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Program Development
Environment

 Demo



Creating a Program

« Create your c++ program file

Editor
(e.2. Vim) I

.cpp/
.cc/

.C
files



Creating a Program

* Preprocess your c++ program file

== ——————— -

Editor - - |
(.. Vim) l ir reprocessor l
.cpp / .cpp /
.cc/ cc/
.C C
files files

* removes comments from your program,
« expands #include statements



Creating a Program

« Translate your source code to assembly language

Editor A .
le.e. Vim) l ir Preprocessor la{ Compiler l
cpp .cpp/ S
.cc/ .cc/ files
C C

files 1;iles



Creating a Program

« Translate your assembly code to machine code

Editor

le.e. Vim) l I= Preprocessor la{ Compiler
.cc/ cc/
.C C
files files

l*{ Assembler

7

.S
files

.0
files



Creating a Program

« Get machine code that is part of libraries

Editor

le.e. Vim) l I= Preprocessor la{ Compiler
.cc/ cc/
.C C
files files

l*{ Assembler

Linker

.S
files

files




Creating a Program

 Create executable

Edlt?r §= Preprocessor 4{ Compiler 4{ Assembler »  Linker —:—- a.out
(e Vim) [ | 1 | ;
| {dla:u:ec utable
.cpp / .cpp/ S .0 fle)
.cc/ .cc/ files files ,
.C C '
files files

1. Either copy the corresponding machine code OR

2. Insert a ‘stub’ code to execute the machine code
directly from within the library module



Creating a Program

e g++ 4 8 1.cpp -1m

Edlt?r §= Preprocessor 4{ Compiler 4{ Assembler »  Linker p— a.0ut
(e Vim) [ | 1 | |
cpp / cpp / S o {ﬁ!:{ec utable
cc/ cc/ files files file)
.C C |
files files

- g++ 1S a command to translate your source code (by
iInvoking a collection of tools)
« Above command produces a.out from . cpp file

— -1 option tells the linker to ‘link’ the math library



Creating a Program

e g++: other options

-Wall - Show all warnings

-omyexe - create the output machine code in a file called
myexe

-g - Add debug symbols to enable debugging

-C - Just compile the file (don't link) i.e. produce a
.o file

-I/home/mydir -Include directory called /home/mydir
-01, -02, -O3 - request to optimize code according to
various levels

Always check for program correctness when using

optimizations 10



Creating a Program

* The steps just discussed are ‘compiled’ way of
creating a program. E.g. C++

 Interpreted way: alternative scheme where
source code is ‘interpreted’ / translated to
machine code piece by piece e.g. MATLAB

* Pros and Cons.

— Compiled code runs faster, takes longer to develop

— Interpreted code runs normally slower, often faster to
develop
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Creating a Program

 For different parts of the program different
strategies may be applicable.
— Mix of compilation and interpreted — interoperability

 In the context of scientific software, the following
are of concern:
— Computational efficiency
— Cost of development cycle and maintainability
— Avallability of high-performant tools / utilities
— Support for user-defined data types

12



Creating a Program

e a.out Is a pattern of Os and 1s laid out in memory
— seguence of machine instructions

 How Is a program laid out in memory?
— Helpful to debug

— Helpful to create robust software
— Helpful to customize program for embedded systems

13



Program Layout in Memory

* A program’s memory space is divided into
four segments:

1.

Text
 source code of the program

Data

 Broken into uninitialized and initialized segments; contains space for
global and static variables. E.g. int x = 7; int y;

Heap
* Memory allocated using malloc/calloc/realloc/new

Stack

* Function arguments, return values, local variables, special registers.



Program Layout in Memory

Stackg,
Heap
Data bss/uninitialized |(initialized to zero)

initialized

Text




Program Layout in Memory

0x1234AA0B
Stack 0x1234AA08
1 0x1234AA04
________________________________ 0x1234AA00
Heap
bss/uninitialized « Every memory location is a box
Data TR holding data
initialized
Text « Each box has an address




Addresses

« Computer programs think and live in terms of
memory locations

« Addresses In computer programs are just
numbers identifying memory locations

* A program navigates by visiting one address
after another

17



Program Layout in Memory

———high address (0x1234ABCD)

Stackf
Heap
Data bss/uninitialized (initialized to zero)
initialized
Text
> |low address (0x12340000)




Addresses

 Humans are not good at remembering
numerical addresses.

what are the GPS coordinates (latitude and longitude)
of your residence?

