
1

CS601: Software Development for

Scientific Computing
Autumn 2021

Week4:

• Tools - Version Control System (Git and GitHub),

Build tool (GNU make)

• Intermediate C++ (OO concepts)

Nikhil Hegde

Last Week..

• Intermediate C++
– Preprocessor directives, streams, and namespaces

• Structured Grids
– PDEs and categories, the mathematical model,

approximation, algebraic equations. Case study: 1D

heat equation.

– Program Representation???

Nikhil Hegde 2

Git

• Example of a Version Control System

– Manage versions of your code – access to different

versions when needed

– Lets you collaborate

• ‘Repository’ – term used to represent storage

– Local and Remote Repository

3

Github.
com

Remote

mypc01

Local

Your desktop,
laptop, server

Nikhil Hegde

Git – Creating Repositories

• Two methods:

1. ‘Clone’ / Download an existing repository from

GitHub

4Nikhil Hegde

Github.
com

Remote

mypc01

Local

Git – Creating Repositories

• Two methods:

2. Create local repository first and then make it

available on GitHub

5Nikhil Hegde

Github.
com

Remote

mypc01

Local

Method 1: git clone for creating

local working copy

• ‘Clone’ / Download an existing repository from

GitHub – get your own copy of source code

– git clone (when a remote repository on GitHub.com

exists)

6Nikhil Hegde

Method 2: git init for initializing

local repository

• Create local repository first and then make it

available on GitHub

1. git init

converts a directory to Git local repo

7Nikhil Hegde

git add for staging files

2. git add

‘stage’ a file i.e. prepare for saving the file on local
repository

Note that creating a file, say, README2 in dem0 directory
does not automatically make it part of the local repository

8Nikhil Hegde

git commit for saving changes in

local repository

3. git commit

‘commit’ changes i.e. save all the changes (adding a new

file in this example) in the local repository

9

How to save changes done when you must overwrite an existing file?

Nikhil Hegde

Method 2 only: git branch for

branch management

4. git branch –M master

rename the current as ‘master’ (-M for force rename even

if a branch by that name already exists)

10Nikhil Hegde

Method 2 only: git remote add

5. git remote add origin
git@github.com:IITDhCSE/dem0.git – prepare the

local repository to be managed as a tracked repository

11

command to manage
remote repo.

associates a name
‘origin’ with the
remote repo’s URL

The URL of the repository on
GitHub.com.
• This URL can be that of any other

user’s or server’s address.
• uses SSH protocol

• HTTP protocol is an
alternative. Looks like:
https://github.com/IITDhCSE
/dem0.gitNikhil Hegde

Method 2 only: GitHub Repository

Creation

5.a) Create an empty repository on GitHub.com

(name must be same as the one mentioned previously –

dem0)

12Nikhil Hegde

Github.com

Remote

git push for saving changes in

remote repo

6. git push –u origin master
‘push’ or save all the changes done to the ‘master’ branch

in local repo to remote repo. (necessary for guarding

against deletes to local repository)

syntax: git push <remotename> <branchname>

13

what does the –u option do?
Nikhil Hegde

Github.
com

Remote

mypc01

Local

Git – Releasing Code

• Tagging
1. Check for unsaved changes in local repository.

1. Create a tag and associate a comment with that tag

2. Save tags in remote repository

14Nikhil Hegde

• Note that commands 2, 3, and 4 are common to Method

1 and Method 2.

• Please read https://git-scm.com/book/en/v2 for details

Git – Recap..
1. git clone (creating a local working copy)
2. git add (staging the modified local copy)
3. git commit (saving local working copy)
4. git push (saving to remote repository)
5. git tag (Naming the release with a label)
6. git push --tags (saving the label to remote)

15Nikhil Hegde

For git download on Windows: https://git-scm.com/download/win

https://git-scm.com/book/en/v2
https://git-scm.com/download/win

Makefile or makefile

• Is a file, contains instructions for the make
program to generate a target (executable).

• Generating a target involves:
1. Preprocessing (e.g. strips comments, conditional

compilation etc.)

2. Compiling (.c -> .s files, .s -> .o files)

3. Linking (e.g. making printf available)

• A Makefile typically contains directives on how

to do steps 1, 2, and 3.

16Nikhil Hegde

Makefile - Format

1. Contains series of ‘rules’-

Example:

2. And Macro/Variable definitions -

target: dependencies
[TAB] system command(s)
Note that it is important that there be a TAB character before the system

command (not spaces).

