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Course Progress..

• Last topic (two weeks ago..) - unstructured grids

(with Delaunay triangulation)

– Common in practical scenarios

– Required to handle complex geometries

• Coming Next:

– Computation on unstructured grids (with Finite 

Element Method (FEM))

– Sparse Matrices
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Finite Element Method

• Technique for solving PDEs

– we have seen Finite Difference Method earlier

• Two step process: 

– Discretization: 

• local discretization over small, simple regions with triangles / 

quadrilaterals (finite elements) in 2D.

– The equations for smaller regions are combined to 

form equivalent ones for larger regions  

• Conversion from strong form to weak form

• Numerical solution of the weak form
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From Strong Form to Weak Form

1. Principle of Virtual Work

2. Principle of Minimum Potential Energy

3. Method of weighted residuals (Galerkin, 

collocation, Least Squares methods etc.)

– Galerkin is the most commonly used method.

• Multiply by a weighting function 

• Integrate over the domain

• Discretize the sum of contributions from each element

– Apply the divergence theorem
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Example : Rod Element

• Some background first..

– Stress (𝜎) = Force per unit Area = P/A 

• P = Axial force (load applied along the length or ⊥ to cross 

section), 

• A = area

– Strain (𝜖) = Deformation in the direction of force 

applied = 𝜎/E

– Deformation = displacement of particles
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Example : Rod Element

• Elastic rod with end points(nodes) 1 and 2 and length 𝐿

• Axial Force 𝑃 and body force 𝐹

• Displacements 𝑢1 and 𝑢2 along horizontal direction at end 

nodes due to Axial Force 𝑃 only (also called nodal 

displacements)

• Goal: to find displacements at various points in steady-state
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𝐿

𝑢1 𝑢2
𝑓𝑥1 𝑓𝑥2

1 2
Distributed body force 𝐹 (due to contact)



Example : Rod Element

• 𝑃 is then = 𝜎𝐴 = 𝐸𝐴𝜖 = 𝐸𝐴
𝑑𝑢

𝑑𝑥

• Assuming a small strain and for steady-state 

(equilibrium) 

• Therefore, the equation to be solved:
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F𝛿𝑥

𝑃 +
𝑑𝑃

𝑑𝑥
𝛿𝑥𝑃 𝐴

𝑑𝑃

𝑑𝑥
+ 𝐹 = 0

𝐸𝐴
𝑑2𝑢

𝑑𝑥2
+ 𝐹 = 0 (1)



Example : Rod Element

• As per the FEM technique, continuous variable 𝑢 in:

is approximated by ෤𝑢 in terms of its nodal displacements 

𝑢𝑖 and 𝑢𝑗 through shape/weight functions 𝑁1, 𝑁2 :

෤𝑢 = 𝑁1𝑢1 + 𝑁2𝑢2

or

෤𝑢 = [𝑁1 𝑁2]
𝑢1
𝑢2

= 𝑵 {𝒖}

where, 𝑁1 = 1 − 𝑥/𝐿, 𝑁2 = 𝑥/𝐿 are simple linear functions
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𝐸𝐴
𝑑2𝑢

𝑑𝑥2
+ 𝐹 = 0

Why are 𝑁1 and 𝑁2 defined as the way they are?



Example : Rod Element

• Substituting:

where, 

ℛ is a measure of error in approximation called residual. 

• We have replaced the original differential equation (1) in  

terms of nodal values in (2). 

– strong form to weak form

• Problem is now reduced to finding good values of 
𝑢1
𝑢2

to 

minimize ℛ
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𝐸𝐴
𝑑2

𝑑𝑥2
[𝑁1 𝑁2]

𝑢1
𝑢2

+ 𝐹 = ℛ (2)



Example : Rod Element – Galerkin

Method

1. Multiply / weight the residual in (2) by each shape function 

[𝑁1 𝑁2]

2. Integrate over the domain and equate to zero.

• Recall: our 𝑁1 = 1 − 𝑥/𝐿, 𝑁2 = 𝑥/𝐿 are simple linear

functions (piecewise linear functions). So, double 

differentiation in 𝑑2/𝑑𝑥2[𝑁1 𝑁2] would make them vanish. 
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න

