
CS601, Lecture 10/10/2022 – Introduction, Partial Differential Equations 

(PDEs) and their classification 

 

Computation with grids occurs frequently in scientific computing. As part of the frequently 

occurring patterns or Motifs in scientific computing, the next series of lectures will introduce you 

to structured grids, which appear in application domains such as Finite Difference Methods (FDM) 

and Finite Element Methods (FEM).  Note that the grid in Grid Computing is different from the 

grids that we will be discussing in the next few weeks.  The grid in Grid Computing refers to a 

network of computers, whereas the grid that we discuss in this series of lectures refer to a 

representation of a physical structure or a process that we intend to model using a computer for 

the purpose of understanding the properties of the process or structure. 

 

Motivation: Designing a mechanical structure, e.g. an airplane component that can withstand a 

certain temperature or speed etc. is a quite common engineering problem. Once the design is 

complete, the structure is manufactured based on the specifications mentioned in the design 

drawings / blue print. Later on, the manufactured structure is tested in the lab to check if it meets 

the desired properties. Failure at this stage costs time and money. Hence, to reduce the cost, 

engineers and scientists use computer modeling to model the structure with the help of graphics 

software. The question then is to ask how accurately does the computer model describe the 

structure? Can it withstand certain temp or speed? etc. This is computer simulation. In computer 

simulations, we are solving certain mathematical equations. While the domain expert (structural 

engineer) is responsible for formulating, a computer engineer tries to implement and optimize the 

computations involved. Practical engineering problems can be modeled using Partial Differential 

Equations (PDEs) and in particular second-order PDEs. 

PDEs: 

PDEs are mathematical equations that involve two or more independent variables and their 

derivatives. A PDE is of the form: 

𝐴𝜙𝑥𝑥 + 𝐵𝜙𝑥𝑦 + 𝐶𝜙𝑦𝑦 + 𝐷𝜙𝑥 + 𝐸𝜙𝑦 + 𝐹𝜙 + 𝐺 = 0  , where  

𝜙𝑥 =
𝜕𝜙

𝜕𝑥
, 𝜙𝑦 =

𝜕𝜙

𝜕𝑦
, 𝜙𝑥𝑥 =

𝜕2𝜙

𝜕𝑥2 , 𝜙𝑦𝑦 =
𝜕2𝜙

𝜕𝑦2 , 𝜙𝑥𝑦 =
𝜕2𝜙

𝜕𝑥𝜕𝑦
 and 

A to G are coefficients 

The above is an example of second-order partial differential equation. Practical engineering 

problems can be modeled using second-order PDEs. 

If the coefficients A-C depend on 𝜙, x, and y, the PDE is non-linear and if the coefficients depend 

on x, and y only, then the PDE is linear. Note that x and y are independent variables here. 

 

Characteristics of PDEs: 

(1) 



If you imagine drawing lines corresponding to the second-order PDE mentioned in (1) previously, 

the number of lines that you get tells the characteristic of PDE. PDEs are classified into parabolic, 

elliptic, and hyperbolic based on the number of lines obtained. But how can we imagine the lines? 

If you consider 𝐷𝜙𝑥 + 𝐸𝜙𝑦 + 𝐹𝜙 + 𝐺 as 𝐻 in equation (1), then (1) can be rewritten as: 

𝐴𝜙𝑥𝑥 + 𝐵𝜙𝑥𝑦 + 𝐶𝜙𝑦𝑦 + 𝐻 = 0  

We have the domain or 𝜙 as a function of independent variables x, and y. We write as: 𝜙(𝑥, 𝑦)  

the derivative of 𝜙 w.r.t. x 

𝑑𝜙𝑥 =
𝜕𝜙𝑥

𝜕𝑥
𝑑𝑥 +

𝜕𝜙𝑥

𝜕𝑦
𝑑𝑦 - using chain rule 

the derivative of 𝜙 w.r.t. y 

𝑑𝜙𝑦 =
𝜕𝜙𝑦

𝜕𝑥
𝑑𝑥 +

𝜕𝜙𝑦

𝜕𝑦
𝑑𝑦 - using chain rule 

Equations (2) and (3) can be rewritten using the substitutions for 𝜙𝑥𝑥 =
𝜕2𝜙

𝜕𝑥2 , 𝜙𝑦𝑦 =
𝜕2𝜙

𝜕𝑦2 , 𝜙𝑥𝑦 =
𝜕2𝜙

𝜕𝑥𝜕𝑦
 

mentioned previously: 