CFLAGS = -std=c++11 -g -Wall -Wshadow --pedantic -Wvla –
Werror

GCC = g++

testgen: testgen.cpp
g++ testgen.cpp –o testgen

17Nikhil Hegde

“Recipe”“Dependencies or Prerequisite files”

“target file name”

Makefile - Usage

– The ‘make’ command (Assumes that a file by name

‘makefile’ or ‘Makefile’. exists)

• Run the ‘make’ command

18Nikhil Hegde

Makefile - Benefits

• Systematic dependency tracking and building for

projects
– Minimal rebuilding of project

– Rule adding is ‘declarative’ in nature (i.e. more intuitive

to read caveat: make also lets you write equivalent rules that are very

concise and non-intuitive.)

• To know more, please read:
https://www.gnu.org/software/make/manual/html_node/index.ht

ml#Top

19Nikhil Hegde

https://www.gnu.org/software/make/manual/html_node/index.html#Top

make - Demo

• Minimal build
– What if only scprod.cpp changes?

• Special targets (.phony)
– E.g. explicit request to clean executes the associated

recipe. What if there is a file named clean?

• Organizing into folders
– Use of variables (built-in (CXX, CFLAGS) and automatic

($@, $^, $<))

20Nikhil Hegde

refer to week4_codesamples

Object Orientation

• What does it mean to think in terms of object

orientation?

1. Give precedence to data over functions (think: objects,

attributes, methods)

2. Hide information under well-defined and stable

interfaces (think: encapsulation)

3. Enable incremental refinement and (re)use (think:

inheritance and polymorphism)

Nikhil Hegde 21

Object Orientation: Why?

Nikhil Hegde 22

• Improve costs

• Improve development process and

• Enforce good design

© Nikhil Hegde 2020

Objects and Instances

• Object is a computational unit

– Has a state and operations that operate on the state.

– The state consists of a collection of instance variables

or attributes.

– Send a “message” to an object to invoke/execute an

operation (message-passing metaphor in traditional

OO thinking)

• An instance is a specific version of the object

Nikhil Hegde 23

Classes

• Template or blueprint for creating objects.
Defines the shape of objects

– Has features = attributes + operations

– New objects created are instances of the class

– E.g.

Nikhil Hegde 24

Class - lollypop mould Objects - lollypops

Classes continued..

• Operations defined in a class are a prescription
or service provided by the class to access the
state of an object

• Why do we need classes?
– To define user-defined types / invent new types and

extend the language

– Built-in or Primitive types of a language – int, char,
float, string, bool etc. have implicitly defined
operations:

• E.g. cannot execute a shift operator on a negative integer

– Composite types (read: classes) have operations
that are implicit as well as those that are explicitly
defined.

Nikhil Hegde 25

Classes declaration vs. definition

Nikhil Hegde 26

Definition Declaration
implements

Implementation of

functions in a .cpp

file

listing of functions and

attributes in a .h file

Classes: declaration

• file Fruit.h

Nikhil Hegde 27

#include<string>

class Fruit {
string commonName;

public:
Fruit(string name);
string GetName();

};

Class Name

Attribute

Method

Constructor

Classes: access control

• Public / Private / Protected

• Private: methods-only (self) access

• Public: all access

• Protected: methods (self and sub-class) access
Nikhil Hegde 28

class Fruit {
string commonName; // private by default

public:
Fruit(string name);
string GetName();

};

Trivia: Python doesn’t support data hiding

Classes: definition

• file Fruit.cpp

Nikhil Hegde 29

#include<Fruit.h>

//constructor definition: initialize all attributes
Fruit::Fruit(string name) {

commonName = name;
}
//constructor definition can also be written as:
Fruit::Fruit(string name): commonName(name) { }

string Fruit::GetName() {
return commonName;

}

Objects: creation and usage

• file Fruit.cpp

• How is obj1 destroyed? – by calling destructor

Nikhil Hegde 30

#include<Fruit.h>

Fruit::Fruit(string name): commonName(name) { }
string Fruit::GetName() { return commonName; }

int main() {
Fruit obj1(“Mango”); //calls constructor
//following line prints “Mango”
cout<<obj1.GetName()<<endl; //calls GetName

method
}

Objects: Destructor

• Statically allocated objects: Automatic

• Dynamically allocated objects: Explicit
Nikhil Hegde 31

Fruit::~Fruit(){ } //default destructor implicitly
defined

int main() {
Fruit obj1(“Mango”); //statically allocated

object
Fruit* obj2 = new Fruit(“Apple”); //dynamic

object
delete obj2; //calls obj2->~Fruit();
//calls obj1.~Fruit()

}

Post-class Exercise - Encapsulation

• The earlier quiz at the beginning of the class

was a Pre-class Exercise.