* We (humans) choose convenient ways to
identify addresses so that we can give directions
to a program. E.g. Variables

19



Handles to Addresses

* Variables
* |ts just a handle to an address / program memory
location
eint x = 7; 7

Ox401c
X

* Read x => Read the content at address 9x401C
* Write x=> Write at address 9x401C

20



int Xx;

1.

What is the set of values this variable can take on in C?
-231to (231-1)

How much space does this variable take up?

32 bits

How should operations on this variable be handled?

Integer division is different from floating point divisions
3/ 2=1 //integer division

3.0 / 2.0 = 1.5 //floating-point division

21



C++ standard types

* Integer types: char, short int, int, long
int, long long int, bool

* Float: float, double, long double
e Pointers: handle to addresses

* References: safer than pointers but less
powerful

* void: nothing

22



C++ standard types

— Modifiers

e short, long, signed, unsigned.

— Compound types

° pointers, structs, enums, arrays, etc.

23



C++ standard types — storage

space

Data type Number of bytes
char 1
short int 2
int / long int 4
long long int 8
float 4
double 38
long double 12

« All built-in types are represented in memory as a
contiguous set of bytes

» Use sizeof() operator to check the size of a type
» e.g. sizeof(int)

24



Data types - quirks

— If no type Is given compiler automatically
converts it to int data type.

e signed Xx;
- long is the only modifier allowed with double
e long double vy;
- signed Is the default modifier for char and int

— Can’t use any modifiers with float

25



Visualizing Addresses

* The address of (&) operator fetches a
variable’s address in C

« &x would return the address of X
H#Hinclude<iostream>
int main(int argc, char* argv[]) {
int x = 7;

std: :cout<<"Address of x 1is:"<<&x<<std::endl;
return 0;

* prints the Hexadecimal address of x

iddress_of X 1s:0x7ffd1d5e2844

26



Pointers

 Pointer Is a data type that holds an address.
<type>* <pointer name>;
« Example:

« int* p; //is avariable named p whose type is
//[pointer to int OR p is an integer
//[pointer

Note that the variable declared is p, not *p

27



A pointer always stores an address

« <type> of the pointer tells us what kind of data
IS stored at that address

« Example:
e int* p;

declares a pointer variable p holding an address,
which identifies a memory location capable of storing
an integer.

28



Initializing Pointers

e int* p;

Remember p is a variable and all variables are just names
identifying addresses.

Ox4004 < address
p «—— Name

In addition, p holds the address of a memory location that stores an
integer

* p=&X;

Ox401C_ 7
Ox4004 ~——0x401C

P X

29



« Cannot assign arbitrary addresses to pointers.
« Example:
int* p=5;

» Operating system determines addresses
available to each program.

30



The NULL address

* NULL Is a special address

* Example
int* p=NULL; //p points to nowhere

« Useful when it is not yet known where p points
to.

* Uninitialized pointers store garbage addresses

31



Using Pointers

« The dereference operator (*)

 Lets us access the memory location at the address
stored in the pointer

int x=7; 7

Ox401c
X

32



Using Pointers

* The dereference operator (*)
 Lets us access the memory location at the address
stored in the pointer

int x=7;
int* p = &; //p now points to x

@X4@1CN 7

9x4004 ~——0x401C
P X
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Using Pointers

« The dereference operator (*)

 Lets us access the memory location at the address
stored in the pointer

int x=7;
int* p = &; //p now points to x
*p = 10; //this is the same as X=10

Ox401C 10
Ox4004 ~——0x401C

p X

34



Using Pointers

« The dereference operator (*)

 Lets us access the memory location at the address
stored in the pointer

int x=7;

int* p = &; //p now points to x
*p = 10; //this is the same as x=10
int y=*p; //this 1s the same as y=xX

10 @X4@1CN 10

0x4020 0x4004 ~——0x401C
y p X35



 Pointers as alternate names to memory
locations

int x=7;
int *p = &x;

X IS the name for an address 10

.
p IS the name for an address OxA01c

X
*p

36



 Pointers as “dynamic” names to memory
locations

int x=7; //x always names the location 0x401C

int *p = &X; //*p is now another name for x

37



 Pointers as “dynamic” names to memory
locations

int x=7; //x always names the location 0x401C

int *p = &X; //*p is now another name for x
int y = *p //like saying y=x
p = &y; //*p is now another name for y
V4 V4
0©x4020 ©x401c

X
*p *p 38



Pointers to Different Types

* What can pointers point to? any data type!
« Basic data types — we have seen these.
 Structures — Next set of slides.
 Pointers! and

 Functions

39



Typedef

— Lets you give alternative names to C data types
— Example:
typedef unsigned char BYTE;

This gives the name BYTE to an unsigned char type.
Now,

BYTE a;
BYTE b;

Are valid statements.