0

𝐿

𝑁1
𝑁2

𝐸𝐴
𝑑2

𝑑𝑥2
[𝑁1 𝑁2] 𝑑𝑥

𝑢1
𝑢2

+න

0

𝐿

𝑁1
𝑁2

𝐹𝑑𝑥 =
0
0

(3)



Example : Rod Element – Galerkin

Method

• To overcome, we apply Green’s theorem (integration by 

parts)

• Boundary terms are ignored (only for Dirichlet cond.) to 

yield (from eqn. (3)):

−𝐸𝐴0׬
𝐿

𝜕𝑁1

𝜕𝑥

𝜕𝑁1

𝜕𝑥

𝜕𝑁1

𝜕𝑥

𝜕𝑁2

𝜕𝑥
𝜕𝑁2

𝜕𝑥

𝜕𝑁1

𝜕𝑥

𝜕𝑁2

𝜕𝑥

𝜕𝑁2

𝜕𝑥

𝑑𝑥
𝑢1
𝑢2

+ 0׬
𝐿 𝑁1
𝑁2

𝐹𝑑𝑥 =
0
0
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׬ 𝑁𝑖
𝜕2𝑁𝑗

𝜕𝑥2
𝑑𝑥 = ׬−

𝜕𝑁𝑖

𝜕𝑥

𝜕𝑁𝑗

𝜕𝑥
𝑑𝑥 + boundary terms

(4)



Example : Rod Element – Galerkin

Method

• Evaluating integrals:

−𝐸𝐴0׬
𝐿

𝜕𝑁1

𝜕𝑥

𝜕𝑁1

𝜕𝑥

𝜕𝑁1

𝜕𝑥

𝜕𝑁2

𝜕𝑥
𝜕𝑁2

𝜕𝑥

𝜕𝑁1

𝜕𝑥

𝜕𝑁2

𝜕𝑥

𝜕𝑁2

𝜕𝑥

𝑑𝑥
𝑢1
𝑢2

+ 0׬
𝐿 𝑁1
𝑁2

𝐹𝑑𝑥 =
0
0

−
𝐸𝐴

𝐿

1 −1
−1 1

𝑢1
𝑢2

+ 𝐹𝐿
1/2
1/2

=
0
0

𝐸𝐴

𝐿

1 −1
−1 1

𝑢1
𝑢2

=
𝑓𝑥1
𝑓𝑥2

Here, the total force 𝐹𝐿 is shared equally among two nodes 𝑖
and 𝑗
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(4)

(5)



Example : Rod Element – Stiffness 

matrix

𝐸𝐴

𝐿

1 −1
−1 1

𝑢1
𝑢2

=
𝑓𝑥1
𝑓𝑥2

Writing (5) in matrix notation:

𝒌𝒎 𝒖 = {𝒇}

Where,

[𝒌𝒎] = element stiffness matrix

𝒖 = element nodal displacements

{𝒇} = element nodal forces vector
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(5)



Triangle Elements?

• Start with triangle elements 𝑖 𝑗, 𝑘 for all triangles

• End with a system of linear equations consisting of global 

stiffness matrix 𝐾, the unknown coefficients vector 𝑎 of the 

solution approximation, and Force vector 𝐹:

• The calculation of 𝐾 and 𝐹 is performed by looping over 

each element and sending the contributions from each 

element to the proper entry in 𝐾 and 𝐹.
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𝑖

𝑗 𝑘

𝐾𝑎 = 𝐹



Triangle Elements?

• Common to find a resulting stiffness matrix that is: 

– Sparse

– Symmetric

– Positive-Definite

• In 𝐾𝑎 = 𝐹 , 𝐹 is sometimes an integral. This is 

computed using numerical integration method such 

as Gaussian Quadrature.
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FEM – Further Reading

• MIT OCW (2D Diffusion problem with triangle elements)

• IIT Madras NPTEL Lectures (Introduction to FEM, 1D rod problem. Series of 

lectures starting from this one.)

• Youtube video on overview of FEM (great animation and commentary)
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https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-90-computational-methods-in-aerospace-engineering-spring-2014/numerical-methods-for-partial-differential-equations/the-finite-element-method-for-two-dimensional-diffusion/
https://youtu.be/MldJ6WHCsvQ
https://youtu.be/GHjopp47vvQ

