
1

CS601: Software Development for

Scientific Computing
Autumn 2021

Week2: Program Development Environment,

Minimal C++, Version Control Systems,

Structured Grid

Nikhil Hegde

2

Program Development
Environment

• Demo

Nikhil Hegde

Creating a Program

• Create your c++ program file

3

.cpp files.cpp /

.cc /

.C

files

Nikhil Hegde

Creating a Program

• Preprocess your c++ program file

4

.cpp /

.cc /

.C

files

.cpp /

.cc /

.C

files

• removes comments from your program,

• expands #include statements

Nikhil Hegde

Creating a Program

• Translate your source code to assembly language

5

.cpp /

.cc /

.C

files

.cpp /

.cc /

.C

files

.s

files

Nikhil Hegde

Creating a Program

• Translate your assembly code to machine code

6

.cpp /

.cc /

.C

files

.cpp /

.cc /

.C

files

.s

files

.o

files

Nikhil Hegde

Creating a Program

• Get machine code that is part of libraries

7

.cpp /

.cc /

.C

files

.cpp /

.cc /

.C

files

.s

files

.o

files

Nikhil Hegde

Creating a Program

• Create executable

1. Either copy the corresponding machine code OR

2. Insert a ‘stub’ code to execute the machine code

directly from within the library module
8

.cpp /

.cc /

.C

files

.cpp /

.cc /

.C

files

.s

files

.o

files

Nikhil Hegde

Creating a Program

• g++ 4_8_1.cpp -lm

– g++ is a command to translate your source code (by

invoking a collection of tools)

• Above command produces a.out from .cpp file

– -l option tells the linker to ‘link’ the math library 9

.cpp /

.cc /

.C

files

.cpp /

.cc /

.C

files

.s

files

.o

files

Nikhil Hegde

Creating a Program

• g++: other options

-Wall - Show all warnings

-omyexe - create the output machine code in a file called

myexe

-g - Add debug symbols to enable debugging

-c - Just compile the file (don’t link) i.e. produce a

.o file

-I/home/mydir -Include directory called /home/mydir

-O1, -O2, -O3 – request to optimize code according to

various levels

Always check for program correctness when using

optimizations 10Nikhil Hegde

Creating a Program

• The steps just discussed are ‘compiled’ way of

creating a program. E.g. C++

• Interpreted way: alternative scheme where

source code is ‘interpreted’ / translated to

machine code piece by piece e.g. MATLAB

• Pros and Cons.

– Compiled code runs faster, takes longer to develop

– Interpreted code runs normally slower, often faster to

develop

11Nikhil Hegde

Creating a Program

• For different parts of the program different

strategies may be applicable.

– Mix of compilation and interpreted – interoperability

• In the context of scientific software, the following

are of concern:

– Computational efficiency

– Cost of development cycle and maintainability

– Availability of high-performant tools / utilities

– Support for user-defined data types

12Nikhil Hegde

Creating a Program

• a.out is a pattern of 0s and 1s laid out in memory

– sequence of machine instructions

• How is a program laid out in memory?

– Helpful to debug

– Helpful to create robust software

– Helpful to customize program for embedded systems

13Nikhil Hegde

Program Layout in Memory

• A program’s memory space is divided into
four segments:

1. Text
• source code of the program

2. Data
• Broken into uninitialized and initialized segments; contains space for

global and static variables. E.g. int x = 7; int y;

3. Heap
• Memory allocated using malloc/calloc/realloc/new

4. Stack
• Function arguments, return values, local variables, special registers.

14Nikhil Hegde

Text

Stack

Data
bss/uninitialized

Heap

Program Layout in Memory

initialized

15

(initialized to zero)

Nikhil Hegde

Text

Stack

Data
bss/uninitialized

Heap

Program Layout in Memory

initialized

16

0x1234AA00

0x1234AA04

0x1234AA08

0x1234AA0B

• Every memory location is a box

holding data

• Each box has an address

Nikhil Hegde

• Computer programs think and live in terms of
memory locations

• Addresses in computer programs are just
numbers identifying memory locations

• A program navigates by visiting one address
after another

Addresses

17Nikhil Hegde

Text

Stack

Data
bss/uninitialized

Heap

Program Layout in Memory

initialized

high address (0x1234ABCD)

low address (0x12340000)

18

(initialized to zero)

Nikhil Hegde

• Humans are not good at remembering
numerical addresses.

what are the GPS coordinates (latitude and longitude)
of your residence?