40



Typedef Syntax

—————————————————————————————

— Resembles a declaration without initializer;
E.g. int' x;

— Mostly used with user-defined types

41



User-defined Types

— Structures in C are one way of defining your
own type.

— Arrays are compound types but have the
same type within.

« E.g. A string Is an array of char

e int arr[]={1,2,3}; arr isan array of integer
types

— Structures let you compose types with
different basic types within.

42



Structures - Declaration

Type name struct Point{

Declarations of fields float XCoor‘dlnate;

'float yCoordinate;
}s5

— Variable definition:
e struct Point pl;

e struct Point{
float xCoordinate;
float yCoordinate;

1p1;
n1 IS a variable (an object) of type struct Points




Structures - Definition

typedef Struct _PoinEE\\\
float xCoordinate;

'float yCoordinate;

™ Canonical
type name
(long form)

Declarations of fields

New Type name

jPoint;

* Variable definition:
 Point pil;

44



Structures - Usage

— Structure fields are accessed using dot (.)
operator

— Example:
Point p;
p.xCoordinate = 10.1;
p.yCoordinate = 22.8;

printf(“(x,y)=(%f,%f)\n”,p.xCoordinate,
p.yCoordinate);

45



Structures - Initialization

— Error to initialize fields in declaration:

typedef struct{

float oordi e

10.1;

floa oordin

22.8;
}Point;




Structures - Initialization
 Point pl={10.1,22.8};

 Point p2={.x=10.1,.y=22.8};
//Introduced in (C99.
//Designated initializers

//Best-way

a7



Pointers to Structures

typedef struct {

int year;

char model;

float acceleration; //0-60mph in seconds
}Car;

Car t1l = {.year 017
.acceleration }

= 2 .model = °S’,
2.8

J
J

Car * ptl = &tl; //now you can use *ptl
anywhere you use tl

48



(*ptl).acceleration = 2.3;
(*ptl).year = 2019;
(*ptl).model = X’;

float avg acceleration = ((*ptl).acceleration
+ (*pt2).acceleration) / 2.0;

We can also use the -> operator to access
structure members.

ptl->acceleration = 2.3;

ptl->year = 2019;

ptl->model = ‘X’

float avg acceleration = (ptl->acceleration +
pt2->acceleration) / 2.0; “



Pointer Chains
int x = 7;
int *p = &X; //p points to x; *p is same as X.
int ** q=&p; //q 1is a pointer to pointer to int

*q IS same as p.
*(*q) Is the same as *p, which is same as x

50



Address of (&) operator and
Type

* Adding & to a variable adds * to its type
« Example:
« ifais an int, then &a is an int*

e if bis an int*, then &b is an int**

e if c IS an int**, then &c Is an int***

51



Dereference (*) operator and
Type

* Adding * to a variable subtracts * from its type
« Example:

e if ais an Int*, then *a is an int
e if bis an int**, then *b is an int*

e if c IS an Iint***, then *c Is an Iint**

52



Pointer Arithmetic

int y = 1040;
int* p= &y;
* What does *(p+1) mean?

« Data at “one element past” p

* What does “one element past” mean?

* p IS a pointer, so holds the address of a memory
location

e p IS an int pointer, so that memory location holds an
Integer

- p+1 is interpreted as address of the next integer



Pointer Arithmetic

* Our representation of

int y=2064;
int* p = &y;

__Ox401C_ . . 2064
0x1000 0x401C
p y

54



Pointer Arithmetic

* ints occupy 4 bytes. 9x401C Is the address of
the first byte™

Ox401C 0Ox401D Ox401E 0X401F

*2064 = 0x810 (=0x00,00,08,10 when written using 8 digits and x86 is little-
endian)

 (*p) = data at 0x401C

* returns the correct value of 2064 and not 0x10. Why?

55



Pointer Arithmetic

* (p+1) gets the “address of the next integer”

L __6x4e1C ;. 2064 .
0x1000 Ox401C
p y

What is the address of the next integer?