• Re-attempt the same Quiz.

Nikhil Hegde 32

Inheritance

• Create a brand-new class based on existing
class

• Fruit is a base type, Mango is a sub-type

• Sub-type inherits attributes and methods of its
base type

Nikhil Hegde 33

file Mango.h
#include<Fruit.h>
class Mango : public Fruit {

string variety;
public:

Mango(string name, string var) : Fruit(name),
variety(var){}
};

calling base-class

constructor

Inheritance

Nikhil Hegde 34

file Fruit.h
#include<string>

class Fruit {
string commonName;

public:
Fruit(string name);
string GetName();

};

file Mango.h
#include<Fruit.h>
class Mango : public Fruit {

string variety;
public:

Mango(string name, string var) :
Fruit(name), variety(var){}
};

file Fruit.cpp
...
int main() {

Mango item1(“Mango”, “Alphonso”); //create sub-class object

}
//only commonName is printed!
(variety is not included).
Refer slide 41.

cout<<item1.GetName()<<endl;

string GetName();

commonName variety

Method overriding

• Customizing methods of derived / sub- class

Nikhil Hegde 35

file Fruit.h
#include<string>

class Fruit {
string

commonName;
public:

Fruit(string
name);

string GetName();
};

file Mango.h
#include<Fruit.h>
class Mango : public Fruit {

string variety;
public:

Mango(string name, string var) :
Fruit(name), variety(var){}

};

method with the same

name as in base class

string GetName();

Method overriding

Nikhil Hegde 36

file Fruit.h
#include<string>

class Fruit {
protected:

string commonName;
public:

Fruit(string name);
string GetName();

};

file Mango.h
#include<Fruit.h>
class Mango : public Fruit {

string variety;
public:

Mango(string name, string var) :
Fruit(name), variety(var){}

string GetName() { return
commonName + “_” + variety; }
};

accessing base

class attribute

Method overriding

Nikhil Hegde 37

file Fruit.h
#include<string>

class Fruit {
protected:

string commonName;
public:

Fruit(string name);
string GetName();

};

file Mango.h
#include<Fruit.h>
class Mango : public Fruit {

string variety;
public:

Mango(string name, string var) :
Fruit(name), variety(var){}

string GetName() { return
commonName + “_” + variety; }
};

file Fruit.cpp
...
int main() {

Mango item1(“Mango”, “Alphonso”); //create sub-class object

}

//prints “Mango_Alphonso”cout<<item1.GetName()<<endl;

Polymorphism

• Ability of one type to appear and be used as

another type

• E.g. type Mango used as type Fruit

Nikhil Hegde 38

file Fruit.cpp
...
int main() {
//create a sub-class object and initialize it to a pointer of
//type base-class

Fruit* item1 = new Mango(“Mango”, “Alphonso”);
cout<<item1->GetName()<<endl;
...

}

//prints “Mango” !

Polymorphism

• Declare overridden functions as virtual in base class

• Invoke those functions using pointers

Nikhil Hegde 39

file Fruit.h
#include<string>

class Fruit {
protected:

string commonName;
public:

Fruit(string name);
virtual string GetName();

};

Fruit* item1 = new Mango(“Mango”, “Alphonso”);
cout<<item1->GetName()<<endl; //prints “Mango_Alphonso”

file Mango.h
#include<Fruit.h>
class Mango : public Fruit {

string variety;
public:

Mango(string name, string
var) : Fruit(name), variety(var){}
string GetName() { return
commonName + “_” + variety; }
};

Trivia: Java treats all functions as virtual

Polymorphism and Destructors

• declare base class destructors as virtual if using

base class in a polymorphic way

Nikhil Hegde 40

file Fruit.h
#include<string>

class Fruit {
protected:

string commonName;
public:

Fruit(string name);
virtual string GetName();
virtual ~Fruit();

};

...
Fruit* item1 = new Mango(“Mango”,
“Alphonso”);
...
delete item1; //calls Mango::~Mango()
first and then Fruit::~Fruit()

Post-class Exercise - Inheritence

• The earlier quiz at the beginning of the class

was a Pre-class Exercise.

• Re-attempt the same Quiz.