• We (humans) choose convenient ways to
identify addresses so that we can give directions
to a program. E.g. Variables

Addresses

19Nikhil Hegde

• Variables

• Its just a handle to an address / program memory
location

• int x = 7;

• Read x => Read the content at address 0x401C

• Write x=> Write at address 0x401C

7

0x401c
x

Handles to Addresses

20Nikhil Hegde

int x;

1. What is the set of values this variable can take on in C?

-231 to (231 – 1)

2. How much space does this variable take up?

32 bits

3. How should operations on this variable be handled?
integer division is different from floating point divisions

3 / 2 = 1 //integer division

3.0 / 2.0 = 1.5 //floating-point division

21Nikhil Hegde

• Integer types: char, short int, int, long
int, long long int, bool

• Float: float, double, long double

• Pointers: handle to addresses

• References: safer than pointers but less
powerful

• void: nothing

C++ standard types

22Nikhil Hegde

C++ standard types

– Modifiers

• short, long, signed, unsigned.

– Compound types

• pointers, structs, enums, arrays, etc.

23Nikhil Hegde

• All built-in types are represented in memory as a
contiguous set of bytes

• Use sizeof() operator to check the size of a type

• e.g. sizeof(int)

C++ standard types – storage

space

Data type Number of bytes

char 1

short int 2

int / long int 4

long long int 8

float 4

double 8

long double 12

24Nikhil Hegde

Data types - quirks

– if no type is given compiler automatically

converts it to int data type.

• signed x;

– long is the only modifier allowed with double

• long double y;

– signed is the default modifier for char and int

– Can’t use any modifiers with float

25Nikhil Hegde

• The address of (&) operator fetches a
variable’s address in C

• &x would return the address of x

• prints the Hexadecimal address of x

Visualizing Addresses

26Nikhil Hegde

• Pointer is a data type that holds an address.

<type>* <pointer_name>;

• Example:

• int* p; //is a variable named p whose type is
//pointer to int OR p is an integer
//pointer

Note that the variable declared is p, not *p

Pointers

27Nikhil Hegde

• A pointer always stores an address

• <type> of the pointer tells us what kind of data
is stored at that address

• Example:

• int* p;

declares a pointer variable p holding an address,
which identifies a memory location capable of storing
an integer.

28Nikhil Hegde

• int* p;

Remember p is a variable and all variables are just names
identifying addresses.

In addition, p holds the address of a memory location that stores an
integer

• p=&x;

0x4004
p

address

name

Initializing Pointers

0x4004

p

7

0x401C

x

0x401C

29Nikhil Hegde

• Cannot assign arbitrary addresses to pointers.

• Example:

int* p=5;

• Operating system determines addresses
available to each program.

30Nikhil Hegde

• NULL is a special address

• Example

int* p=NULL; //p points to nowhere

• Useful when it is not yet known where p points
to.

• Uninitialized pointers store garbage addresses

The NULL address

31Nikhil Hegde

• The dereference operator (*)

• Lets us access the memory location at the address
stored in the pointer

int x=7;

Using Pointers

7

0x401c
x

32Nikhil Hegde

• The dereference operator (*)

• Lets us access the memory location at the address
stored in the pointer

int x=7;

int* p = &x; //p now points to x

Using Pointers

0x4004

p

7

0x401C

x

0x401C

33Nikhil Hegde

• The dereference operator (*)

• Lets us access the memory location at the address
stored in the pointer

int x=7;

int* p = &x; //p now points to x

*p = 10; //this is the same as x=10

Using Pointers

0x4004

p

10

0x401C

x

0x401C

34Nikhil Hegde

• The dereference operator (*)