56



Pointer Arithmetic

* What is the address of the next integer?
« Add 4 to current value of p (0x401C)= 0x4020

0x401C 0x401D Ox401E 0Ox401F
y

0x4020 0x4021 0x4022 0x4023

57



Pointer Arithmetic

* (p-1) computes the address before y

int y=2064;

int* p = &y;
r - - ——--"--"---=----=-="-=-—"-= 1 - - - - - - - -—-"-=-"=""=-,"—-""=-/="-—"=""-= 1
| | | |
I I 1| 10 08 00 00 |
| 1 | 1
Ox4018 0x4019 0x401A 0x401B 0x401C 0x401D 0x401E 0x401F

y

subtract 4 from the current value of p (0x401C) = 9x4018

« Similarly we can add/subtract any number to/from a
pointer variable.
« Compare to a specific address (E.g. if(p == NULL),)



Pointer Arithmetic

* Pointer to double (double occupies 8 bytes)

double pi=3.1428;
double* ptrPi = &pi;

__bx4elC i 3.1428 |
oxices "0 e .
)ft Pi Ox401C
ptrril pl

What is the address computed for (ptrPi+1)? 0x4024
What is the address computed for (ptrPi-1)? 0x4014
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Pointer Arithmetic

 Pointer to char

char model=°S’;
char* ptrModel = &model;

| ox401C | cg2 |
——— e — == — o I I
ox 1560 Ox461C
ptrModel model

What is the address computed when we do
(ptrModel+1)?

60



Pointer Arithmetic

* Pointer to pointer

char model=°S’;
char* ptrModel = &model;
char** doublePtr = &ptrModel;

,  Ox1ee0 , | ox401C . [ g |i
- T o m====" - T Tmmm s [ |
0x0500 0x1000 SA61C
doublePtr ptrModel model

Bonus: what is the address computed when we do
(doublePtr+1)? (assuming we are using 32-bit machines)
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C-style Arrays

Declaring arrays:
type <array _name>[<array_size>];
int num[5];

Initializing arrays:

int num[3]={2,6,4};

int num[ ]={2,6,4};//array _size is not
required.

Accessing arrays:
num[0] accesses the first integer

num[1] accesses the second integer and so on..

62



Arrays

* Another data type!
« Array of ints, structs etc.

« Array of chars (strings in C)

* Work a little bit like pointers

int a[10]={11,21,31,41,51,61,71,81,91,101};
//array of 10 integers

11 |21|31|41|51|61|71|81[91 (101
al0] a[l] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

10 elements guaranteed to be next to each other in
rmemory o3




Arrays

int a[10]={11,21,31,41,51,61,71,81,91,101};

11 |21|31|41|51|61|71|81|91 (101
al0] a[l] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

a
0x4001

* Ox4001 is starting address of the array = address of
a[0] = &a[0]

 Fetch the address of a = & = 0x4001 o



Arrays

* Array name In C Is the address of the first
element of the array

int a[10]={1,2,3,4,5,6,7,8,9,10};
Therefore, a == &a[0]

a, &a, &a[@] are the same and have values
Ox4001.
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Arrays

* Array name In C Is the address of the first
element of the array

Array names are converted to pointers (in
most cases) but a’s type is not a pointer.

int* ptr=a; //ptr holds the address of the
first element of the array (also &a[@]).

ptr[1l] gets a[1l]
ptr[2] gets a[2]

How is this possible?
66



Arrays

 Array dereferencing operator [ ] is implemented
In terms of pointers.

* a[ 3] means: start at the address a, go forward 3
elements, fetch the data at that address.

* |n pointer arithmetic syntax, this is equivalent to:
*(a+3)
So,

a[0] really means: *(a+0)
a[l] really means: *(a+1)

67



Arrays

* S0, when
int* ptr = a;

* ptr[0] really means *(ptr+0), which is the same
as *(a+0), whichis a[0]

 ptr[1] really means *(ptr+1), which is the same
as *(a+1), whichis a[1]

68



Exercise

char s[3] = “Hi”;
char *t = “Si”;

int u[3] = {5, 6, 7};

int n=8;

Expression Type Comments
S char[3] array of 3 chars
t char* address of a char
u int[3] array of 3 ints

&ul0] int*

address of an int

69



Exercise

char s[3] = “Hi”;
char *t = “Si”;

int u[3] = {5, 6, 7};

int n=8;

Expression Type Comments
*&n int value at n
*t char data at address

Held by t

70



Exercise

* Array Iinitializers:

1. int u[3] = {5, 6};
Is this valid?
If yes, what is the value held in the third element u[2]?

