CS601: Software Development for

Scientific Computing
Autumn 2021

Week2: Program Development Environment,
Minimal C++, Version Control Systems,
Structured Grid

Nikhil Hegde

Program Development
Environment

 Demo

Creating a Program

« Create your c++ program file

Editor
(e.2. Vim) I

.cpp/
.cc/

.C
files

Creating a Program

* Preprocess your c++ program file

== ——————— -

Editor - - |
(.. Vim) l ir reprocessor l
.cpp / .cpp /
.cc/ cc/
.C C
files files

* removes comments from your program,
« expands #include statements

Creating a Program

« Translate your source code to assembly language

Editor A .
le.e. Vim) l ir Preprocessor la{ Compiler l
cpp .cpp/ S
.cc/ .cc/ files
C C

files 1;iles

Creating a Program

« Translate your assembly code to machine code

Editor

le.e. Vim) l I= Preprocessor la{ Compiler
.cc/ cc/
.C C
files files

l*{ Assembler

7

.S
files

.0
files

Creating a Program

« Get machine code that is part of libraries

Editor

le.e. Vim) l I= Preprocessor la{ Compiler
.cc/ cc/
.C C
files files

l*{ Assembler

Linker

.S
files

files

Creating a Program

 Create executable

Edlt?r §= Preprocessor 4{ Compiler 4{ Assembler » Linker —:—- a.out
(e Vim) [| 1 | ;
| {dla:u:ec utable
.cpp / .cpp/ S .0 fle)
.cc/ .cc/ files files ,
.C C '
files files

1. Either copy the corresponding machine code OR

2. Insert a ‘stub’ code to execute the machine code
directly from within the library module

Creating a Program

e g++ 4 8 1.cpp -1m

Edlt?r §= Preprocessor 4{ Compiler 4{ Assembler » Linker p— a.0ut
(e Vim) [| 1 | |
cpp / cpp / S o {ﬁ!:{ec utable
cc/ cc/ files files file)
.C C |
files files

- g++ 1S a command to translate your source code (by
iInvoking a collection of tools)
« Above command produces a.out from . cpp file

— -1 option tells the linker to ‘link’ the math library

Creating a Program

e g++: other options

-Wall - Show all warnings

-omyexe - create the output machine code in a file called
myexe

-g - Add debug symbols to enable debugging

-C - Just compile the file (don't link) i.e. produce a
.o file

-I/home/mydir -Include directory called /home/mydir
-01, -02, -O3 - request to optimize code according to
various levels

Always check for program correctness when using

optimizations 10

Creating a Program

* The steps just discussed are ‘compiled’ way of
creating a program. E.g. C++

 Interpreted way: alternative scheme where
source code is ‘interpreted’ / translated to
machine code piece by piece e.g. MATLAB

* Pros and Cons.

— Compiled code runs faster, takes longer to develop

— Interpreted code runs normally slower, often faster to
develop

11

Creating a Program

 For different parts of the program different
strategies may be applicable.
— Mix of compilation and interpreted — interoperability

 In the context of scientific software, the following
are of concern:
— Computational efficiency
— Cost of development cycle and maintainability
— Avallability of high-performant tools / utilities
— Support for user-defined data types

12

Creating a Program

e a.out Is a pattern of Os and 1s laid out in memory
— seguence of machine instructions

 How Is a program laid out in memory?
— Helpful to debug

— Helpful to create robust software
— Helpful to customize program for embedded systems

13

Program Layout in Memory

* A program’s memory space is divided into
four segments:

1.

Text
 source code of the program

Data

 Broken into uninitialized and initialized segments; contains space for
global and static variables. E.g. int x = 7; int y;

Heap
* Memory allocated using malloc/calloc/realloc/new

Stack

* Function arguments, return values, local variables, special registers.

Program Layout in Memory

Stackg,
Heap
Data bss/uninitialized |(initialized to zero)

initialized

Text

Program Layout in Memory

0x1234AA0B
Stack 0x1234AA08
1 0x1234AA04
________________________________ 0x1234AA00
Heap
bss/uninitialized « Every memory location is a box
Data TR holding data
initialized
Text « Each box has an address

Addresses

« Computer programs think and live in terms of
memory locations

« Addresses In computer programs are just
numbers identifying memory locations

* A program navigates by visiting one address
after another

17

Program Layout in Memory

———high address (0x1234ABCD)

Stackf
Heap
Data bss/uninitialized (initialized to zero)
initialized
Text
> |low address (0x12340000)

Addresses

 Humans are not good at remembering
numerical addresses.

what are the GPS coordinates (latitude and longitude)
of your residence?