• Lets us access the memory location at the address
stored in the pointer

int x=7;

int* p = &x; //p now points to x
*p = 10; //this is the same as x=10
int y=*p; //this is the same as y=x

Using Pointers

0x4004

p

10

0x401C

x

0x401C10

0x4020
y 35Nikhil Hegde

• Pointers as alternate names to memory
locations

x is the name for an address

*p is the name for an address
10

0x401c
x

*p

int x=7;

int *p = &x;

36Nikhil Hegde

• Pointers as “dynamic” names to memory
locations

int x=7; //x always names the location 0x401C

int *p = &x; //*p is now another name for x

7

0x401c
x

*p

37Nikhil Hegde

• Pointers as “dynamic” names to memory
locations

int x=7; //x always names the location 0x401C

int *p = &x; //*p is now another name for x

int y = *p //like saying y=x

p = &y; //*p is now another name for y

7

0x401c
x
*p

7

0x4020
y
*p 38Nikhil Hegde

• What can pointers point to? any data type!

• Basic data types – we have seen these.

• Structures – Next set of slides.

• Pointers! and

• Functions

Pointers to Different Types

39Nikhil Hegde

Typedef

– Lets you give alternative names to C data types

– Example:

typedef unsigned char BYTE;

This gives the name BYTE to an unsigned char type.

Now,

BYTE a;
BYTE b;

Are valid statements.

40Nikhil Hegde

Typedef Syntax

typedef <existing_type> <new_type>;

– Resembles a declaration without initializer;

E.g. int x;

– Mostly used with user-defined types

41Nikhil Hegde

User-defined Types

– Structures in C are one way of defining your
own type.

– Arrays are compound types but have the
same type within.

• E.g. A string is an array of char

• int arr[]={1,2,3}; arr is an array of integer
types

– Structures let you compose types with
different basic types within.

42Nikhil Hegde

Structures - Declaration

– Variable definition:
• struct Point p1;

• struct Point{
float xCoordinate;
float yCoordinate;
}p1;

p1 is a variable (an object) of type struct Point43

struct Point{

float xCoordinate;

float yCoordinate;

};

Type name

Declarations of fields

Nikhil Hegde

Structures - Definition

44

typedef struct _Point{

float xCoordinate;

float yCoordinate;

}Point;

Canonical

type name

(long form)

Declarations of fields

New Type name

• Variable definition:

• Point p1;

Nikhil Hegde

Structures - Usage

– Structure fields are accessed using dot (.)

operator

– Example:

Point p;

p.xCoordinate = 10.1;

p.yCoordinate = 22.8;

printf(“(x,y)=(%f,%f)\n”,p.xCoordinate,
p.yCoordinate);

45Nikhil Hegde

Structures - Initialization

– Error to initialize fields in declaration;

46

typedef struct{

float xCoordinate = 10.1;

float yCoordinate = 22.8;

}Point;

Nikhil Hegde

• Point p1={10.1,22.8};

• Point p2={.x=10.1,.y=22.8};

//Introduced in C99.

//Designated initializers

//Best-way

Structures - Initialization

47Nikhil Hegde

typedef struct {
int year;
char model;
float acceleration; //0-60mph in seconds

}Car;

Car t1 = {.year = 2017, .model = ‘S’,
.acceleration = 2.8 };

Car * pt1 = &t1; //now you can use *pt1
anywhere you use t1

Pointers to Structures

48Nikhil Hegde

(*pt1).acceleration = 2.3;
(*pt1).year = 2019;
(*pt1).model = ‘X’;
float avg_acceleration = ((*pt1).acceleration
+ (*pt2).acceleration) / 2.0;

We can also use the -> operator to access
structure members.

pt1->acceleration = 2.3;
pt1->year = 2019;
pt1->model = ‘X’
float avg_acceleration = (pt1->acceleration +
pt2->acceleration) / 2.0;

49Nikhil Hegde

int x = 7;
int *p = &x; //p points to x; *p is same as x.

