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CS601: Software Development for 

Scientific Computing
Autumn 2021

Week3: Structured Grids (Contd..), 

Intermediate C++

Nikhil Hegde



Last Week..

• Program Development Environment – Demo

• ‘C’ subset of C++ and reference variables in C++

• Discretization and issues
– scalability, approximation, and errors (discretization error 

and solution error), error estimates

– mesh of cells/elements, cell shapes and sizes  

• Structured Grids
– ‘Regularity’ of cell connectivity (e.g. neighbors are 

similar kind of cells)

– Case study – problem statement, representation (e.g.

2D arrays) 
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Review of Solution to Exercise: 

Product of Vectors
• Input sanity check using istringstream

• Good programming style: separation of the interface 

from implementation
– Streams

– Passing arrays to functions

– Pragmas and preprocessor directives

– Namespaces

• In the sample code, we have so many versions!
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Demo

• streams, passing arrays to functions, 

namespaces, preprocessor directives.

– Usage and Implementation (refer to

week3_codesamples)
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• Set of 6 preprocessor directives and an operator.

• #if

• #ifdef

• #ifndef

• #elif

• #else

• #endif

• Operator ‘defined’

Detour - Conditional 

Compilation
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#if <constant-expression>
cout<<“CS601”;
#endif

#define COMP 0
#if COMP
cout<<“CS601”
#endif

#if

6

#define COMP 2
#if COMP
cout<<“CS601”
#endif

No compiler error Compiler throws error about 

missing semicolon

//This line is compiled only if 

<constant-expression> evaluates 

to a value > 0 while preprocessing
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#ifdef identifier
cout<<“CS601”;
#endif

identifier does not require a value to be set. Even if set, 
does not care about 0 or > 0.

#ifdef

7

#define COMP 2
#ifdef COMP
cout<<“CS601”
#endif

All three snippets throw compiler error about missing semicolon

#define COMP
#ifdef COMP
cout<<“CS601”
#endif

#define COMP 0
#ifdef COMP
cout<<“CS601”
#endif

//This line is compiled only if identifier

is defined before the previous line is 

seen while preprocessing. 
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1. #ifdef identifier1
2. cout<<“Summer”
3. #elif identifier2
4. cout<<“Fall”;
5. #else
6. cout<<“Spring”;
7. #endif

//preprocessor checks if identifier1 is defined. if so, 
line 2 is compiled. If not, checks if identifier2 is 
defined. If identifier2 is defined, line 4 is compiled. 
Otherwise, line 6 is compiled.

#else and #elif
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Example:

#if defined(COMP)
cout<<“Spring”;
#endif

//same as if #ifdef COMP

#if defined(COMP1) || defined(COMP2)
cout<<“Spring”;
#endif

//if either COMP1 or COMP2 is defined, the printf statement is 
compiled. As with #ifdef, COMP1 or COMP2 values are 
irrelevant.

defined operator
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Mathematical Model of the Grid

• Partial Differential Equations (PDEs):

– Navier-Stokes equations to model water, blood flow, 

weather forecast, aerodynamics etc.

– Elasticity (Lame-Navier equations)

– Nutrient transport in blood flow

– Heat conduction (Laplace / Poisson equation): how 

heat conducts/diffuses through a material given the temperature 

at boundaries?

– Mechanics: how does a mass reach from point p1 to point p2 

in shortest time under gravitational forces?
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Notation and Terminology

•
𝜕𝑢

𝜕𝑥
= 𝜕𝑥𝑢

•
𝜕2𝑢

𝜕𝑥𝜕𝑦
= 𝜕𝑥𝑦𝑢

•
𝜕𝑢

𝜕𝑡
= 𝜕𝑡𝑢, t usually denotes time.