* We (humans) choose convenient ways to
identify addresses so that we can give directions
to a program. E.g. Variables

19

Handles to Addresses

* Variables
* |ts just a handle to an address / program memory
location
eint x = 7; 7

Ox401c
X

* Read x => Read the content at address 9x401C
* Write x=> Write at address 9x401C

20

int Xx;

1.

What is the set of values this variable can take on in C?
-231to (231-1)

How much space does this variable take up?

32 bits

How should operations on this variable be handled?

Integer division is different from floating point divisions
3/ 2=1 //integer division

3.0 / 2.0 = 1.5 //floating-point division

21

C++ standard types

* Integer types: char, short int, int, long
int, long long int, bool

* Float: float, double, long double
e Pointers: handle to addresses

* References: safer than pointers but less
powerful

* void: nothing

22

C++ standard types

— Modifiers

e short, long, signed, unsigned.

— Compound types

° pointers, structs, enums, arrays, etc.

23

C++ standard types — storage

space

Data type Number of bytes
char 1
short int 2
int / long int 4
long long int 8
float 4
double 38
long double 12

« All built-in types are represented in memory as a
contiguous set of bytes

» Use sizeof() operator to check the size of a type
» e.g. sizeof(int)

24

Data types - quirks

— If no type Is given compiler automatically
converts it to int data type.

e signed Xx;
- long is the only modifier allowed with double
e long double vy;
- signed Is the default modifier for char and int

— Can’t use any modifiers with float

25

Visualizing Addresses

* The address of (&) operator fetches a
variable’s address in C

« &x would return the address of X
H#Hinclude<iostream>
int main(int argc, char* argv[]) {
int x = 7;

std: :cout<<"Address of x 1is:"<<&x<<std::endl;
return 0;

* prints the Hexadecimal address of x

iddress_of X 1s:0x7ffd1d5e2844

26

Pointers

 Pointer Is a data type that holds an address.
<type>* <pointer name>;
« Example:

« int* p; //is avariable named p whose type is
//[pointer to int OR p is an integer
//[pointer

Note that the variable declared is p, not *p

27

A pointer always stores an address

« <type> of the pointer tells us what kind of data
IS stored at that address

« Example:
e int* p;

declares a pointer variable p holding an address,
which identifies a memory location capable of storing
an integer.

28

Initializing Pointers

e int* p;

Remember p is a variable and all variables are just names
identifying addresses.

Ox4004 < address
p «—— Name

In addition, p holds the address of a memory location that stores an
integer

* p=&X;

Ox401C_ 7
Ox4004 ~——0x401C

P X

29

« Cannot assign arbitrary addresses to pointers.
« Example:
int* p=5;

» Operating system determines addresses
available to each program.

30

The NULL address

* NULL Is a special address

* Example
int* p=NULL; //p points to nowhere

« Useful when it is not yet known where p points
to.

* Uninitialized pointers store garbage addresses

31

Using Pointers

« The dereference operator (*)

 Lets us access the memory location at the address
stored in the pointer

int x=7; 7

Ox401c
X

32

Using Pointers

* The dereference operator (*)
 Lets us access the memory location at the address
stored in the pointer

int x=7;
int* p = &; //p now points to x

@X4@1CN 7

9x4004 ~——0x401C
P X

33

Using Pointers

« The dereference operator (*)

 Lets us access the memory location at the address
stored in the pointer

int x=7;
int* p = &; //p now points to x
*p = 10; //this is the same as X=10

Ox401C 10
Ox4004 ~——0x401C

p X

34

Using Pointers

« The dereference operator (*)

 Lets us access the memory location at the address
stored in the pointer

int x=7;

int* p = &; //p now points to x
*p = 10; //this is the same as x=10
int y=*p; //this 1s the same as y=xX

10 @X4@1CN 10

0x4020 0x4004 ~——0x401C
y p X35

 Pointers as alternate names to memory
locations

int x=7;
int *p = &x;

X IS the name for an address 10

.
p IS the name for an address OxA01c

X
*p

36

 Pointers as “dynamic” names to memory
locations

int x=7; //x always names the location 0x401C

int *p = &X; //*p is now another name for x

37

 Pointers as “dynamic” names to memory
locations

int x=7; //x always names the location 0x401C

int *p = &X; //*p is now another name for x
int y = *p //like saying y=x
p = &y; //*p is now another name for y
V4 V4
0©x4020 ©x401c

X
*p *p 38

Pointers to Different Types

* What can pointers point to? any data type!
« Basic data types — we have seen these.
 Structures — Next set of slides.
 Pointers! and

 Functions

39

Typedef

— Lets you give alternative names to C data types
— Example:
typedef unsigned char BYTE;

This gives the name BYTE to an unsigned char type.
Now,

BYTE a;
BYTE b;

Are valid statements.

