
CS601, Lecture 13/10/2022 – Computing Numerical Solution

In the previous lecture, we saw how first- and second-order derivatives can be approximated

using difference equations. These equations are at the heart of the finite difference method (FDM)

of solving PDEs via a computer. In FDM, all partial derivatives are approximated with the help of

difference equations. Many other techniques exist to solve PDEs and finite element method (FEM)

is another example. In FEM, the partial derivatives appearing the PDEs are approximated

differently. We also saw in the previous lecture the truncation error and got to know terms like

first-order accurate and second-order accurate. In this lecture we consider two example problems

and see how a numerical solution is computed while approximating PDEs.

Computing Numerical Solution:

Example 1: 1D heat conduction equation for fins.

Recall that the first step in computing the numerical solution is to discretize the domain and

represent using grid points. Assume that the 1D domain of length 𝑙 is subdivided into N sub-

domains. So, we have Δ𝑥, the spacing between grid points, = 𝑙/𝑁 and there exist N+1 grid points.

This problem can be modeled using the following PDE:

𝜕2𝑇

𝜕𝑥2 − ℎ𝑃/𝑘𝐴(𝑇 − 𝑇𝑓) = 0,

where
ℎ𝑃

𝜅𝐴
 is a constant and 𝑇𝑓= temperature at all grid points is known.

The above PDE describes the temperature variation along different points on the fin.

We have the boundary conditions as: temperature at 𝑥 = 0 as 𝑇𝑏 and at 𝑥 = 𝑙 as 𝑇𝑙

Rewriting equation (1) using the difference equation for second order derivative (from previous

lecture) to compute the temperature at grid point 𝑖:

(𝑇𝑖+1 − 2𝑇𝑖 + 𝑇𝑖−1)/(Δ𝑥)2 − ℎ𝑝/𝑘𝐴(𝑇𝑖 − 𝑇𝑓) = 0

= (𝑻𝒊+𝟏 − 𝟐𝑻𝒊 + 𝑻𝒊−𝟏) − 𝜷(𝑻𝒊 − 𝑻𝒇) = 𝟎 , where 𝛽 =
ℎ𝑃

𝜅𝐴
(Δ𝑥)2

For grid point 2 (i=2), equation (2) becomes:

(𝑇3 − 2𝑇2 + 𝑇1) − 𝛽(𝑇2 − 𝑇𝑓) = 0

= (𝑇1 − (2 + 𝛽)𝑇2 + 𝑇3) = −𝛽𝑇𝑓 (we know that 𝑇1 = 𝑇𝑏)

Similarly, for grid point 3 (i=3), equation (2) becomes:

(1)

(2)

(𝑇2 − (2 + 𝛽)𝑇3 + 𝑇4) = −𝛽𝑇𝑓

, for grid point N (i=N), equation (2) becomes:

(𝑇𝑁−1 − (2 + 𝛽)𝑇𝑁 + 𝑇𝑁+1) = −𝛽𝑇𝑓 (we know that 𝑇𝑁+1 = 𝑇𝑙)

So we have N equations from N grid points. These equations are written in matrix form as

follows:

[

−(2 + 𝛽) 1 0 . 0

1 −(2 + 𝛽) 1 . 0

0
.
0

1
0
0

−(2 + 𝛽)
1
0

1
−(2 + 𝛽)

1

. 0
1… 0
−(2 + 𝛽)]

[

𝑇2

𝑇3

.
𝑇𝑁−1

𝑇𝑁]

 =

[

−𝛽𝑇𝑓 − 𝑇𝑏

−𝛽𝑇𝑓

.
−𝛽𝑇𝑓

−𝛽𝑇𝑓 − 𝑇𝑙]

The above is in Ax=B form, where A is a NxN matrix, x and B are vectors of size N. x is the vector

unknowns. These unknowns are the temperatures at grid points. We can now use any method to

solve this system of equations. Gaussian-elimination, LU decomposition, computing inverse of

the matrix are some examples of such methods.