𝑑𝜙𝑥 =
𝜕𝜙𝑥

𝜕𝑥
𝑑𝑥 +

𝜕𝜙𝑥

𝜕𝑦
𝑑𝑦 =  𝜙𝑥𝑥𝑑𝑥 + 𝜙𝑥𝑦𝑑𝑦 

𝑑𝜙𝑦 =
𝜕𝜙𝑦

𝜕𝑥
𝑑𝑥 +

𝜕𝜙𝑦

𝜕𝑦
𝑑𝑦 =  𝜙𝑦𝑥𝑑𝑥 + 𝜙𝑦𝑦𝑑𝑦 

 

Equations (1’) (2’) and (3’) form a system of equations with unknowns 𝜙𝑥𝑥, 𝜙𝑦𝑦 , 𝑎𝑛𝑑 𝜙𝑥𝑦 and can 

be written in matrix form as: 

   [

𝐴 𝐵 𝐶
𝑑𝑥 𝑑𝑦 0
0 𝑑𝑥 𝑑𝑦

] [

𝜙𝑥𝑥

𝜙𝑥𝑦

𝜙𝑦𝑦

] =  [

−𝐻
𝑑𝜙𝑥

𝑑𝜙𝑦

]  

   

Equation (4) does not have a solution (and the lines are discontinuous) if the determinant of matrix 

in (4) is 0. This implies: 

𝐴(𝑑𝑦)2 + 𝐶(𝑑𝑥)2 − 𝐵(𝑑𝑥)(𝑑𝑦) = 0 

The roots of the quadratic equation are:  

    
−𝐵±√𝐵2−4𝐴𝐶

2𝐴
 

For a given PDE, if 𝐵2 − 4𝐴𝐶 = 0, there exists one characteristic and the PDE is parabolic 

For a given PDE, if 𝐵2 − 4𝐴𝐶 < 0 , there exists No real characteristic and the PDE is elliptic 

For a given PDE, if 𝐵2 − 4𝐴𝐶 > 0 , there exist two real characteristics and the PDE is hyperbolic 

(2) 

(3) 

(3’) 

(2’) 

(1’) 

(4) 

(5) 



Some examples of Parabolic, Hyperbolic, and Elliptic PDEs: 

𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑦2 = 0 (A=1, B=0, C=1. Therefore, 𝐵2 − 4𝐴𝐶 < 0. Hence, this is an elliptic PDE. 

The above equation is commonly written as ∇2𝜙 = 0. Where ∇→ (
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
)  

E.g. Boundary value problems. You have a metal plate at uniform temperature and a heat 

source is applied at the center. The disturbance propagates in all spatial directions.  

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2 (A=1, B=0, C=0. Therefore, 𝐵2 − 4𝐴𝐶 = 0. Hence, this is a parabolic PDE. 

E.g. modeling one-dimensional unsteady state e.g. how the temperature varies over time in a 

one-D rod.  

𝜕2𝑢

𝜕𝑡2 = 𝑐2 𝜕2𝑢

𝜕𝑥2 (A=−𝐶2, B=0, C=1. Therefore, equation (5) has two real solutions. Hence, this is a 

hyperbolic PDE. 

 

Suppose you have multiple PDEs to model the system. You can still classify the set of PDEs as 

parabolic, elliptic, and hyperbolic based on the nature of the characteristic obtained. The 

characteristic in this case is obtained using an alternative method of computing the eigenvalues 

of a matrix of system of equations described in class (not written here). 

Note that the classification mentioned previously apply to second-order PDEs only. 

Boundary Conditions (BC): 

Classification of boundary conditions are done as follows: 

Essential BC / Dirichlet BC: value of the dependent variable is specified. E.g. the temperature at 

boundaries of a plate are all at a fixed value of say 50 degrees. 

Natural BC / Neumann BC: value of the gradient of dependent variable is specified. E.g. we are 

given 𝑑𝑇/𝑑𝑥.  

Mixed BC / Robin BC: value of the dependent variable is expressed as a function of the 

gradient. 

 e.g. at the boundaries we write −𝐾 (
𝑑𝑇

𝑑𝑥
)

𝑥=𝐿
= ℎ𝐴(𝑇 − 𝑇∞)  

 


