
1

CS601: Software Development for

Scientific Computing
Autumn 2021

Week5:

• Intermediate C++ (template programming and

STL), Structured Grids (Elliptic PDEs)

Nikhil Hegde

Last Week..

• Tools
– GNU make, git

• Intermediate C++
– Object Orientation: inheritance, polymorphism,

abstract base classes, (about const, references)

– function templates

Nikhil Hegde 2

Function Templates - Recap

double scprod(int len,
double* vec1,
double* vec2)

{
double result;
//compute result
//return result

}

int scprod(int len,
int* vec1,
int* vec2)

{
int result;
//compute result
//return result

}

Nikhil Hegde 3

How can you avoid multiple implementations of the

same functionality but with different types?

Function Templates - Recap

Nikhil Hegde 4

template<typename T>
double scprod(int len,

T* vec1,
T* vec2)

{
T result;
//compute result
//return result

}

Add this template definition in .h

file! why .h and not .cpp?

Called template parameter. Can

choose any name other than T.

the keyword ‘typename’ can be

replaced with ‘class’

int main() {
//define vec1-vec4
scprod<double>(10,vec1, vec2); //explicit instantiation
scprod<int>(100,vec3,vec4); //explicit instantiation
scprod(100, vec3,vec4); //implicit instantiation

Class Templates

• Like function templates but for templating

classes

– Refer to templates_class in week5_codesamples

Nikhil Hegde 5

Standard Template Library (STL)

• Large set of frequently used data structures and

algorithms

– Defined as parametrized data types and functions

– Types to represent complex numbers and strings,

algorithms to sort, get random numbers etc.

• Convenient and bug free to use these libraries

• E.g. vector, map, queue, pair, sort etc.

• Use your own type only for efficiency

considerations - only if you are sure!

Nikhil Hegde 6

STL - Motivation

Nikhil Hegde 7

Real-world view
source:wikipedia

Consider the nutrients (constituents)

present in edible part of coconut.

How would you capture the Real-

world view in a Program?

vector<pair<string, float> > constituents;

Container

• Holder of a collection of objects

• Is an object itself

• Different types:

– sequence container

– associative container (ordered/unordered)

– container adapter

Nikhil Hegde 8

Sequence Container

• Provide fast sequential access to elements

• Factors to consider:
– Cost to add/delete an element

– Cost to perform non-sequential access to elements

Nikhil Hegde 9

container name comments

vector Flexible array, fast random access

string Like vector. Meant for sequence of characters

list/slist doubly/singly linked list. Sequential access to

elements (bidirectional/unidirectional).

deque Double-ended queue. Fast random access, Fast

append

array Intended as replacement for ‘C’-style arrays. Fixed-

sized.

Container Adapter

• Provide an interface to sequence containers

– stack, queue, priority_queue

Nikhil Hegde 10

Associative Container

• Implement sorted data structures for efficient

searching (O(log n)) complexity.

– Set, map, multiset, multimap

Nikhil Hegde 11

container name comments

set Collection of unique sorted keys. Implemented as

class template

map Collection of key-value pairs sorted by unique keys.

Implemented as class template

Unordered Associative Container

• Implement hashed data structures for efficient

searching (O(1) best-case, O(n) worst-case

complexity).

– unordered_set, unordered_map,
unordered_multiset, unordered_multimap

Nikhil Hegde 12

Vectors

• An array that expands and shrinks automatically
– Parametrized data structure

• E.g.
– std::vector<int> integers;
//empty array that can hold integer numbers

– std::vector<Fruit> fruits(10);
//array of 10 elements of type Fruit. The 10 objects are
initialized by //invoking default constructor

– Recall:
class Coconut {
vector<pair<string, float> > constituents;
...

Nikhil Hegde 13

Type for a pair of any types (type1, type2)

Vectors – adding elements

Nikhil Hegde 14

#include<vector> //in Fruit.h

int main() {
Coconut* c;
c=Coconut(“Coconut”,1.2)
//..

}

Coconut::Coconut(string name, float weight) : Fruit(name, weight) {
constituents.push_back(make_pair(“sugars”,6.23));
constituents.push_back(make_pair(“fiber”,9));
//...

}

Object creation and initialization

Vectors – Object Layout

Nikhil Hegde 15

Fruit part of the object:
commonName = “Coconut”
Weight = 1.2
energyPerUnitWeight = 3.6
vptr = ...