2. int u[3] = {5, 6, 7, 8};
Is this valid?

3. char s1[]=“Hi”;
What is the size of s1? (how many bytes are reserved
for s1)

4. char s2[3]=“Si”;
Is this valid? 71



Exercise

int u[3] = {5, 6, 7};

int* p=u;
pl[0]=7;
p[1]=6;
p[2]=5;

//At this line, u would contain the numbers in reverse
order. u[0] = 7, u[1]=6, u[2]=5.

char *str = “Hello”;

char* p=str;

ple]="Y"; |
//At this line, what would str contain?
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Dynamic Memory Allocation

« Statically allocated arrays:
int arr[3]={1, 2, 3};

Must be known
at compile time

« Can’t expand arr once defined

73



Dynamic Memory Allocation

* What if we don’t know the array length”?

« Option 1: Variable length arrays.

Not an option with -Wvla, -Wall, and -Werror
flags

« Option 2: use heap.
Preferred option
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Dynamic Memory Allocation

* We interact with heap using

* new
“Give us X bytes of storage space (memory) from
the heap so that we can use it to store data”

e delete

“take back this memory so that it can be used for
something else”
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Functions

Definition return_type function_name(parameters) {
//statements
return <optional value>

}
Function name and parameters form the signature of the
function

In a program, you can have multiple functions with same
name but with differing signatures - function overloading

Example:
double product(double a, double b) {

double result = a*b;

return result;
76



Functions

Declaration: return_type function_name(parameters);

Function definition provided the complete details of the
Internals of the function. Declaration just indicates the

sighature.
— Declaration exposes the interface to the function

double product(double a, double b); //OK
double product(double, double); //OK
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The main Function

« Signatures
int main()

int main(int argc, char* argv|[])

« Every program must have exactly one main
function. Program execution begins with this
function.

« Return 0 usually means success and failure
otherwise

— EXIT_SUCCESS and EXIT_FAILURE are useful
definitions provided in the library cstdlib
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« Calling:
« Example:

Functions

function_name(parameters);

double product(double a, double b) {
double result = a*b;
return result;

int main() {
double retval, pi=3.14, ran=1.2;
retVal = product(pi,ran);
cout<<retVval;
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« Calling:
« Example:

At least the signature of
function must be visible

Functions

function_name(parameters);

double product(double a, double b) {
double result = a*b;
return result;

int main() {
double retval, pi=3.14, ran=1.2;

at this line — , retVal = product(pi,ran);

cout<<retVval;
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« Calling:
« Example:

pi and ran are copied to

aandb

Functions

function_name(parameters);

I
double product(double a, double b) {

double result = a*b;

return result;

int main() {
double retval, pi=3.14, ran=1.2;
— retVal = product(pi,ran);
cout<<retVval;
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« Calling:
« Example:

pi and ran are copied to

aandb
Pass-by-value

Functions

function_name(parameters);

I
double product(double a, double b) {

double result = a*b;

return result;

int main() {
double retval, pi=3.14, ran=1.2;
— retVal = product(pi,ran);
cout<<retVval;
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« Calling:

« Example:

pi and ran are NOT
copiedtoaandb
Pass-by-reference

Functions

function_name(parameters);

I
double product(double& a, double& b) {

double result = a*b;

return result;

int main() {
double retval, pi=3.14, ran=1.2;
— retVal = product(pi,ran);
cout<<retVval;
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Reference Variables

 Example:  int n=10;
int &re=n;

« Like pointer variables. re is constant pointer to n (re cannot
change its value). Another name for n.
— Can change the value of n through re though
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Command Line Arguments

bash-4.1%./a.out

/Ithis i1s how we ran 4_8_1.Cpp (refer: weekl_codesample)

» Suppose the initial guess was provided to the
program as a command-line argument (instead of
accepting user-input from the keyboard):

bash-4.1%./a.out 999

85



Command Line Arguments

bash-4.1%./a.out 999

int main(int argc, char* argv[]) {

//some code here.

ldentifier Comments Value
argc Number of command-line
arguments (including the 2
executable)
argv each command-line argument | argv[0]=“./a.out”

stored as a string

argv[1]=7999”
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Exercise

* Write a C++ program with the following
requirements:

