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Last WeeKk..

Program Development Environment — Demo
‘C’ subset of C++ and reference variables in C++

Discretization and issues

— scalability, approximation, and errors (discretization error
and solution error), error estimates

— mesh of cells/elements, cell shapes and sizes

Structured Grids

— ‘Regularity’ of cell connectivity (e.g. neighbors are
similar kind of cells)

— Case study — problem statement, representation (e.g.
2D arrays)
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Review of Solution to Exercise:
Product of Vectors

* Input sanity check using istringstream

« Good programming style: separation of the interface

from implementation

— Streams
— Passing arrays to functions
— Pragmas and preprocessor directives

— Namespaces
* In the sample code, we have so many versions!



Demo

streams, passing arrays to functions,
namespaces, preprocessor directives.

— Usage and Implementation (refer to
week3_codesamples)



Detour - Conditional
Compilation

« Set of 6 preprocessor directives and an operator.
o #if
- #ifdef A :

Edltqr Preprocessor Compiler Assembler Linker H-—»a.out
e.q. Vim) l ]

. I
° #|fn d ef cpp: files .cpp files s files .0 files (Txecutable
(with expanded #include, ﬂ.e)

stripped of comments, etc. )

- #elif
o #else
o #endif

* Operator ‘defined’



#Hif

#1if <constant-expression>

cout<<“CS601”; « /This line is compiled only if
#tendif <constant-expression> evaluates
to a value > 0 while preprocessing

#define COMP © #define COMP 2
#1t COMP #if COMP
Cout<<™C5601" cout<<“CS601”
#endif #tendif

No compiler error Compiler throws error about

missing semicolon
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#ifdef

#ifdef identifier

cout<<“CS601”; «— (/ThIS.hne is compiled onl)_/ if |df_ent|f|er
#endif is defined before the previous line is

seen while preprocessing.

identifier does not require a value to be set. Even if set,
does not care about O or > 0.

#define COMP #define COMP © #define COMP 2
#ifdef COMP #ifdef COMP #ifdef COMP
cout<<“Csenl1” cout<<“CS601” cout<<“Cse01”
#tendif #endif #endif

All three snippets throw compiler error about missing semicolon



#Helse and #elif

. #ifdef identifierl
. cout<<“Summer”

. #elif identifier2
. Cout<<“Fall”;

. H#else

. coutc<“Spring”;

. Hendif

NOuUuTph WN

//preprocessor checks if identifierl is defined. If so,
line 2 is compiled. If not, checks if identifier2 is
defined. If identifier2 is defined, line 4 is compiled.
Otherwise, line 6 Is compiled.



defined operator

Example:

#if defined(COMP)
cout<<“Spring”;
#endif

[Isame as If #ifdef COMP

#if defined(COMP1l) || defined(COMP2)
cout<<“Spring”;
#endif

//if either COMP1 or COMP2 is defined, the printf statementis
compiled. As with #ifdef, COMP1 or COMP2 values are
Irrelevant.



Mathematical Model of the Grid

 Partial Differential Equations (PDES):

— Navier-Stokes equations to model water, blood flow,
weather forecast, aerodynamics etc.

— Elasticity (Lame-Navier equations)
— Nutrient transport in blood flow

— Heat conduction (Laplace / Poisson equation): how
heat conducts/diffuses through a material given the temperature

at boundaries?

— Mechanics: how does a mass reach from point p1 to point p2
In shortest time under gravitational forces?
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Notation and Terminology

ou

= d,u
0°u

dxdy axyu
ou

5; = 0., tusually denotes time.

Laplace operator (L) : of a two-times
continuously differentiable scalar-valued function

u:R" - R
Au =Y3_,0..u
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Important PDES

* Three important types (not a complete
categorization by any means):

— Poisson problem: —Au = f (elliptic)
— Heat equation: 0,u — Au = f (parabolic. Here, d,u =

%‘ = partial derivative w.r.t. time)

— Wave equation: d,’u — Au = f (Hyperbolic. Here,
0,°u = aat;t = second-order partial derivative w.r.t.
time)
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Application: Heat Equation

« Example: heat conduction through a rod

» X

U, Up

0 [

e u = u(x,t) Is the temperature of the metal bar at
distance x from one end and at time t

e Goal: find u
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Initial and Boundary Conditions

Example: heat conduction through a rod

» X

U, Up

0 [

Metal bar has length [ and the ends are held at constant
temperatures u; at the left and u, at the right

Temperature distribution at the initial time is known f(x),
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Equations

« Example: heat conduction through a rod

> X
U, Up
0 [
ou o°u
E—aﬁ 0<x<l[t>0)

a 1S thermal diffusivity

(a constant if the material is homogeneous and isotropic.

copper = 1.14 cm? s, aluminium = 0.86 cm? s1)
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Equations

« Example: heat conduction through a rod

> X
U, Up
0 [
ou o°u
E—aﬁ 0<x<l[t>0)

a IS thermal diffusivity
(a constant if the material is homogeneous and isotropic.
copper = 1.14 cm?2s, aluminium = 0.86 cm?s1)