40

Typedef Syntax

—————————————————————————————

— Resembles a declaration without initializer;
E.g. int' x;

— Mostly used with user-defined types

41

User-defined Types

— Structures in C are one way of defining your
own type.

— Arrays are compound types but have the
same type within.

« E.g. A string Is an array of char

e int arr[]={1,2,3}; arr isan array of integer
types

— Structures let you compose types with
different basic types within.

42

Structures - Declaration

Type name struct Point{

Declarations of fields float XCoor‘dlnate;

'float yCoordinate;
}s5

— Variable definition:
e struct Point pl;

e struct Point{
float xCoordinate;
float yCoordinate;

1p1;
n1 IS a variable (an object) of type struct Points

Structures - Definition

typedef Struct _PoinEE\\\
float xCoordinate;

'float yCoordinate;

™ Canonical
type name
(long form)

Declarations of fields

New Type name

jPoint;

* Variable definition:
 Point pil;

44

Structures - Usage

— Structure fields are accessed using dot (.)
operator

— Example:
Point p;
p.xCoordinate = 10.1;
p.yCoordinate = 22.8;

printf(“(x,y)=(%f,%f)\n”,p.xCoordinate,
p.yCoordinate);

45

Structures - Initialization

— Error to initialize fields in declaration:

typedef struct{

float oordi e

10.1;

floa oordin

22.8;
}Point;

Structures - Initialization
 Point pl={10.1,22.8};

 Point p2={.x=10.1,.y=22.8};
//Introduced in (C99.
//Designated initializers

//Best-way

a7

Pointers to Structures

typedef struct {

int year;

char model;

float acceleration; //0-60mph in seconds
}Car;

Car t1l = {.year 017
.acceleration }

= 2 .model = °S’,
2.8

J
J

Car * ptl = &tl; //now you can use *ptl
anywhere you use tl

48

(*ptl).acceleration = 2.3;
(*ptl).year = 2019;
(*ptl).model = X’;

float avg acceleration = ((*ptl).acceleration
+ (*pt2).acceleration) / 2.0;

We can also use the -> operator to access
structure members.

ptl->acceleration = 2.3;

ptl->year = 2019;

ptl->model = ‘X’

float avg acceleration = (ptl->acceleration +
pt2->acceleration) / 2.0; “

Pointer Chains
int x = 7;
int *p = &X; //p points to x; *p is same as X.
int ** q=&p; //q 1is a pointer to pointer to int

*q IS same as p.
*(*q) Is the same as *p, which is same as x

50

Address of (&) operator and
Type

* Adding & to a variable adds * to its type
« Example:
« ifais an int, then &a is an int*

e if bis an int*, then &b is an int**

e if c IS an int**, then &c Is an int***

51

Dereference (*) operator and
Type

* Adding * to a variable subtracts * from its type
« Example:

e if ais an Int*, then *a is an int
e if bis an int**, then *b is an int*

e if c IS an Iint***, then *c Is an Iint**

52

Pointer Arithmetic

int y = 1040;
int* p= &y;
* What does *(p+1) mean?

« Data at “one element past” p

* What does “one element past” mean?

* p IS a pointer, so holds the address of a memory
location

e p IS an int pointer, so that memory location holds an
Integer

- p+1 is interpreted as address of the next integer

Pointer Arithmetic

* Our representation of

int y=2064;
int* p = &y;

__Ox401C_ . . 2064
0x1000 0x401C
p y

54

Pointer Arithmetic

* ints occupy 4 bytes. 9x401C Is the address of
the first byte™

Ox401C 0Ox401D Ox401E 0X401F

*2064 = 0x810 (=0x00,00,08,10 when written using 8 digits and x86 is little-
endian)

 (*p) = data at 0x401C

* returns the correct value of 2064 and not 0x10. Why?

55

Pointer Arithmetic

* (p+1) gets the “address of the next integer”

L __6x4e1C ;. 2064 .
0x1000 Ox401C
p y

What is the address of the next integer?