int ** q=&p; //q is a pointer to pointer to int

*q is same as p.
*(*q) is the same as *p, which is same as x

Pointer Chains

50Nikhil Hegde

• Adding & to a variable adds * to its type

• Example:

• if a is an int, then &a is an int*

• if b is an int*, then &b is an int**

• if c is an int**, then &c is an int***

• …

Address of (&) operator and

Type

51Nikhil Hegde

• Adding * to a variable subtracts * from its type

• Example:

• if a is an int*, then *a is an int

• if b is an int**, then *b is an int*

• if c is an int***, then *c is an int**

• …

Dereference (*) operator and

Type

52Nikhil Hegde

int y = 1040;
int* p= &y;

• What does *(p+1) mean?

• Data at “one element past” p

• What does “one element past” mean?

• p is a pointer, so holds the address of a memory
location

• p is an int pointer, so that memory location holds an
integer

• p+1 is interpreted as address of the next integer

Pointer Arithmetic

53Nikhil Hegde

• Our representation of

int y=2064;
int* p = &y;

Pointer Arithmetic

2064

0x401C
y

0x401C

0x1000
p

54Nikhil Hegde

• ints occupy 4 bytes. 0x401C is the address of
the first byte*:

• (*p) = data at 0x401C

• returns the correct value of 2064 and not 0x10. Why?

Pointer Arithmetic

10 08 00 00

0x401C 0x401D 0x401E 0x401F

*2064 = 0x810 (=0x00,00,08,10 when written using 8 digits and x86 is little-

endian)

55Nikhil Hegde

• (p+1) gets the “address of the next integer”

What is the address of the next integer?

Pointer Arithmetic

2064

0x401C
y

0x401C

0x1000
p

56Nikhil Hegde

• What is the address of the next integer?

• Add 4 to current value of p (0x401C)

Pointer Arithmetic

10 08 00 00

0x401C 0x401D 0x401E 0x401F 0x4020 0x4021 0x4022 0x4023

= 0x4020

y

57Nikhil Hegde

• (p-1) computes the address before y

int y=2064;
int* p = &y;

subtract 4 from the current value of p (0x401C) = 0x4018

• Similarly we can add/subtract any number to/from a
pointer variable.

• Compare to a specific address (E.g. if(p == NULL))

Pointer Arithmetic

10 08 00 00

0x401C 0x401D 0x401E 0x401F 0x4018 0x4019 0x401A 0x401B
y

58Nikhil Hegde

• Pointer to double (double occupies 8 bytes)

double pi=3.1428;
double* ptrPi = π

What is the address computed for (ptrPi+1)?

What is the address computed for (ptrPi-1)?

Pointer Arithmetic

0x401C

0x1000
ptrPi

3.1428

0x401C
pi

0x4024

0x4014

59Nikhil Hegde

• Pointer to char

char model=‘S’;
char* ptrModel = &model;

What is the address computed when we do
(ptrModel+1)?

Pointer Arithmetic

0x401C

0x1000

ptrModel

‘S’

0x401C
model

60Nikhil Hegde

• Pointer to pointer

char model=‘S’;
char* ptrModel = &model;
char** doublePtr = &ptrModel;

Bonus: what is the address computed when we do
(doublePtr+1)? (assuming we are using 32-bit machines)

Pointer Arithmetic

‘S’

0x401C
model

0x401C

0x1000

ptrModel

0x1000

0x0500

doublePtr

61Nikhil Hegde

C-style Arrays

Declaring arrays:
type <array_name>[<array_size>];
int num[5];

Initializing arrays:
int num[3]={2,6,4};
int num[]={2,6,4};//array_size is not
required.

Accessing arrays:
num[0] accesses the first integer
num[1] accesses the second integer and so on..

62Nikhil Hegde

• Another data type!

• Array of ints, structs etc.