« Exercise: what kind of a PDE is this? (Poisson/Heat/\Wave?)
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Equations

« Example: heat conduction through a rod

» X

U, Up

0 [

o,u = alu as per the notation mentioned earlier
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Equations

« Example: heat conduction through a rod

» X

0 [
o,u = alu

Can also be written as:
ou—alu=20
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Equations

« Example: heat conduction through a rod

» X

U, Up

0 [

ou—alu=0,
Based on initial and boundary conditions:

u(0,t) = u; ,
u(l,t) = ugp,

u(x,0) = f(x)
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Equations

« Summarizing:
1. du— alAu =0, 0<x<],t>0

2. u(0,t) =u;,t>0
3. u(l,t) =up,t>0
4 u(x,0)= f(x),0<x <1
e Solution:
u(x,t) = Ym=1 Bme_mz"‘”zt/ lzsin(@) :

where, B,, = 2/I folf(s) sin(

Mmms
l

) ds
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Equations

« Summarizing:
1. du— alAu =0, 0<x<],t>0
2. u(0,t) =u;,t>0
3. u(l,t) =up,t>0
(2 But we are interested in a numerical solution

« Solution:

u(x,t) :Z,‘ﬁ:lee_mZ“”Zt/lzsin(@) :

where, B,,, = 2/1 folf(s) sin (mzts) ds
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Approximating Partial Derivatives

* Suppose y = f(x)
— Forward difference approximation to the first-order
derivative of f w.r.t. x Is:
af _ (FGx+80)-f(x))
dx ox
— Central difference approximation to the first-order
derivative of f w.r.t. x Is:
df - (f(x+68x)—f(x—6x))
dx 20X
— Central difference approximation to the second-order
derivative of f w.r.t. x Is:
d’f - (f(x+6x)=2f(x)+f(x—6x))
dx? (6x)*
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Approximating Partial Derivatives

* In example heat application f = u = u(x,t) and
ou o*u

— = —
ot x>

— First, approximating %:
ou _ (u(x,t+8t)—u(xt))
at St

, Where §t is a small increment in time

. i 0*u
— Next, approximating R
*u (u(x+6x,t)—2u(x,t)+u(x—8x,t))
ax? (6x)?
increment in space (along the length of the rod)

, Where 6x is a small
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Approximating Partial Derivatives

* Divide length [ into J equal divisions: 6x = [/] (space
step)

 Choose an appropriate 4t (time step)

j=1j=2j=3 j=J-1j=]

t 20t n=2
ot n=1

Ox 20x x =1




Approximating Partial Derivatives

* Find sequence of numbers which approximate u at a

sequence of (x,t) points (i.e. at the intersection of horizontal and
vertical lines below)
j=1j=2j=3 j=J-1j=]

t | 26t n=2
ot n =
_ _

0x 20x X

X

« Approximate the exact solution u(j X éx,n X ét) using
the approximation for partial derivatives mentioned
earlier



Approximating Partial Derivatives

Ju N (u(x, t + 6t) — ul(x, t))
ot St

n+1 n
(u;" "—uj)

ot
where u"*! denotes taking j steps along x direction and
n + 1 steps along t direction

o 0*u (u(x+8x,t)—2ulx,t)+u(x—5x,t))
Similarly, Pl (%)
(Ujp1 =2 Uj+uj_;)

(6x)*
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Approximating Partial Derivatives

ou o*u
Plugging into il (sl
() 20 4wy
st (6x)2

This Is also called as difference equation because you
are computing difference between successive values of
a function involving discrete variables.
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Approximating Partial Derivatives

Simplifying:
u]"Jr1 =ul +r(uf—2ul +ult )
= TU;. 1+(1 — 2r)u}’ +‘ru]Jr1

ot
(8x)?

wherer = «
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Approximating Partial Derivatives

visualizing,

n+1 _ n n n
uj T =ruisg + (1 = 2r)u +rujgg

J'=1J'=|2 j=3 j=)-1 =]

t| 20t i ®o— n=>2
ot n=1
Ox 20x i x =1
x >

To compute the value of function at blue dot, you need 3 values indicated
by the red dots — 3-point stencil
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Approximating Partial Derivatives

Initial and boundary conditions tell us that:

U,(O, t) = U,
U,(l, t) = Up ,
u(x,0) = f(x)

ug, uf uy, ....u; are known (at time t=0, the temperature at
all points along the distance is known as indicated by f(x) =

i)
ug is uy, uj is ug

Now compute points on the grid from left-to-right:
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Approximating Partial Derivatives

« Now compute points on the grid from left-to-right:

ui = ul + r(ug —Zul +ul)

uy; =ug +ru —2ud +ud)

1 — ,,0 0 0 0
u]_l - u]_l + r(u]_z _Zu]_l +u])

« This constitutes the computation done in the first time step.
 Now do the second time step computation...and so on..
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Numerical Methods for Solving PDES

* Finite Difference Methods
 Finite Volume Methods

* Finite Element Methods

Boundary Elements Methods

Isogeometric Analysis

Spectral Methods
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Programming Assignment 1. heads-
up

