value of the center with old values
of (left, right, top, bottom)
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Background — Jacobi Iteration

« Goal: find solution to system of equations
represented by AX=B

« Approach: find sequence of approximations X°

Xt X2 . . . X" which gradually approach X.
- X is called initial guess, X*’ s called iterates

 Method.:
— Split A into A=L+D+U e.qg.

—4 1 1 0 0
1 —4 0 1) (1
1 0 —4 1] \1
01 1 —4 0

- O O

O R = O
\/

o O O M
o OO M
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Background — Jacobi Iteration

« Compute: AX=B is (L+D+U)X=B
= DX = -(L+U)X+B

= DX+ = - (L+U)Xk+B (iterate step)
= XM+D=p-1 (-(L+U)Xk) + D-1B
(As long as D has no zeros in the diagonal X(k+1) js obtained)

—4 0 0 0\ /u;\1 0 1 1 0\ /uy\0 0
0 —4 0 Of[uy\_([10 0 1\[uy —1/3
 E.d. = - +
E.g 0 0 —4 0]\ uy 1 0 0 1]\ up -1/9 |’
0 0 0 —4/ \uy 0 1 1 0/ \uy —-10/9
e

u;; 'svaluein (1)s* iteration is computed based on u;; values

computed in (@)t" iteration
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Background — Jacobi Iteration

—4 0 0 0\ /un\k+1 /0 0\ /uq\K 0
O _4‘ 0 0 u21 _ 1 1 u21 _1/3
¢ " " —_— - +
E g 0 0 —4 0 u12 1 1 u12 _1/9 :
000 —4/ \uy 0 0/ \uy, —10/9

u;; svaluein (k+1)** iteration is computed based on uy;
values computed in (k)" iteration

1
0
0
1
C

» Center’s value is updated. Why?

j ¢ oo 5-point stencil
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Computing Stencil — Recap

« Jacobi and Gauss-Seidel (Solution approach)
— Start with an initial guess for the unknowns u®;
— Improve the guess u?;

— lterate: derive the new guess, u"*?!
un”

j » from old guess

« Solution (Jacobi):

— Approximate the value of the center with old values
of (left, right, top, bottom)
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Computing Stencil — Recap

° uright + utop o 4ucenter + uleft + Upottom = 0
=> Ucenter = 1/4(uright + utop + uleft + ubottom)
« Applying Jacobi Iteration:

(k+1) _ (k) (k) (k) (k)
Ucenter = 1/4(uright + utop + uleft + ubottom)
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Computing Stencil — Recap

« Example: applying Jacobi Iteration:

(k+1) _ (k) (k) (k) (k)
center — 1/4(uright + utop + uleft + ubottom)

. ——9
. 1) Compute u., using initial quess for u,, and
P 11 g g 12

Ups| Uys| Usq U
13) Yoz Usg Haz & U,,. Uy, and u,, are known from boundary

J U, | Uy, ¢u3¥42$ J conditions
:
°

»

Uig l R
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Computing Stencil — Recap

« Example: applying Jacobi Iteration:

(k+1) _ (k) (k) (k) (k)
Ucenter = 1/4(uright + utop + uleft + ubottom)
e f ﬂ
N u.-l u ud u 1) Compute u,, using initial guess for u,, and
130 Tozg Usy Has U,,. Uy, and u,, are known from boundary
J Up | Uyy | Usy | Uy, conditions
gy

Uqq Uy; | Us u41? + 2) Compute u,, using initial guess for

U;;,Us;, andu,,. u,, are known from
Uy o/ & ® boundary conditions

A

[
»

In 2); note that the initial guess for u,, is used even though u,; was

updated just before in 1) 33



Elliptic Equation — Computing Stencll

* In every iteration, suppose we follow the
computing order as shown (dashed):

Ugs Ups Uzs  Uzs Ugs  Usg _ _
R In any iteration, what are all

“5&+ the points of a 5-point stencil
Ucs already updated while
t ¢ computing u;; ?
Us,
J
US A .
Usg j < ui.:j o
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Elliptic Equation — Computing Stencll

Ugs Ujs Uy  Uzg Uy Uss

] f #
Uga | Uyg uzium u4gku5g+
u u u u u u
03 13 Yazg Us 4% 5% |
U | U L u What are the points that are
2] 12 22 | U3y U42$ Usg, L I "
> already computed at u; "
u u
Holg Ui1g Uorg Usy “ 2 Uefts Upottom
.
® ® ®
i
.
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Background — Gauss-Seidel lteration

« Compute: AX=B is (L+D+U)X=B
= (L+D)X = -UX+B

= (L+D)X(+1)= -uUXk+B (iterate step)
— X(+)= (L+D)-1 (-UXX) + (L+D)-1B

(As long as L+D has no zeros in the diagonal X(k*1) is obtained)
—4 0 0 O u11 1 0O 1 1 O ull 0
1 —4 0 0|[uy|_ (00 0 1|[uy —1/3
¢ n n —_— - +
E g 1 O —4 0 u12 0O 0 0 1 u12 _1/9
0 1 1 —4/ \uy, 0 0 0 0/ \uy —10/9
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Computing Stencil — Gauss-Seidel

« Gauss-Seidel: Applying for 2D Laplace Equation
(k+1) 2 D )

(k+1) _ (k) (k)
center — 1/4(uright + utop + uleft Upottom

 Gauss-Seidel: Observations

— For a given problem and initial guess, Gauss-seidel
converges faster than Jacobi

— An iteration in Jacobi can be parallelized
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