• Array of chars (strings in C)

• Work a little bit like pointers

int a[10]={11,21,31,41,51,61,71,81,91,101};
//array of 10 integers

10 elements guaranteed to be next to each other in
memory

Arrays

11 21 31 41 51 61 71 81 91 101

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

63Nikhil Hegde

int a[10]={11,21,31,41,51,61,71,81,91,101};

• 0x4001 is starting address of the array = address of
a[0] = &a[0]

• Fetch the address of a = &a = 0x4001

Arrays

a

0x4001

11 21 31 41 51 61 71 81 91 101

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

64Nikhil Hegde

• Array name in C is the address of the first
element of the array

int a[10]={1,2,3,4,5,6,7,8,9,10};

Therefore, a == &a[0]

a, &a, &a[0] are the same and have values
0x4001.

Arrays

65Nikhil Hegde

• Array name in C is the address of the first
element of the array

Array names are converted to pointers (in
most cases) but a’s type is not a pointer.

int* ptr=a; //ptr holds the address of the
first element of the array (also &a[0]).

ptr[1] gets a[1]
ptr[2] gets a[2]
...
How is this possible?

Arrays

66Nikhil Hegde

• Array dereferencing operator [] is implemented
in terms of pointers.

• a[3] means: start at the address a, go forward 3
elements, fetch the data at that address.

• In pointer arithmetic syntax, this is equivalent to:

*(a+3)

So,

a[0] really means: *(a+0)
a[1] really means: *(a+1)

Arrays

67Nikhil Hegde

• So, when

int* ptr = a;

• ptr[0] really means *(ptr+0), which is the same
as *(a+0), which is a[0]

• ptr[1] really means *(ptr+1), which is the same
as *(a+1), which is a[1]

...

Arrays

68Nikhil Hegde

char s[3] = “Hi”;

char *t = “Si”;

int u[3] = {5, 6, 7};

int n=8;

Expression Type Comments

Exercise

s

t

u

&u[0]

char[3] array of 3 chars

char* address of a char

int[3] array of 3 ints

int* address of an int

69Nikhil Hegde

char s[3] = “Hi”;

char *t = “Si”;

int u[3] = {5, 6, 7};

int n=8;

Expression Type Comments

Exercise

*&n

*t

int value at n

char data at address
Held by t

70Nikhil Hegde

• Array initializers:

1. int u[3] = {5, 6};
Is this valid?
If yes, what is the value held in the third element u[2]?

2. int u[3] = {5, 6, 7, 8};
Is this valid?

3. char s1[]=“Hi”;
What is the size of s1? (how many bytes are reserved
for s1)

4. char s2[3]=“Si”;
Is this valid?

Exercise

71Nikhil Hegde

int u[3] = {5, 6, 7};
int* p=u;
p[0]=7;
p[1]=6;
p[2]=5;
//At this line, u would contain the numbers in reverse
order. u[0] = 7, u[1]=6, u[2]=5.

char *str = “Hello”;
char* p=str;
p[0]=‘Y’;
//At this line, what would str contain?

Exercise

72Nikhil Hegde

• Statically allocated arrays:

int arr[3]={1, 2, 3};

• Can’t expand arr once defined

Dynamic Memory Allocation

Must be known

at compile time

73Nikhil Hegde

• What if we don’t know the array length?

• Option 1: Variable length arrays.

Not an option with -Wvla, -Wall, and -Werror
flags

• Option 2: use heap.

Preferred option

Dynamic Memory Allocation

74Nikhil Hegde

• We interact with heap using

• new

“Give us X bytes of storage space (memory) from
the heap so that we can use it to store data”

• delete

“take back this memory so that it can be used for
something else”

Dynamic Memory Allocation

75Nikhil Hegde

Functions

• Definition

• Function name and parameters form the signature of the

function

• In a program, you can have multiple functions with same

name but with differing signatures - function overloading

• Example:

76

return_type function_name(parameters) {

//statements

return <optional_value>

}

double product(double a, double b) {

double result = a*b;

return result;

}
Nikhil Hegde

Functions

• Declaration:

• Function definition provided the complete details of the

internals of the function. Declaration just indicates the

signature.