Coconut part of the

object:

constituents = {
<sugars,6.23>,
<fiber, 9>,
<saturated_fat, 29.69>,
<water, 47g>,
}

Object layout in memory

Vectors – operations

Nikhil Hegde 16

• Reading elements:
constituents.push_back(make_pair(“sugars”,6.23))
pair<string, float> tmpVal = constituents[0];

• Removing elements:
constituents.push_back(make_pair(“fiber”,9))
constituents.pop_back();

• Finding number of elements:
cout<<constituents.size()<<endl;

declaration: vector<pair<string, float> > constituents;

Vectors – operations

Nikhil Hegde 17

declaration: vector<pair<string, float> > constituents;

Element-wise inspection (iterating over vector
elements):

vector<pair<string, float>::iterator it;
for(it=constituents.begin(); it!=constituents.end(); it++) {

pair<string, float> elem = *it;
cout<<elem.first<<“,”<<elem.second<<endl;
//can also use cout<<it->first<<“,”<<it->second<<endl;

}

Reference: http://www.cplusplus.com/reference/vector/vector/

sort

Nikhil Hegde 18

• Sort fruits by their weight / energy / name

bool comp(Fruit* obj1, Fruit* obj2) {
if(obj1->GetWeight() < obj2->GetWeight())

return true;
return false;

} int main() {
Apple* a1=new Apple(“Apple”,0.24);
Orange* o=new Orange(“Orange”,0.15);
Mango* m=new Mango(“Mango”,0.35);
Apple* a2=new Apple(“Apple”,0.2);
vector<Fruit*> fruits;
fruits.push_back(a1);
fruits.push_back(o);
fruits.push_back(m);
fruits.push_back(a2);
sort(fruits.begin(),fruits.end(),comp);

}

#include<algorithm>

Exceptions

• Preferred way to handle logic and runtime errors

– Unhandled exceptions stop program execution.

Handle exceptions and recover from errors.

– Clean separation between error detection and

handling.

• Where to use? often in public functions

– no control over arguments passed

• Are there performance penalties?

– Mostly not. ‘exceptions’: memory-constrained

devices, real-time performance requirements
Nikhil Hegde 19

Exceptions

Nikhil Hegde 20

Fruit::Fruit(string name, float wt) {
if(wt < 0)

throw std::invalid_argument(“Invalid weight”);
}
...

}

int main() {
try {

Apple* a = new Apple(“Apple_gala”,-0.4);
}catch(const std::invalid_argument& ia) {

cerr<<ia.what()<<endl;
}

}
reference: http://www.cplusplus.com/doc/tutorial/exceptions/

• E.g.

keywords

Post-class Exercise – STL and

Exceptions

Reattempt the same quiz on STL and

Exceptions

Nikhil Hegde 21

When do we need to return reference to an object? Why?

Returning References- Example1

• How can we assign one object to another?
Apple a1(“Apple”, 1.2); //constructor Apple::Apple(string, float)

//is invoked

Apple a2; //constructor Apple::Apple() is invoked.
a2 = a1 //object a1 is assigned to a2;assignment operator is invoked

Nikhil Hegde 22

Apple& Apple::operator=(const Apple& rhs) {
commonName = rhs.commonName;
weight = rhs.weight;
energyPerUnitWeight = rhs.energyPerUnitWeight;
constituents = rhs.constituents;
return *this;
}

Called Copy Assignment Operator

Apple& Apple::operator=(const Apple& rhs)

this

• Implicit variable defined by the compiler for every

class

– E.g. MyVec *this;

• All member functions have this as an implicit

first argument

– E.g.

int MyVec::GetVecLen() const;

would actually be:

int MyVec::GetVecLen(MyVec* this) const;

Nikhil Hegde 23

Returning References – Example2

MyVec v1;
v1[0]=100;

Nikhil Hegde 24

L-values and R-values

– L-values: addresses which can be loaded

from or stored into

– R-values: data often loaded from address

• Expressions produce R-values

– Assignment statements: L-value := R-value;

25

i := 5;
i := i + 1;

//RHS specifies data that is computed/read.
//LHS specifies address where data is stored.

a refers to memory location named

a (L-value). We are storing into

that memory location

a refers to data stored in the memory

location named a. We are loading from

that memory location to produce R-value

a := a;

Overloading +=

• MyVec v1;

v1+=3;

• MyVec& MyVec::operator+=(double)

Nikhil Hegde 26

Overloading +=

• MyVec v1;

v1+=3;

– MyVec& MyVec::operator+=(double)

• MyVec v2;

v2+=v1;

– MyVec& MyVec::operator+=(const MyVec& rhs)

– What if you make the return value above const?