• Laplace operator (L) : of a two-times 

continuously differentiable scalar-valued function 

𝑢:ℝ𝑛 → ℝ

Δ𝑢 = σ𝑘=1
𝑛 𝜕𝑘𝑘𝑢
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Important PDEs

• Three important types (not a complete 

categorization by any means): 

– Poisson problem: −Δ𝑢 = 𝑓 (elliptic)

– Heat equation: 𝜕𝑡𝑢 − Δ𝑢 = 𝑓 (parabolic. Here, 𝜕𝑡𝑢 =
𝜕𝑢

𝜕𝑡
= partial derivative w.r.t. time)

– Wave equation: 𝜕𝑡
2𝑢 − Δ𝑢 = 𝑓 (Hyperbolic. Here, 

𝜕𝑡
2𝑢 =

𝜕2𝑢

𝜕𝑡𝜕𝑡
= second-order partial derivative w.r.t.

time)
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Application: Heat Equation

• Example: heat conduction through a rod

• 𝑢 = 𝑢(𝑥, 𝑡) is the temperature of the metal bar at 

distance 𝑥 from one end and at time 𝑡

• Goal: find 𝑢
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𝑢𝐿 𝑢𝑅

𝑥

𝑙0



Initial and Boundary Conditions

• Example: heat conduction through a rod

• Metal bar has length  𝑙 and the ends are held at constant 

temperatures 𝑢𝐿 at the left and 𝑢𝑅 at the right

• Temperature distribution at the initial time is known 𝑓(𝑥), 
with 𝑓 0 = 𝑢𝐿 and 𝑓 𝑙 = 𝑢𝑅
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𝑢𝐿 𝑢𝑅

𝑥

𝑙0



Equations

• Example: heat conduction through a rod
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𝑢𝐿 𝑢𝑅

𝑥

𝑙0

𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
0 < 𝑥 < 𝑙, 𝑡 > 0

𝛼 is thermal diffusivity 

(a constant if the material is homogeneous and isotropic.

copper = 1.14 cm2 s-1, aluminium = 0.86 cm2 s-1)



Equations

• Example: heat conduction through a rod

• Exercise: what kind of a PDE is this? (Poisson/Heat/Wave?)
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𝑢𝐿 𝑢𝑅

𝑥

𝑙0

𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
0 < 𝑥 < 𝑙, 𝑡 > 0

𝛼 is thermal diffusivity 

(a constant if the material is homogeneous and isotropic.

copper = 1.14 cm2 s-1, aluminium = 0.86 cm2 s-1)



Equations

• Example: heat conduction through a rod
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𝑢𝐿 𝑢𝑅

𝑥

𝑙0

𝜕𝑡𝑢 = 𝛼Δ𝑢 as per the notation mentioned earlier



Equations

• Example: heat conduction through a rod
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𝑢𝐿 𝑢𝑅

𝑥

𝑙0

𝜕𝑡𝑢 = 𝛼Δ𝑢

Can also be written as:

𝜕𝑡𝑢 − 𝛼Δ𝑢 = 0



Equations

• Example: heat conduction through a rod
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𝑢𝐿 𝑢𝑅

𝑥

𝑙0

𝜕𝑡𝑢 − 𝛼Δ𝑢 = 0 ,

Based on initial and boundary conditions:

𝑢 0, 𝑡 = 𝑢𝐿 ,

𝑢 𝑙, 𝑡 = 𝑢𝑅 ,

𝑢(𝑥, 0) = 𝑓(𝑥)



Equations

• Summarizing:

1. 𝜕𝑡𝑢 − 𝛼Δ𝑢 = 0, 0<x<l, t>0

2. 𝑢 0, 𝑡 = 𝑢𝐿 , 𝑡 > 0

3. 𝑢 𝑙, 𝑡 = 𝑢𝑅 , 𝑡 > 0

4. 𝑢 𝑥, 0 = 𝑓 𝑥 , 0 < 𝑥 < 𝑙

• Solution:

𝑢 𝑥, 𝑡 = σ𝑚=1
∞ 𝐵𝑚𝑒

−𝑚2𝛼𝜋2𝑡/𝑙2sin(
𝑚𝜋𝑥

𝑙
) ,

where, 𝐵𝑚 = 2/𝑙 0׬
𝑙
𝑓 𝑠 sin

𝑚𝜋𝑠

𝑙
𝑑𝑠
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Equations

• Summarizing:

1. 𝜕𝑡𝑢 − 𝛼Δ𝑢 = 0, 0<x<l, t>0

2. 𝑢 0, 𝑡 = 𝑢𝐿 , 𝑡 > 0

3. 𝑢 𝑙, 𝑡 = 𝑢𝑅 , 𝑡 > 0

4. 𝑢 𝑥, 0 = 𝑓 𝑥 , 0 < 𝑥 < 𝑙

• Solution:

𝑢 𝑥, 𝑡 = σ𝑚=1
∞ 𝐵𝑚𝑒

−𝑚2𝛼𝜋2𝑡/𝑙2sin(
𝑚𝜋𝑥

𝑙
) ,

where, 𝐵𝑚 = 2/𝑙 0׬
𝑙
𝑓 𝑠 sin

𝑚𝜋𝑠

𝑙
𝑑𝑠
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But we are interested in a numerical solution



Approximating Partial Derivatives

• Suppose 𝑦 = 𝑓(𝑥)
– Forward difference approximation to the first-order 

derivative of 𝑓 w.r.t. 𝑥 is:
𝑑𝑓

𝑑𝑥
≈

𝑓 𝑥+𝛿𝑥 −𝑓 𝑥

𝛿𝑥

– Central difference approximation to the first-order 

derivative of 𝑓 w.r.t. 𝑥 is:
𝑑𝑓

𝑑𝑥
≈

𝑓 𝑥+𝛿𝑥 −𝑓 𝑥−𝛿𝑥

2𝛿𝑥

– Central difference approximation to the second-order 

derivative of 𝑓 w.r.t. 𝑥 is:
𝑑2𝑓

𝑑𝑥2
≈

𝑓 𝑥+𝛿𝑥 −2𝑓 𝑥 +𝑓 𝑥−𝛿𝑥

𝛿𝑥 2

Nikhil Hegde 22



Approximating Partial Derivatives

• In example heat application 𝑓 = 𝑢 = 𝑢(𝑥, 𝑡) and
𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2

– First, approximating 
𝜕𝑢

𝜕𝑡
:

𝜕𝑢

𝜕𝑡
≈

𝑢 𝑥,𝑡+𝛿𝑡 −𝑢 𝑥,𝑡

𝛿𝑡
, where 𝛿𝑡 is a small increment in time

– Next, approximating 
𝜕2𝑢

𝜕𝑥2
:

𝜕2𝑢

𝜕𝑥2
≈

𝑢 𝑥+𝛿𝑥,𝑡 −2𝑢 𝑥,𝑡 +𝑢 𝑥−𝛿𝑥,𝑡

𝛿𝑥 2 , where 𝛿𝑥 is a small 

increment in space (along the length of the rod)
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Approximating Partial Derivatives

• Divide length 𝑙 into 𝐽 equal divisions: 𝛿𝑥 = 𝑙/𝐽 (space 

step)

• Choose an appropriate 𝛿𝑡 (time step) 
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2𝛿t
𝛿t

𝑛 = 2
𝑛 = 1

j=1 j=2  j=3    j=J-1  j=J

𝛿𝑥 2𝛿𝑥 𝑥 = 𝑙

𝑡

𝑥



Approximating Partial Derivatives

• Find sequence of numbers which approximate 𝑢 at a 

sequence of (𝑥, 𝑡) points (i.e. at the intersection of horizontal and 

vertical lines below)

• Approximate the exact solution 𝑢 𝑗 × 𝛿𝑥, 𝑛 × 𝛿𝑡 using 

the approximation for partial derivatives mentioned 

earlier
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2𝛿t
𝛿t

𝑛 = 2
𝑛 = 1

j=1 j=2  j=3    j=J-1  j=J

𝛿𝑥 2𝛿𝑥 𝑥 = 𝑙

𝑡

𝑥



Approximating Partial Derivatives

𝜕𝑢

𝜕𝑡
≈

𝑢 𝑥, 𝑡 + 𝛿𝑡 − 𝑢 𝑥, 𝑡

𝛿𝑡

= 
(𝑢𝑗

𝑛+1−𝑢𝑗
𝑛)

𝛿𝑡

where uj
n+1 denotes taking 𝑗 steps along 𝑥 direction and 

𝑛 + 1 steps along 𝑡 direction

Similarly, 
𝜕2𝑢

𝜕𝑥2
≈

𝑢 𝑥+𝛿𝑥,𝑡 −2𝑢 𝑥,𝑡 +𝑢 𝑥−𝛿𝑥,𝑡

𝛿𝑥 2

=
(𝑢𝑗+1

𝑛 −2 𝑢𝑗
𝑛+𝑢𝑗−1

𝑛 )

