
CS601, Lecture 11/10/2022 – Computing Partial Derivatives and 

Approximations 

 

In the previous lecture, we saw two methods to classify partial differential equations (PDEs) and 

example problems that can be modeled using PDEs. We also saw the types of boundary 

conditions—The method used to specify the values that the dependent variable can attain at e.g. 

time=0 or at boundaries of a domain etc. This lecture discusses the broad steps involved in solving 

a PDE via a computer.  

Introduction: any structure to be modeled is inherently 3D. If the structure is made up of 

homogeneous material, then it will have the same properties at all points within and on the body. 

Hence, for the purpose of analyzing the properties, a 2D cross-section can be representative of 

the original 3D domain. This reasoning can be further extended to approximate a 2D domain with 

a representative 1D domain, on which the properties can be analyzed.  The approximation is done 

to simplify the mathematical formulation of the original structure and reduce the computations 

involved while solving the equations that help us understand the properties of the structure that 

is modeled. It is important to note that not all problems or processes admit such 

simplification/approximation e.g. a majority of aerospace structures. 

Some problem types: 

Boundary Value Problems: these problems are modeled with the help of PDEs, where the 

independent variables are only spatial in nature (e.g. x, y, z coordinates). Time is not an 

independent variable in these PDEs. E.g. 
𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜙

𝜕𝑦2
= 0 

Initial Boundary Value Problems: these problems are modeled with the help of PDEs, where the 

set of independent variables contain both time and spatial variables. E.g. 
𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢
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Analytical Solution: consider the problem of analyzing the conduction of heat through a rod 

modeled as a 1D structure. The problem can be modeled using the PDE   
𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
, where 𝛼 is 

thermal diffusivity, a constant if the material is homogeneous and isotropic. Goal is to find the 

temperature at different points on the rod at different times. The dependent variable, temperature, 

is a function of both time t and distance x along the rod i.e. the dependent variable is 𝑢(𝑥, 𝑡). The 

initial and boundary conditions as follows:  

𝑢(0, 𝑡) = 𝑢𝐿 , //temperature at the left end of the rod (at distance=0) at any time is a constant 𝑢𝐿 

𝑢(𝑙, 𝑡) = 𝑢𝑅 , //temperature at the right end of the rod (at distance=𝑙) at any time is a constant 𝑢𝑅 

𝑢(𝑥, 0) =  𝑓(𝑥) 0 < 𝑥 < 𝑙 //temperature at any point on the rod at time=0 is some function f of the 

distance of the point from the left end of the rod. 



 

i.e. given the four equations (3 mentioned previously and the PDE), a solution to find the 

temperature at any point x at time t i.e. 𝑢(𝑥, 𝑡), could look like: 

𝑢(𝑥,  𝑡) = ∑ 𝐵𝑚𝑒−𝑚2𝛼𝜋2𝑡/𝑙2sin(
𝑚𝜋𝑥

𝑙
)∞

𝑚=1 , where, 𝐵𝑚 = 2/𝑙 ∫ 𝑓(𝑠) sin (
𝑚𝜋𝑠

𝑙
) 𝑑𝑠

𝑙

0
 

The above is called an analytical solution and is expensive to compute. Moreover, we cannot find 

such analytical solutions for all problems. Hence, approximate or numerical solutions are 

employed. 

Steps involved in computing a numerical solution: 

1) Discretization: a given domain is divided into a number of sub-domains. This division is 

represented using grid points. 

2) The PDEs are approximated by finding an equivalent algebraic equation that is computed at 

every grid point.  The algebraic equations are relatively easier to solve via computer when 

compared to analytical solutions of the PDEs. 

3) Assemble the equations of step 2 (you will get one at each grid point), possibly represent in 

matrix form, and solve the system of equations. The solution to the system of equations tells the 

values of the dependent variable. 

Steps 1 and 2 are called preprocessing stage and step 3 is the solution stage. There could be a 

post processing stage as well: in some problems, once the solution is computed, e.g. stress or 

strain may have to be computed.  

How do we approximate the PDEs? 