Nikhil Hegde 41

Recap-Classes

Nikhil Hegde 42

Header file (myvec.h)

Nikhil Hegde 43

Header file (myvec.h)

• Declare the class

Nikhil Hegde 44

Keyword

Class name

Class declaration closing scope

Class declaration opening scope

Header file (myvec.h)

Nikhil Hegde 45

Declaring attributes

Header file (myvec.h)

Nikhil Hegde 46

Declaring operations

Specifying access control

Defining the class (myvec.h and

myvec.cpp)

Nikhil Hegde 47

Scope resolution operator

Constructor: no return type.

Destructor: no parameters, no return type.

Defining the class (myvec.h
and myvec.cpp)

Nikhil Hegde 48

Using an object

Nikhil Hegde 49

Abstract base classes

• A class can have a virtual method without a

definition – pure virtual functions

• E.g

Nikhil Hegde 50

class Fruit {
protected:

string commonName;
float weight;
float energyPerUnitWeight; //in kCals / 100g

public:
Fruit(string name, float weight);
virtual string GetName();
virtual ~Fruit();
virtual void Energy() = 0;

};

Energy is ‘pure’ –

no implementation

Defining pure virtual function

Nikhil Hegde 51

Fruit

Apple

extends

class Apple : public Fruit {
vector<pair<string, float> > constituents;

public:
Apple(string name, float weight);
virtual ~Apple();
. . .
void Energy() {
energyPerUnitWeight = ComputeEnergy(weight, constituents);
}

};
Base class attributePure virtual method

defined in derived class.

Defining pure virtual function

Nikhil Hegde 52

Fruit

CoconutApple

extends extends

class Coconut : public Fruit {
vector<pair<string, float> > constituents;

public:
Coconut(string name, float weight);
virtual ~Coconut();
. . .
void Energy() {
float effWeight = GetEdibleContentWeight();
energyPerUnitWeight = ComputeEnergy(effWeight, constituents);
}

}; Computation is different from that of Apple’s method

Abstract base classes..

• Cannot create objects from abstract base

classes. But may need constructors. Why?
Fruit item1; //not allowed. Fruit::Energy() is pure virtual

• Can create pointers to abstract base classes

and use them in polymorphic way
Fruit* item1 = new Apple(“Apple”, 0.24);
cout<<item1->Energy()<<“Kcals per 100 g”<<endl;

• Often used to create interfaces

Nikhil Hegde 53

Friend functions

• Can access private and protected members

Nikhil Hegde 54

class Coconut {
vector<pair<string, float> > constituents;

public:
...
friend float ComputeEnergy(float wt, Coconut* c);

};

float ComputeEnergy(float weight, Coconut* c) {
//get a set of items, for each item, get its weight and
//energy_per_g. multiply both. Sum the product of all items...
//read from c->constituents to get the set of items.
}

The non-member function ComputeEnergy can access

private attribute constituent of Coconut class

Operator overloading

• How can we assign one object to another?
Apple a1(“Apple”, 1.2); //constructor Apple::Apple(string, float)

//is invoked

Apple a2; //constructor Apple::Apple() is invoked.
a2 = a1 //object a1 is assigned to a2. assignment operator invoked

Nikhil Hegde 55

Apple& Apple::operator=(const Apple& rhs) {
commonName = rhs.commonName;
weight = rhs.weight;
energyPerUnitWeight = rhs.energyPerUnitWeight;
constituents = rhs.constituents;
return *this;
}

Called Copy Assignment Operator

Operator overloading []

Nikhil Hegde 56

Operator overloading - usage

Nikhil Hegde 57

Copying Objects

Apple a1(“Apple_red”, 0.2);
Apple a2 = a1; //calls copy constructor

Nikhil Hegde 58

Apple::Apple(const Apple& rhs) {
commonName = rhs.commonName;
weight = rhs.weight;
energyPerUnitWeight = rhs.energyPerUnitWeight;

}

Copy constructor - usage

• Not necessary to define the copy constructor.

Compiler defines one for us.

Nikhil Hegde 59

Nikhil Hegde 60

Nikhil Hegde 61

If you don’t define a copy constructor, in some cases, e.g.,

for class MyVec, the program aborts. Why in this case?

const and references

Nikhil Hegde 62

Nikhil Hegde 63

Define the copy constructor. Now you need to make

changes to other methods (const) as well.

Detour: References and Const

• We saw reference variables earlier (slides 83

and 84, Week2)

• Closely related to pointers:

– Directly name another object of the same type.

– A pointer is defined using the * (dereference operator)

symbol. A reference is defined using the & (address of

operator) symbol. Furthermore, unlike in pointer

definitions, a reference must be defined/initialized with

the object that it names (cannot be changed later).