𝛿𝑥 2
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Approximating Partial Derivatives

Plugging into 
𝜕𝑢

𝜕𝑡
= 𝛼

𝜕2𝑢

𝜕𝑥2
:

This is also called as difference equation because you 

are computing difference between successive values of 

a function involving discrete variables.
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(𝑢𝑗
𝑛+1−𝑢𝑗

𝑛)

𝛿𝑡
= 𝛼

(𝑢𝑗+1
𝑛 −2 𝑢𝑗

𝑛 + 𝑢𝑗−1
𝑛 )

𝛿𝑥 2



Approximating Partial Derivatives

Simplifying:
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𝑢𝑗
𝑛+1 = 𝑢𝑗

𝑛 + 𝑟(𝑢𝑗+1
𝑛 −2 𝑢𝑗

𝑛 + 𝑢𝑗−1
𝑛 )

= 𝑟𝑢𝑗−1
𝑛 + 1 − 2𝑟 𝑢𝑗

𝑛 + 𝑟𝑢𝑗+1
𝑛 ,

𝑤ℎ𝑒𝑟𝑒 𝑟 = 𝛼
𝛿𝑡

𝛿𝑥 2



Approximating Partial Derivatives

visualizing, 
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2𝛿t
𝛿t

𝑛 = 2
𝑛 = 1

j=1 j=2  j=3    j=J-1  j=J

𝛿𝑥 2𝛿𝑥 𝑥 = 𝑙

𝑡

𝑥
To compute the value of function at blue dot, you need 3 values indicated 

by the red dots – 3-point stencil

𝑢𝑗
𝑛+1 = 𝑟𝑢𝑗−1

𝑛 + 1 − 2𝑟 𝑢𝑗
𝑛 + 𝑟𝑢𝑗+1

𝑛



Approximating Partial Derivatives

• Initial and boundary conditions tell us that:

• 𝑢0
0, 𝑢1

0 𝑢2
0, … . 𝑢𝐽

0 are known (at time t=0, the temperature at 

all points along the distance is known as indicated by 𝑓(𝑥) = 

𝑓𝑗).

• 𝑢0
1 is 𝑢𝐿 , 𝑢𝐽

1 is 𝑢𝑅

• Now compute points on the grid from left-to-right:
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𝑢 0, 𝑡 = 𝑢𝐿 ,

𝑢 𝑙, 𝑡 = 𝑢𝑅 ,

𝑢(𝑥, 0) = 𝑓(𝑥)



Approximating Partial Derivatives

• Now compute points on the grid from left-to-right:

• This constitutes the computation done in the first time step.

• Now do the second time step computation…and so on..
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𝑢1
1 = 𝑢1

0 + 𝑟 𝑢0
0 −2𝑢1

0 +𝑢2
0

𝑢2
1 = 𝑢2

0 + 𝑟 𝑢1
0 −2𝑢2

0 +𝑢3
0

.

.

𝑢𝐽−1
1 = 𝑢𝐽−1

0 + 𝑟 𝑢𝐽−2
0 −2𝑢𝐽−1

0 +𝑢𝐽
0



Numerical Methods for Solving PDEs

• Finite Difference Methods

• Finite Volume Methods

• Finite Element Methods

• Boundary Elements Methods

• Isogeometric Analysis

• Spectral Methods
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Programming Assignment 1: heads-

up

• Steady-state heat equation for a metal plate with 

boundaries at constant temperature
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Explicit Difference Method: Stability

• Given:

• Choose: 𝛿𝑥 = 0.25, 𝛿𝑡 = 0.075

• Solve.
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𝑙 = 1, 
𝑢 0, 𝑡 = 𝑢𝐿= 0,

𝑢 𝑙, 𝑡 = 𝑢𝑅 = 0,

𝑢(𝑥, 0) = 𝑓 𝑥 = 𝑥 𝑙 − 𝑥
𝛼 = 1,



Explicit Difference Method: Stability

• Initialize 𝑢𝑗
0 values from initial and boundary 

conditions i.e. get time-step 0 values 
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2𝛿t
𝛿t