— User should be able to provide the dimension of two
vectors (do not use C++ vectors from STL)

— The program should allocate two vectors of the
required size and initialize them with meaningful data

— The program should compute the scalar product of
the two vectors and print the result
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Discretization

« Cannot store/represent infinitely many
continuous values

— To model turbulent features of flow through a pipe,

say, | am interested in velocity and pressure at all
points in a region of interest
1. Represent region of interest as a mesh of small discrete
cells - discretization spacing
2. Solve equations for each cell

Example: diameter of the pipe = 5cm
length=2.5cm
discretization spacing = 0.1mm
(volume of cylinder = mr?h)

Exercise: how many variables do you need to declare? 88



Discretization

 All problems with ‘continuous’ quantities don’t

require discretization
— Most often they do.

* When discretization is done:
— How refined is your discretization depends on certain

parameters: step-size, cell shape and size. E.qg.
« Size of the largest cell (PDEs in FEM),
« Step size in ODEs

— Accuracy of the solution is of prime concern
 Discretization always gives an approximate solution. Why?

« Errors may creep in. Must provide an estimate of error.
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Accuracy

Discretization error

— |Is because of the way discretization is done

— E.g. use more number of rays to minimize discretization
error in ray tracing

Solution error

— The equation to be solved influences solution error

— E.g. use more number of iterations in PDEs to minimize
solution error

Accuracy of the solution depends on both solution
and discretization errors

Accuracy also depends on cell shape
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Cell Shape

. 2D: A

triangle guadrilateral

« 3D: triangular or quadrilateral faced. E.qg.

Tetrahedron: 4 vertices, 4 edges, 4/\ faces
oo [Pt Pyramid: 5 vertices, 8 edges, 4 /\ and 1 L1 face

-~ Triangular prism: 6 vertices, 9 edges, 2/\ and 3] faces
' < ﬂ Hexahedron: 8 vertices, 12 edges, 6 [ faces

Triangular Prism

Hexahedron

source: wikipedia
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Error Estimate

* You will have to deal with errors in the presence of

discretization
— Providing error estimate is necessary

e Apriori error estimate

— Gives insight on whether a discretization strategy is
suitable or not

— Depends on discretization parameter

— Properties of the (unknown) exact solution

— Error is bound by: Ch? where, C depends on exact
solution, h is discretization parameter, and p is a fixed
exponent. Assumption: exact solution is differentiable,
typically, p+1 times.
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Error Estimate

 Aposteriori error estimate
— |Is estimation of the error in computed (Approximate)
solution and does not depend on information about
exact solution
— E.g. Sleipner-A oll rig disaster
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Exercise

— does increasing mesh size always yield better
accuracy?

— does decreasing cell size always yield better
accuracy?

— How does changing mesh size affect
computational cost?

— How does changing cell size affect
computational cost?
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Structured Grids

« Have regular connectivity between cells

— 1.e. every cell is connected to a predictable number of
neighbor cells

« Quadrilateral (in 2D) and Hexahedra (in 3D) are
most common type of cells

« Simplest grid Is a rectangular region with
uniformly divided rectangular cells (in 2D).

95
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Structured Grids — Problem
Statement

« Given:
— A geometry
— A partial differential equation
— Initial and boundary conditions

« Goal:
— Discretize into a grid of cells

— Approximate the PDE on the grid
— Solve the PDE on the grid
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Structured Grids - Representation

« Because of regular connectivity between cells

— Cells can be identified with indices (x,y) or (X,y,z) and
neighboring cell info can be obtained.

— How about identifying a cell here?
Given: \
¢ = (“Xi") radius
n = (“Eta”) angle

Compute:

X = (% + f) cos(mn)
1
y = (E + f) sin(mn) 97



Structured Grids - Representation

* |In next class....
— Grid generation and grid types
— Partial Differential Equations (PDES)

— Solving PDEs (turning PDEs into large set of
algebraic equations)

 Now.
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2D Arrays

« 1D array gives us access to a row of data

« 2D array gives us access to multiple rows of data
« A 2D array is basically an array of arrays

« Consider a fixed-length 1D array:

int arrl[4];//defines array of 4 elements; every
element is an integer. Reserves contiguous memory to

store 4 integers.
arrl[0] arrl[1l] arrl[2] arrl[3]

Starting addr:
100 104 108 112

We have seen this 99



2D Arrays (fixed-length)

« Consider a fixed-length 2D array (array of arrays). Think:
array of integers => every element is an int
array of characters => every element is a char
array of array => every element is an array

« Example:

int arr[2][4];//defines array of 2 elements; every
element is an array of 4 integers. Therefore, reserves
contiguous memory to store 8 integers

Q

wan em—wews S —————————-—————————————-Ioo——

rting addr:

100 104 108 112 116 120 124 128



2D Arrays (on heap)

« What if we don’t know the length of the array upfront?