Nikhil Hegde 64

References

Nikhil Hegde 65

int n=10;

int &re=n; //re must be initialized

int* ptr; //ptr need not be initialized here

ptr=&n //ptr now initialized (now pointing to n)

int x=20;

ptr=&x; //ptr now pointing to x

re=x; //is illegal. Cannot change what re names.

printf(“%p %p\n”,&re, &n); // re and n are naming the
same box in memory. Hence, they have the same address.

• A type qualifier

• The type is a constant (cannot be modified).

• const is the keyword

• Example:

const int x=10; //equivalent to: int const x=10;
//x is a constant integer. Hence, cannot be
//modified.

const

In what memory segment does x gets stored?

• Needs to be initialized at the time of definition

• Can’t modify after definition

• const int x=10;
x=20; //compiler would throw an error

• int const x=10;
x=10; //can’t even assign the same value

• int const y; //uninitialized const variable y. Useless.

Const Properties

10

x

Can’t alter the content of this box

/*ptrCX is a pointer to a constant integer. So, can’t
modify what ptrCX points to.*/
const int* ptrCX; //or equivalently:
int const* ptrCX;

int const x=10;
ptrCX = &x;
*ptrCX = 20; //Error

Const Example1 (error)

10

x

Addr: 1234

Can’t alter the content of this box

using ptrCX or x

1234

ptrCX

/*cptrX is a constant pointer to an integer. So, can’t
point to anything else after initialized.*/
int x=10, y=20;
int *const cptrX=&x;
cptrX = &y; //Error

Const Example2 (error)

10

x

Addr: 1234

1234

cptrX

Can’t alter the

content of this box
20

y

Addr: 5678

/*cptrXC is a constant pointer to a constant integer. So,
can’t point to anything else after initialized. Also,
can’t modify what cptrXC points to.*/

const int x=10, y=20;
const int *const cptrXC=&x;
int const *const cptrXC2=&x; //equivalent to prev. defn.
cptrXC = &y; //Error
*cptrX = 40; //Error

Const Example3 (error)

10

x

Addr: 1234

Can’t alter the content of

this box using cptrCX or x
1234

cptrXC

Can’t alter the

content of this box

/*p2x is a pointer to an integer. So, we can use p2x to
alter the contents of the memory location that it points
to. However, the memory location contains read-only data -
cannot be altered. */

const int x=10;
const int *p1x=&x;
int *p2x=&x; //warning
*p2x = 20; //goes through. Might crash depending on memory
location accessed

Const Example4 (warning)

10

x

Addr: 1234

Can’t alter the content

of this box using p1x

or x. Can alter using

p2x.

1234

p1x

1234

p2x

/*p1x is a pointer to a constant integer. So, we can’t use
p1x to alter the content of the memory location that it
points to. However, the memory location it points to can
be altered (through some other means e.g. using x)*/

int x=10;
const int *p1x=&x;

Const Example5 (no warning, no

error)

10

x

Addr: 1234

1234

p1x

Can’t alter the content

of this box using p1x.

Can alter using x.

/*p1x is a constant pointer to an integer. So, we can use
p1x to alter the contents of the memory location that it
points to (and we can’t let p1x point to something else
other than x). However, the memory location contains read-
only data - cannot be altered. */

const int x=10;
int *const p1x=&x;//warning
*p1x = 20; //goes through. Might crash depending on memory
location accessed

Const Example6 (warning)

10

x

Addr: 1234

Can’t alter the content

of this box using x.

Can alter using p1x.

1234

p1x

Can’t alter the

content of this box

/*p1x is a constant pointer to a constant integer. So, we
can’t use p1x to alter the content of the memory location
that it points to. However, the memory location it points
to can be altered (through some other means e.g. using
x)*/

int x=10;
const int *const p1x=&x;

Const Example7 (no warning, no

error)

10

x

Addr: 1234

1234

p1x

Can’t alter the content

of this box using p1x.

Can alter using x.

Can’t alter the

content of this box

Const and References - Summary

• Allow for compiler optimizations

– pass-by-reference: allows for passing large objects to

a function call

• Tell us immediately (by looking at the interface)

that a parameter is read-only

Nikhil Hegde 75

Post-class Exercise – Abstract Classes

• The earlier quiz at the beginning of the class

was a Pre-class Exercise.

• Re-attempt the same Quiz.

Nikhil Hegde 76

Templating Functions

• Provide a recipe for generating multiple

versions of the function based on the data

type of the data on which the function

operates

• Demo: refer to function_template folder in

week4_codesamples

Nikhil Hegde 77