– Declaration exposes the interface to the function

77

return_type function_name(parameters);

double product(double a, double b); //OK

double product(double, double); //OK

Nikhil Hegde

The main Function

• Signatures

• Every program must have exactly one main
function. Program execution begins with this

function.

• Return 0 usually means success and failure

otherwise

– EXIT_SUCCESS and EXIT_FAILURE are useful

definitions provided in the library cstdlib
78

int main()

int main(int argc, char* argv[])

Nikhil Hegde

Functions

• Calling:

• Example:

79

function_name(parameters);

double product(double a, double b) {

double result = a*b;

return result;

}

int main() {

double retVal, pi=3.14, ran=1.2;

retVal = product(pi,ran);

cout<<retVal;

}

Nikhil Hegde

Functions

• Calling:

• Example:

80

function_name(parameters);

double product(double a, double b) {

double result = a*b;

return result;

}

int main() {

double retVal, pi=3.14, ran=1.2;

retVal = product(pi,ran);

cout<<retVal;

}

At least the signature of

function must be visible

at this line

Nikhil Hegde

Functions

• Calling:

• Example:

81

function_name(parameters);

double product(double a, double b) {

double result = a*b;

return result;

}

int main() {

double retVal, pi=3.14, ran=1.2;

retVal = product(pi,ran);

cout<<retVal;

}

pi and ran are copied to

a and b

Nikhil Hegde

Functions

• Calling:

• Example:

82

function_name(parameters);

double product(double a, double b) {

double result = a*b;

return result;

}

int main() {

double retVal, pi=3.14, ran=1.2;

retVal = product(pi,ran);

cout<<retVal;

}

pi and ran are copied to

a and b

Pass-by-value

Nikhil Hegde

Functions

• Calling:

• Example:

83

function_name(parameters);

double product(double& a, double& b) {

double result = a*b;

return result;

}

int main() {

double retVal, pi=3.14, ran=1.2;

retVal = product(pi,ran);

cout<<retVal;

}

pi and ran are NOT

copied to a and b

Pass-by-reference

Nikhil Hegde

Reference Variables

• Example:

• Like pointer variables. re is constant pointer to n (re cannot

change its value). Another name for n.

– Can change the value of n through re though

84

int n=10;

int &re=n;

Nikhil Hegde

bash-4.1$./a.out

//this is how we ran 4_8_1.cpp (refer: week1_codesample)

• Suppose the initial guess was provided to the
program as a command-line argument (instead of
accepting user-input from the keyboard):

bash-4.1$./a.out 999

Command Line Arguments

85Nikhil Hegde

bash-4.1$./a.out 999

int main(int argc, char* argv[]) {
//some code here.

}

Command Line Arguments

Identifier Comments Value

argc Number of command-line

arguments (including the

executable)

2

argv each command-line argument

stored as a string

argv[0]=“./a.out”
argv[1]=“999”

86Nikhil Hegde

Exercise

• Write a C++ program with the following

requirements:

– User should be able to provide the dimension of two

vectors (do not use C++ vectors from STL)

– The program should allocate two vectors of the

required size and initialize them with meaningful data

– The program should compute the scalar product of

the two vectors and print the result

87Nikhil Hegde

Discretization

• Cannot store/represent infinitely many

continuous values

– To model turbulent features of flow through a pipe,

say, I am interested in velocity and pressure at all

points in a region of interest

1. Represent region of interest as a mesh of small discrete

cells - discretization spacing

2. Solve equations for each cell

Example:

88

diameter of the pipe = 5cm
length=2.5cm
discretization spacing = 0.1mm
(volume of cylinder = 𝜋𝑟2ℎ)

Exercise: how many variables do you need to declare?
Nikhil Hegde

Discretization

• All problems with ‘continuous’ quantities don’t

require discretization
– Most often they do.

• When discretization is done:
– How refined is your discretization depends on certain

parameters: step-size, cell shape and size. E.g.
• Size of the largest cell (PDEs in FEM),

• Step size in ODEs

– Accuracy of the solution is of prime concern

• Discretization always gives an approximate solution. Why?