Nikhil Hegde 27

Disallow: (v2+=v1)+=3;

Overloading +

• v1=v1+3;

– const MyVec MyVec::operator+(double val)

• v3=v1+v2;

1. const MyVec MyVec::operator+(const MyVec&
vec2) const;

OR

2. friend const MyVec operator+(const MyVec&
lhs, const MyVec& rhs);

Nikhil Hegde 28

v1=3+v1 is compiler error! Why?

Single-argument constructors: allow implicit

conversion from a particular type to initialize an object.

Operator Overloading - Guidelines

• If a binary operator accepts operands of different

types and is commutative, both orders should be

overloaded

• Consistency:
– If a class has ==, it should also have !=

– += and + should result in identical values

– define your copy assignment operator if you have

defined a copy constructor

Nikhil Hegde 29

Exercise

Nikhil Hegde 30

• What member functions does class MyVec
should define to support:

MyVec v2;

v2=-v1; //v1 is of type MyVec

• Bonus: How to define pre-increment (++obj)

and post-increment (obj++) operations?

PDEs - Recap

• consider a function 𝑢 = 𝑢(𝑥, 𝑡) satisfying the

second-order PDE:

𝐴
𝜕2𝑢

𝜕𝑥2
+𝐵

𝜕2𝑢

𝜕𝑥𝜕𝑡
+ 𝐶

𝜕2𝑢

𝜕𝑡2
+ 𝐷

𝜕𝑢

𝜕𝑥
+ 𝐸

𝜕𝑢

𝜕𝑡
+ 𝐹𝑢 = 𝐺 ,

Where A-G are given functions. This is a PDE of type:

• Parabolic: if 𝐵2 – 4𝐴𝐶 = 0

• Elliptic: if 𝐵2 – 4𝐴𝐶 < 0

• Hyperbolic: if 𝐵2 – 4𝐴𝐶 > 0

Nikhil Hegde 31

Important PDEs - Recap

• Poisson problem: −Δ𝑢 = 𝑓 (elliptic, independent of

time.)

• Heat equation: 𝜕𝑡𝑢 − Δ𝑢 = 𝑓 (parabolic. Here,

𝜕𝑡𝑢 =
𝜕𝑢

𝜕𝑡
= partial derivative w.r.t. time)

• Wave equation: 𝜕𝑡
2𝑢 − Δ𝑢 = 𝑓 (Hyperbolic. Here,

𝜕𝑡
2𝑢 =

𝜕2𝑢

𝜕𝑡𝜕𝑡
= second-order partial derivative w.r.t. time)

Nikhil Hegde 32

Laplace operator (L) : of a two-times continuously

differentiable scalar-valued function 𝑢:ℝ𝑛 → ℝ

Δ𝑢 = σ𝑘=1
𝑛 𝜕𝑘𝑘𝑢

Definitions - Recap

• Consider a region of interest 𝑅 in, say, 𝑥𝑦 plane.

The following is a boundary-value problem:

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 𝑓(𝑥, 𝑦) ,where

𝑓 is a given function in 𝑅 and

𝑢 = 𝑔 ,where

the function 𝑔 tells the value of function 𝑢 at boundary of 𝑅

• if 𝑓 = 0 everywhere, then Eqn. (1) is Laplace’s Equation

• if 𝑓 ≠ 0 somewhere in 𝑅, then Eqn. (1) is Poisson’s Equation

Nikhil Hegde 33

Exercise

• Consider the boundary-value problem:

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 in the square 0 < 𝑥 < 1, 0 < 𝑦 < 1

𝑢 = 𝑥2𝑦 on the boundary.

Is this Laplace equation or Poisson equation?

Nikhil Hegde 34

Elliptic Equation – Numerical Solution

• Approximate the derivatives of
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 𝑓 𝑥, 𝑦

using central differences

• Choose step sizes 𝛿𝑥 and 𝛿𝑦 for x and y axis resp.

– Both and x and y are independent variables here.

– Choose 𝛿𝑥= 𝛿𝑦 = ℎ

• Write difference equation for approximating the

PDE above

Nikhil Hegde 35