E.g. Aline in a file contains number of people riding a bus every trip.
Multiple trips happen per day and the number can vary depending on the
traffic.

Dayl numbers: 10 23 45 44
Day2 numbers: 5 33 38 34 10 4
Day3 numbers: 9 17 10

DayN numbers: 13 15 28 22 26 23 22 21

//we need array arr of N elements; every element is an
array of M integers. Both N and M vary with every file

input.
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2D Arrays (on heap)

1. First, we need to create an array arr2D of N elements.
So, get the number of lines in the input file.

« But what is the type of every element? - array of M
elements, where every element is an integer (i.e. every
element is an integer array). int *

 What is the type of arr2D? (array of array of integers)
Think:
type of an integer => int

type of array of integers => int *
(append a * to the type for every occurrence of the term array)

type of array of array of integers => int **
102



2D Arrays (on heap)

1. First, we need to create an array arr2D of N elements.
So, get the number of lines in the input file.

 What is the type of arr2D? (int **)

int N = GetNumberOfLinesFromFile(fileName);

int** arr2D = new int*[N];
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Recall boxes with dashed linesin int arr[2][4];

[——=
I

Starting addr:
100 104 108 112 116 120 124 128

int N = GetNumberOfLinesFromFile(filename);
int** arr2D = new int*[N];

arr2D[0] arr2D[1] @ arr2D[N-1]

71—~ [
|

| | |

| | | |

I R L 1
Starting addr(assuming 64-bit machine/pointer stored in 8 bx&ps):

100 108 100+(N-1)*8



arr2D[0] arr2D[1] arr2D[N-1]

[ R T = 7 7

| | | |

| | | |

I R S L —
Starting addr(assuming 64-bit machine/pointer stored in 8 bytes):

100 108 100+ (N-1)*8

2. arr2D[@], arr2D[1], etc. are not initialized. They hold
garbage values. How do we Iinitialize them?

for(int 1=0;i<N;i++) {
char* line = ReadlLineFromFile(filename);

int M = GetNumberOfIntegersPerLine(line);
arr2D[1i] = new int[M]
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arr2D[0] arr2D[1] arr2D[N-1]

————

I e

| 1000 | 5004 | | 50 |

R R S L
Starting addr(assuming 64-bit machine/pointer stored in 8 bytes):

100 108 100+ (N-1)*8

for(int i=0;i<N;i++) {
char* line = ReadlLineFromFile(filename);

int M = GetNumberOfIntegersPerLine(line);
arr2D[i] = new int[M]

}

Starting addr:
1000
5004
9000
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2D Arrays (on heap)

Summary:
Creation: 2-steps
Initializing: 2-steps
Releasing: 2-steps

for(int 1=0;i<N;i++)
delete [] arr2D[1]; //frees memory at 1000, 5004,
etc.

delete [] arr2D;//frees memory at 100
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2D Arrays (trivia)

 Notation used to refer to elements different from cartesian
coordinates

>

+ Cartesian: vy (M,N) = move M along X axis,

N along Y axis

0 X

. 2D Arrays: arr2D[M][N] = move to (M+1)™
row (along Y axis), to (N+1)t

arr2D[0][0] accesses 1t row, 1stelement cOlumn (along X axis)!
arr2D[0][1] accesses 15t row, 2" element
arr2D[1][1] accesses 2" row, 2"d element

arr2D[N][M] accesses N+1% row, M+1% element
108



* From the previous bus trip data, what if we wanted to:
Dayl numbers: 10 23 45 44

Day2 numbers: 5 33 38 34 10 4
Day3 numbers: 9 17 10

DayN numbers: 13 15 28 22 26 23 22 21

* Drop certain days as we analyzed arr2D?
« Add more days to (read from another file) to arr2D ?
l.e.

modify arr2D as program executes?
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