• Errors may creep in. Must provide an estimate of error.

89Nikhil Hegde

Accuracy

• Discretization error
– Is because of the way discretization is done

– E.g. use more number of rays to minimize discretization

error in ray tracing

• Solution error
– The equation to be solved influences solution error

– E.g. use more number of iterations in PDEs to minimize

solution error

• Accuracy of the solution depends on both solution

and discretization errors

• Accuracy also depends on cell shape
90Nikhil Hegde

Cell Shape

• 2D:

• 3D: triangular or quadrilateral faced. E.g.

91

triangle quadrilateral

source: wikipedia

Tetrahedron: 4 vertices, 4 edges, 4 faces

Pyramid: 5 vertices, 8 edges, 4 and 1 face

Triangular prism: 6 vertices, 9 edges, 2 and 3 faces

Hexahedron: 8 vertices, 12 edges, 6 faces

Nikhil Hegde

Error Estimate

• You will have to deal with errors in the presence of

discretization
– Providing error estimate is necessary

• Apriori error estimate
– Gives insight on whether a discretization strategy is

suitable or not

– Depends on discretization parameter

– Properties of the (unknown) exact solution

– Error is bound by: Chp where, C depends on exact

solution, h is discretization parameter, and p is a fixed

exponent. Assumption: exact solution is differentiable,

typically, p+1 times.
92Nikhil Hegde

Error Estimate

• Aposteriori error estimate
– Is estimation of the error in computed (Approximate)

solution and does not depend on information about

exact solution

– E.g. Sleipner-A oil rig disaster

93Nikhil Hegde

Exercise

– does increasing mesh size always yield better

accuracy?

– does decreasing cell size always yield better

accuracy?

– How does changing mesh size affect

computational cost?

– How does changing cell size affect

computational cost?
94Nikhil Hegde

Structured Grids

• Have regular connectivity between cells

– i.e. every cell is connected to a predictable number of

neighbor cells

• Quadrilateral (in 2D) and Hexahedra (in 3D) are

most common type of cells

• Simplest grid is a rectangular region with

uniformly divided rectangular cells (in 2D).

95

credits: nanohub.org

Nikhil Hegde

Structured Grids – Problem

Statement
• Given:

– A geometry

– A partial differential equation

– Initial and boundary conditions

• Goal:

– Discretize into a grid of cells

– Approximate the PDE on the grid

– Solve the PDE on the grid

96Nikhil Hegde

Structured Grids - Representation

• Because of regular connectivity between cells

– Cells can be identified with indices (x,y) or (x,y,z) and

neighboring cell info can be obtained.

– How about identifying a cell here?

97

Given:

𝜉 = (“Xi”) radius

𝜂 = (“Eta”) angle

Compute:

x =
1

2
+ 𝜉 cos 𝜋𝜂

y =
1

2
+ 𝜉 sin(𝜋𝜂)Nikhil Hegde

Structured Grids - Representation

• In next class….

– Grid generation and grid types

– Partial Differential Equations (PDEs)

– Solving PDEs (turning PDEs into large set of

algebraic equations)

• Now.

98Nikhil Hegde

2D Arrays

• 1D array gives us access to a row of data

• 2D array gives us access to multiple rows of data
• A 2D array is basically an array of arrays

• Consider a fixed-length 1D array:
int arr1[4];//defines array of 4 elements; every
element is an integer. Reserves contiguous memory to
store 4 integers.

We have seen this

100 104 108 112

Starting addr:

arr1[0] arr1[1] arr1[2] arr1[3]

99Nikhil Hegde

2D Arrays (fixed-length)

• Consider a fixed-length 2D array (array of arrays). Think:

array of integers => every element is an int
array of characters => every element is a char
array of array => every element is an array

• Example:

int arr[2][4];//defines array of 2 elements; every
element is an array of 4 integers. Therefore, reserves
contiguous memory to store 8 integers

100 104 108 112 116 120 124 128
Starting addr:

arr[0] arr[1]

100Nikhil Hegde

2D Arrays (on heap)

• What if we don’t know the length of the array upfront?