Example 2: time-marching problem. Such problems involve time as an independent variable and

the computation progresses over time. The idea is to also divide the time domain into sub-domains

(in addition to dividing the space domain into sub-domains). Consider the problem of analyzing

the conduction of heat through a rod modeled as a 1D structure. The problem can be modeled

using the PDE:

𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2,

where 𝛼 is thermal diffusivity, a constant if the material is homogeneous and isotropic. Goal is to

find the temperature at different points on the rod at different times. We now have initial and

boundary conditions specified as:

𝑢(0, 𝑡) = 𝑢𝐿 , //temperature at the left end of the rod (at distance=0) at any time is a constant 𝑢𝐿

𝑢(𝑙, 𝑡) = 𝑢𝑅 , //temperature at the right end of the rod (at distance=𝑙) at any time is a constant 𝑢𝑅

𝑢(𝑥, 0) = 𝑓(𝑥) 0 < 𝑥 < 𝑙 //temperature at any point on the rod at time=0 is some given function f

of the distance of the point from the left end of the rod.

When we want to discretize the time domain i.e. divide the time domain into sub-domains, we

chose a small step size Δ𝑡 to march forward in time. Suppose we divide time t into N sub-

domains, we have grid points on the time domain as: t=0, t=1, t=2, …. and t=N+1. The spacing

between each of these grid points is Δ𝑡 time units.

We can use forward difference equation to write
𝜕𝑢

𝜕𝑡
 as (𝑢𝑖+1 − 𝑢𝑖)/Δ𝑡. Note: e.g. 𝑢𝑖 denotes the

value function 𝑢 at time 𝑠𝑡𝑒𝑝 𝑡 = 𝑖. The time variable is used in the superscript. As a notation, I’ll

use the subscripts to denote the spatial grid point e.g. 𝑢𝑖 denotes the value of function 𝑢 at grid

(3)

point 𝑖. Combining these two notations, 𝑢𝑖
𝑛 denotes the value of function 𝑢 at grid point 𝑖 and at

time step 𝑡 = 𝑛.

Substituting the difference formula in the PDE (3)

𝒖𝒊
𝒏+𝟏−𝒖𝒊

𝒏

𝚫𝒕
= 𝜶(𝒖𝒊+𝟏

𝒏 −𝟐𝒖𝒊
𝒏+𝒖𝒊−𝟏

𝒏)/(𝚫𝒙)𝟐

The above approximation for the PDE of equation (3) is called explicit time integration method.

Explicit because the expression on the RHS is computed at the previous time step and is known

in any time step. Note that 𝑢𝑖
𝑛+1 is the only unknown in equation (4). Crank-Nicholson suggested

that instead of considering only the computations at the previous time step, the computations at

the current time step also should be considered. In other words, 𝑢𝑛+1 is now a function of 𝑢𝑛+1

and 𝑢𝑛 . As per this suggestion, we would have:

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

Δ𝑡
= 𝛼(𝑢𝑖+1

𝑛+1−2𝑢𝑖
𝑛+1+𝑢𝑖−1

𝑛+1 + 𝑢𝑖+1
𝑛 −2𝑢𝑖

𝑛+𝑢𝑖−1
𝑛)/2(Δ𝑥)2

Note that the unknowns are now on the LHS and RHS of the equation and there are more than

one unknown. Such a scheme, where 𝑢𝑛+1 is a function of 𝑢𝑛+1 and 𝑢𝑛 is called implicit time

integration method. When we use the implicit time integration method for this particular problem,

we have N+1 equations (one at every grid point) at time step t=1 to begin with. Since the values

at all grid points at time step t=0 are all given, we will have a system of equations, which can be

solved as mentioned in the earlier problem. As you may see, the computation involved in implicit

time integration step is significantly more than that in the explicit time integration step: as per

equation 4, in every time step, we end up computing the temp values for N-2 grid points (N-2

because the grid points at the boundary are at a constant, given temp. In comparison, in the

implicit time integration scheme, in every time step, we have to solve a system of equations to

find the N-2 unknowns.

(4)