« Steady-state heat equation for a metal plate with
boundaries at constant temperature
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Explicit Difference Method: Stability

« Given: =1,
u(0,t) =u;=0,
u(l,t) =ugp =0,
u(x,0) = f(x) =x( —x)

a =1,

e Choose: §x = 0.25,6t = 0.075
¢ Solve.
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Explicit Difference Method: Stability

+ Initialize u; values from initial and boundary
conditions i.e. get time-step 0 values

j=1j=2 j=3j=4
u8 =0
- £(6x) = 8x(1 — 6x) = .1875
= f(26x) = 26x(l — 26x) = .25 t Zdit :12
= f(38x) = 36x(l — 36x) = .1875 20 S o A

u2:O
X
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Explicit Difference Method: Stability

« Compute time-step 1 values

n+1 _
u' Tt =ruisg + (1 =2y +rujy,
j=1j=2 j=3j=4

II
)

t | 26t
ot o—eo—e

x=0 éx 26x 36x x=l

X

II
—
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Explicit Difference Method: Stability

« Compute time-step 1 values

n+1 _ n n n
uj " =ruisg + (1 = 2r)uy +rugyy

What about values of u(x,t) at © ?

j=1j=2 j=3j=4
20t n=2
‘th—eo—eo—e— n=1

x=0 éx 26x 36x x=l

X
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Explicit Difference Method: Stability

« Compute time-step 1 values
1

=yl + (1 - 20yt +rugyy

What about values of u(x,t) at © ?

Get it from boundary conditions

26t

j=1j=2 j=3j=4
n=>2
5t$ oo o o n=1

x=0 6x 26x 38x X=I

X
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Explicit Difference Method: Stability

Compute time-step 1 values

n+1 _ n . n n
uj " =ruisg + (1 = 2r)u + ruf

r=adt/(6x)* =1.2 j=1j=2 j=3 j=4

utr =ud + r(ud —2u? +ud) = 0.03678 | e ,
n =

ot n=1
x=0 6x ng 36x x=l

X
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Explicit Difference Method: Stability

« Compute time-step 1 values

1

T = ru}’_l + (1 — 27")u]’-1 + ru]’-ﬁrl

r=adt/(6x)* =1.2
ut = ud + r(ud —2u? +ud)=0.03678

uz =ud +r@d —2ud +u)=0.1
us =ud +r(ud —2ul +u)=0.03678

26t
ot

j=1j=2 j=3j=4
n=2
4’_7_?7_11:1

x=0 6x 26x 38x X=I

X
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Explicit Difference Method: Stability

Compute time-step 2 values

n+1 _ n n n
uj " =ruisg + (1 = 2r)u + ruf

j j
uf =ul + r(uy —2uil +ui)=0.06851 j=1j=2 j=3 j=4
ué =us +r(ui —2ul +ui)=-0.05173
ué =ul +r(ul —2ui +ui)=0.06851

t| 20t @—@—— =27
ot n=1

x=0 éx 26x 36x x=l

X
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Explicit Difference Method: Stability

 Temperature at 26x after 245t time units went into
negative! (when the boundaries were held constant at 0)

— Example of instability

j=1j=2j=3j=4
us =us + r(uf —2ul +ui)=-0.05173
t | 26t ® n=2
ot n=1

x=0 éx 26x 36x x=l

X

The solution is stable (for heat diffusion problem) only if the approximations
for u(x, t) do not get bigger in magnitude with time
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Explicit Difference Method: Stability

« The solution for heat diffusion problem is stable
only if:

Therefore, choose your time step in such a way
that:

But this Is a severe limitation!
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Implicit Method: Stability

Overcoming instability:

u =l + 12wty - 2ul Fuly +ul -

J

J'=1J'=|2 j=3 j=)-1 =]

S, D—
t| 26t v\bf n=>2
ot n=1
Ox 20x i x =1
x >

To compute the value of function at blue dot, you need 6 values indicated
by the red dots (known) and 3 additional ones (unknown) above



Implicit Method: Stability

« Overcoming instability:

u =l + 12wty - 2ul Fuly +ul -

]

Extra Work mvolved to determine the values of
unknowns in a time step

— Solve a system of simultaneous equations. Is it worth
it?
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Definitions

« Consider a region of interest R In, say, xy plane.
The following is a boundary-value problem:

62

P +— f(xy) ®
where f IS a given function in R and

u=4yg,

where the function g tells the value of
function u at boundary of R

« If f = 0 everywhere, then Egn. (1) is Laplace’s Equation
« If f = 0 somewhere in R, then Eqgn. (1) is Poisson’s Equation
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Suggested Reading

« JW. Thomas. Numerical Partial Differential
Equations: Finite Difference Methods

 Parabolic PDEs:

https://learn.lboro.ac.uk/archive/olmp/olmp reso

urces/pages/workbooks 1 50 jan2008/Workbo
0k32/32 4 prblc_pde.pdf
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https://learn.lboro.ac.uk/archive/olmp/olmp_resources/pages/workbooks_1_50_jan2008/Workbook32/32_4_prblc_pde.pdf