E.g. A line in a file contains number of people riding a bus every trip.

Multiple trips happen per day and the number can vary depending on the

traffic.

Day1 numbers: 10 23 45 44

Day2 numbers: 5 33 38 34 10 4

Day3 numbers: 9 17 10

………………………………………

DayN numbers: 13 15 28 22 26 23 22 21

//we need array arr of N elements; every element is an
array of M integers. Both N and M vary with every file
input.

101Nikhil Hegde

2D Arrays (on heap)

1. First, we need to create an array arr2D of N elements.

So, get the number of lines in the input file.

• But what is the type of every element? - array of M

elements, where every element is an integer (i.e. every

element is an integer array). int *

• What is the type of arr2D? (array of array of integers)

Think:

type of an integer => int
type of array of integers => int *

(append a * to the type for every occurrence of the term array)

type of array of array of integers => int **
102Nikhil Hegde

2D Arrays (on heap)

1. First, we need to create an array arr2D of N elements.

So, get the number of lines in the input file.

• What is the type of arr2D? (int **)

int N = GetNumberOfLinesFromFile(fileName);

int** arr2D = new int*[N];

103Nikhil Hegde

int N = GetNumberOfLinesFromFile(filename);
int** arr2D = new int*[N];

100 104 108 112 116 120 124 128
Starting addr:

arr[0] arr[1]

Recall boxes with dashed lines in int arr[2][4];

arr2D[0] arr2D[1] arr2D[N-1]

100 108 100+(N-1)*8

Starting addr(assuming 64-bit machine/pointer stored in 8 bytes):
104Nikhil Hegde

arr2D[0] arr2D[1] arr2D[N-1]

100 108 100+(N-1)*8

Starting addr(assuming 64-bit machine/pointer stored in 8 bytes):

2. arr2D[0], arr2D[1], etc. are not initialized. They hold

garbage values. How do we initialize them?

for(int i=0;i<N;i++) {
char* line = ReadLineFromFile(filename);
int M = GetNumberOfIntegersPerLine(line);
arr2D[i] = new int[M]

}

105Nikhil Hegde

1000 5004 50

arr2D[0] arr2D[1] arr2D[N-1]

100 108 100+(N-1)*8
Starting addr(assuming 64-bit machine/pointer stored in 8 bytes):

for(int i=0;i<N;i++) {
char* line = ReadLineFromFile(filename);
int M = GetNumberOfIntegersPerLine(line);
arr2D[i] = new int[M]

}

Starting addr:

1000

5004

9000

50

. 106Nikhil Hegde

2D Arrays (on heap)

Summary:

Creation: 2-steps

Initializing: 2-steps

Releasing: 2-steps

for(int i=0;i<N;i++)
delete [] arr2D[i]; //frees memory at 1000, 5004,

etc.

delete [] arr2D;//frees memory at 100

107Nikhil Hegde

2D Arrays (trivia)

• Notation used to refer to elements different from cartesian

coordinates

• Cartesian:

• 2D Arrays:

0 X

Y

arr2D[M][N] = move to (M+1)th

row (along Y axis), to (N+1)th

column (along X axis)!

108

arr2D[0][0] accesses 1st row, 1st element

arr2D[0][1] accesses 1st row, 2nd element

arr2D[1][1] accesses 2nd row, 2nd element

arr2D[N][M] accesses N+1th row, M+1th element

(M,N) = move M along X axis,

N along Y axis

Nikhil Hegde

• From the previous bus trip data, what if we wanted to:

• Drop certain days as we analyzed arr2D?

• Add more days to (read from another file) to arr2D ?

i.e.

modify arr2D as program executes?

Day1 numbers: 10 23 45 44

Day2 numbers: 5 33 38 34 10 4

Day3 numbers: 9 17 10

………………………………………

DayN numbers: 13 15 28 22 26 23 22 21

109Nikhil Hegde