𝑛 = 2
𝑛 = 1

j=1 j=2  j=3 j=4

𝑥=0 𝛿𝑥 2𝛿𝑥 3𝛿𝑥 x=𝑙

𝑡

𝑥

𝑢0
0 = 0

𝑢1
0 = 𝑓(𝛿𝑥) = 𝛿𝑥(𝑙 − 𝛿𝑥) = .1875

𝑢2
0 = 𝑓(2𝛿𝑥) = 2𝛿𝑥(𝑙 − 2𝛿𝑥) = .25

𝑢3
0 = 𝑓(3𝛿𝑥) = 3𝛿𝑥(𝑙 − 3𝛿𝑥) = .1875

𝑢4
0 = 0



Explicit Difference Method: Stability

• Compute time-step 1 values
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𝑢𝑗
𝑛+1 = 𝑟𝑢𝑗−1

𝑛 + 1 − 2𝑟 𝑢𝑗
𝑛 + 𝑟𝑢𝑗+1

𝑛

2𝛿t
𝛿t

𝑛 = 2
𝑛 = 1

j=1 j=2  j=3 j=4

𝑥=0 𝛿𝑥 2𝛿𝑥 3𝛿𝑥 x=𝑙

𝑡

𝑥



Explicit Difference Method: Stability

• Compute time-step 1 values
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𝑢𝑗
𝑛+1 = 𝑟𝑢𝑗−1

𝑛 + 1 − 2𝑟 𝑢𝑗
𝑛 + 𝑟𝑢𝑗+1

𝑛

2𝛿t
𝛿t

𝑛 = 2
𝑛 = 1

j=1 j=2  j=3 j=4

𝑥=0 𝛿𝑥 2𝛿𝑥 3𝛿𝑥 x=𝑙

𝑡

𝑥

What about values of 𝑢(𝑥, 𝑡) at      ?



Explicit Difference Method: Stability

• Compute time-step 1 values
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𝑢𝑗
𝑛+1 = 𝑟𝑢𝑗−1

𝑛 + 1 − 2𝑟 𝑢𝑗
𝑛 + 𝑟𝑢𝑗+1

𝑛

2𝛿t
𝛿t

𝑛 = 2
𝑛 = 1

j=1 j=2  j=3 j=4

𝑥=0 𝛿𝑥 2𝛿𝑥 3𝛿𝑥 x=𝑙

𝑡

𝑥

What about values of 𝑢(𝑥, 𝑡) at      ?

Get it from boundary conditions



Explicit Difference Method: Stability

• Compute time-step 1 values
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𝑢𝑗
𝑛+1 = 𝑟𝑢𝑗−1

𝑛 + 1 − 2𝑟 𝑢𝑗
𝑛 + 𝑟𝑢𝑗+1

𝑛

2𝛿t
𝛿t

𝑛 = 2
𝑛 = 1

j=1 j=2  j=3 j=4

𝑥=0 𝛿𝑥 2𝛿𝑥 3𝛿𝑥 x=𝑙

𝑡

𝑥

𝑟 = 𝛼𝛿𝑡/ 𝛿𝑥 2 = 1.2

𝑢1
1 = 𝑢1

0 + 𝑟 𝑢0
0 −2𝑢1

0 +𝑢2
0 = 0.03678



Explicit Difference Method: Stability

• Compute time-step 1 values
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𝑢𝑗
𝑛+1 = 𝑟𝑢𝑗−1

𝑛 + 1 − 2𝑟 𝑢𝑗
𝑛 + 𝑟𝑢𝑗+1

𝑛

2𝛿t
𝛿t

𝑛 = 2
𝑛 = 1

j=1 j=2  j=3 j=4

𝑥=0 𝛿𝑥 2𝛿𝑥 3𝛿𝑥 x=𝑙

𝑡

𝑥

𝑟 = 𝛼𝛿𝑡/ 𝛿𝑥 2 = 1.2

𝑢1
1 = 𝑢1

0 + 𝑟 𝑢0
0 −2𝑢1

0 +𝑢2
0 =0.03678

𝑢2
1 = 𝑢2

0 + 𝑟 𝑢1
0 −2𝑢2

0 +𝑢3
0 =0.1

𝑢3
1 = 𝑢3

0 + 𝑟 𝑢2
0 −2𝑢3

0 +𝑢4
0 =0.03678



Explicit Difference Method: Stability

• Compute time-step 2 values
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𝑢𝑗
𝑛+1 = 𝑟𝑢𝑗−1