Taylor series tells us that if a function 𝑓(𝑥) is infinitely differentiable at 𝑥 = 𝑎 (i.e. the derivatives 

exist at 𝑥 = 𝑎) then it can be written as: 

𝑓(𝑥) = 𝑓(𝑎) + 𝑓’(𝑎)(𝑥 − 𝑎) +
𝑓′′(𝑎)(𝑥−𝑎)2

2!
+

𝑓′′′(𝑎)(𝑥−𝑎)3

3!
+… up to infinity 

applying this in the heat conduction through the rod problem: suppose we know the temperature 

at point 𝑖 i.e. 𝑢𝑖. Can we compute the temperature 𝑢𝑖+1 at point 𝑖 + 1 based on the value of 𝑢𝑖? 

Note that the first step (discretization) has given us points 𝑖, 𝑖 + 1, 𝑖 + 2, and so on. These points 

are equally spaced at a programmer chosen step size: Δ𝑥. 

𝑢𝑖+1 = 𝑢𝑖 + 𝑢′(i)(Δ𝑥) +
𝑢′′(𝑖)(Δ𝑥)2

2!
+

𝑢′′′(𝑖)(Δ𝑥)3

3!
+… 

Rearranging terms and rewriting, the first-order derivative 𝑢’(𝑖) at point 𝑖:   

 𝑢′(𝑖) = (𝑢𝑖+1 − 𝑢𝑖)/Δ𝑥 − 1/Δ𝑥(
𝑢′′(𝑖)(Δ𝑥)2

2!
+

𝑢′′′(𝑖)(Δ𝑥)3

3!
+⋯) 

(1) 



If we choose to approximate the first derivative of u at point i by ignoring the highlighted 

expression, then the truncation error is of the orderΟ(Δ𝑥). We say that the solution is first-order 

accurate. The approximation of the first order derivative of u is therefore: 

𝑢′(𝑖) = (𝑢𝑖+1 − 𝑢𝑖)/Δ𝑥  

Because we are moving forward (from the left end of the rod) relative to point 𝑖, we call the above 

formula forward difference formula. Similarly, you can compute the value of function 𝑢 at point 

𝑖 − 1 i.e. 𝑢𝑖−1based on the value of the function 𝑢 at point 𝑖: 

𝑢𝑖−1 = 𝑢𝑖 − 𝑢′(i)(Δ𝑥) +
𝑢′′(𝑖)(Δ𝑥)2

2!
−

𝑢′′′(𝑖)(Δ𝑥)3

3!
+…  

Rearranging terms and rewriting, the first-order derivative 𝑢’(𝑖) at point 𝑖:   

 𝑢′(𝑖) = (𝑢𝑖 − 𝑢𝑖−1)/Δ𝑥 + 1/Δ𝑥(
𝑢′′(𝑖)(Δ𝑥)2

2!
−

𝑢′′′(𝑖)(Δ𝑥)3

3!
+⋯) 

If we choose to approximate the first derivative of u at point𝑖 by ignoring the highlighted 

expression, the approximation of the first order derivative of u is therefore: 

𝑢′(𝑖) = (𝑢𝑖 − 𝑢𝑖−1)/Δ𝑥   

Because we are moving backward relative to point 𝑖, we call the above formula backward 

difference formula.  

If you subtract equation (3) from equation (1), you get the central difference approximation to the 

first derivative of u as: 

 𝑢′(𝑖) = (𝑢𝑖+1 − 𝑢𝑖−1)/2Δ𝑥   

If you add equations (3) and (1), you get the central difference approximation to the second 

derivative of u as: 

 𝑢′′(𝑖) = (𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1)/(Δx)
2  

 

In equation (6), the truncation error is second-order accurate i.e. is of the order Ο(Δ𝑥)2 .  Equations 

(2), (4), (5), and (6) are called as difference equations. They are important and tell us how to 

approximate the derivatives. Note that I have conveniently brushed aside the time so far. To derive 

formulae (difference equations) that approximate first- and second-order derivatives, time need 

not be considered. However, if we want to compute the temperature at any point on the rod and 

specific time t=n (numerical solution), we must consider the time. Now we know how derivatives 

of u can be approximated, we can compute the numerical solution. This is the topic of the next 

lecture.  
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