𝑛 + 1 − 2𝑟 𝑢𝑗
𝑛 + 𝑟𝑢𝑗+1

𝑛

2𝛿t
𝛿t

𝑛 = 2
𝑛 = 1

j=1 j=2  j=3 j=4

𝑥=0 𝛿𝑥 2𝛿𝑥 3𝛿𝑥 x=𝑙

𝑡

𝑥

𝑢1
2 = 𝑢1

1 + 𝑟 𝑢0
1 −2𝑢1

1 +𝑢2
1 =0.06851

𝑢2
2 = 𝑢2

1 + 𝑟 𝑢1
1 −2𝑢2

1 +𝑢3
1 =-0.05173

𝑢3
2 = 𝑢3

1 + 𝑟 𝑢2
1 −2𝑢3

1 +𝑢4
1 =0.06851



Explicit Difference Method: Stability

• Temperature at 2𝛿𝑥 after 2𝛿𝑡 time units went into 

negative! (when the boundaries were held constant at 0)

– Example of instability
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2𝛿t
𝛿t

𝑛 = 2
𝑛 = 1

j=1 j=2  j=3 j=4

𝑥=0 𝛿𝑥 2𝛿𝑥 3𝛿𝑥 x=𝑙

𝑡

𝑥

𝑢2
2 = 𝑢2

1 + 𝑟 𝑢1
1 −2𝑢2

1 +𝑢3
1 =-0.05173

The solution is stable (for heat diffusion problem) only if the approximations 

for 𝑢(𝑥, 𝑡) do not get bigger in magnitude with time



Explicit Difference Method: Stability

• The solution for heat diffusion problem is stable 

only if:

𝑟 ≤
1

2

Therefore, choose your time step in such a way 

that:

𝛿𝑡 ≤
𝛿𝑥2

2𝛼

But this is a severe limitation!
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Implicit Method: Stability

• Overcoming instability:
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2𝛿t
𝛿t

𝑛 = 2
𝑛 = 1

j=1 j=2  j=3    j=J-1  j=J

𝛿𝑥 2𝛿𝑥 𝑥 = 𝑙

𝑡

𝑥
To compute the value of function at blue dot, you need 6 values indicated 

by the red dots (known) and 3 additional ones (unknown) above

𝑢𝑗
𝑛+1= 𝑢𝑗

𝑛 + 1/2 r( 𝑢𝑗−1
𝑛 − 2𝑢𝑗

𝑛 + 𝑢𝑗+1
𝑛 + 𝑢𝑗−1

𝑛+1 −

2𝑢𝑗
𝑛+1 + 𝑢𝑗+1

𝑛+1 )



Implicit Method: Stability

• Overcoming instability:

• Extra work involved to determine the values of 

unknowns in a time step

– Solve a system of simultaneous equations. Is it worth 

it?
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𝑢𝑗
𝑛+1= 𝑢𝑗

𝑛 + 1/2 r( 𝑢𝑗−1
𝑛 − 2𝑢𝑗

𝑛 + 𝑢𝑗+1
𝑛 + 𝑢𝑗−1

𝑛+1 −

2𝑢𝑗
𝑛+1 + 𝑢𝑗+1

𝑛+1 )



Definitions

• Consider a region of interest 𝑅 in, say, 𝑥𝑦 plane. 

The following is a boundary-value problem:

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2 = 𝑓(𝑥, 𝑦)

where 𝑓 is a given function in 𝑅 and

𝑢 = 𝑔,

where the function 𝑔 tells the value of 

function 𝑢 at boundary of 𝑅

• if 𝑓 = 0 everywhere, then Eqn. (1) is Laplace’s Equation

• if 𝑓 ≠ 0 somewhere in 𝑅, then Eqn. (1) is Poisson’s Equation
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(1)



Suggested Reading

• J.W. Thomas. Numerical Partial Differential 

Equations: Finite Difference Methods

• Parabolic PDEs: 

https://learn.lboro.ac.uk/archive/olmp/olmp_reso

urces/pages/workbooks_1_50_jan2008/Workbo

ok32/32_4_prblc_pde.pdf
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https://learn.lboro.ac.uk/archive/olmp/olmp_resources/pages/workbooks_1_50_jan2008/Workbook32/32_4_prblc_pde.pdf