56

Pointer Arithmetic

* What is the address of the next integer?
« Add 4 to current value of p (0x401C)= 0x4020

0x401C 0x401D Ox401E 0Ox401F
y

0x4020 0x4021 0x4022 0x4023

57

Pointer Arithmetic

* (p-1) computes the address before y

int y=2064;

int* p = &y;
r - - ——--"--"---=----=-="-=-—"-= 1 - - - - - - - -—-"-=-"=""=-,"—-""=-/="-—"=""-= 1
| | | |
I I 1| 10 08 00 00 |
| 1 | 1
Ox4018 0x4019 0x401A 0x401B 0x401C 0x401D 0x401E 0x401F

y

subtract 4 from the current value of p (0x401C) = 9x4018

« Similarly we can add/subtract any number to/from a
pointer variable.
« Compare to a specific address (E.g. if(p == NULL),)

Pointer Arithmetic

* Pointer to double (double occupies 8 bytes)

double pi=3.1428;
double* ptrPi = π

__bx4elC i 3.1428 |
oxices "0 e .
)ft Pi Ox401C
ptrril pl

What is the address computed for (ptrPi+1)? 0x4024
What is the address computed for (ptrPi-1)? 0x4014

59

Pointer Arithmetic

 Pointer to char

char model=°S’;
char* ptrModel = &model;

| ox401C | cg2 |
——— e — == — o I I
ox 1560 Ox461C
ptrModel model

What is the address computed when we do
(ptrModel+1)?

60

Pointer Arithmetic

* Pointer to pointer

char model=°S’;
char* ptrModel = &model;
char** doublePtr = &ptrModel;

, Ox1ee0 , | ox401C . [g |i
- T o m====" - T Tmmm s [|
0x0500 0x1000 SA61C
doublePtr ptrModel model

Bonus: what is the address computed when we do
(doublePtr+1)? (assuming we are using 32-bit machines)

61

C-style Arrays

Declaring arrays:
type <array _name>[<array_size>];
int num[5];

Initializing arrays:

int num[3]={2,6,4};

int num[]={2,6,4};//array _size is not
required.

Accessing arrays:
num[0] accesses the first integer

num[1] accesses the second integer and so on..

62

Arrays

* Another data type!
« Array of ints, structs etc.

« Array of chars (strings in C)

* Work a little bit like pointers

int a[10]={11,21,31,41,51,61,71,81,91,101};
//array of 10 integers

11 |21|31|41|51|61|71|81[91 (101
al0] a[l] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

10 elements guaranteed to be next to each other in
rmemory o3

Arrays

int a[10]={11,21,31,41,51,61,71,81,91,101};

11 |21|31|41|51|61|71|81|91 (101
al0] a[l] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

a
0x4001

* Ox4001 is starting address of the array = address of
a[0] = &a[0]

 Fetch the address of a = & = 0x4001 o

Arrays

* Array name In C Is the address of the first
element of the array

int a[10]={1,2,3,4,5,6,7,8,9,10};
Therefore, a == &a[0]

a, &a, &a[@] are the same and have values
Ox4001.

65

Arrays

* Array name In C Is the address of the first
element of the array

Array names are converted to pointers (in
most cases) but a’s type is not a pointer.

int* ptr=a; //ptr holds the address of the
first element of the array (also &a[@]).

ptr[1l] gets a[1l]
ptr[2] gets a[2]

How is this possible?
66

Arrays

 Array dereferencing operator [] is implemented
In terms of pointers.

* a[3] means: start at the address a, go forward 3
elements, fetch the data at that address.

* |n pointer arithmetic syntax, this is equivalent to:
*(a+3)
So,

a[0] really means: *(a+0)
a[l] really means: *(a+1)

67

Arrays

* S0, when
int* ptr = a;

* ptr[0] really means *(ptr+0), which is the same
as *(a+0), whichis a[0]

 ptr[1] really means *(ptr+1), which is the same
as *(a+1), whichis a[1]

68

Exercise

char s[3] = “Hi”;
char *t = “Si”;

int u[3] = {5, 6, 7};

int n=8;

Expression Type Comments
S char[3] array of 3 chars
t char* address of a char
u int[3] array of 3 ints

&ul0] int*

address of an int

69

Exercise

char s[3] = “Hi”;
char *t = “Si”;

int u[3] = {5, 6, 7};

int n=8;

Expression Type Comments
*&n int value at n
*t char data at address

Held by t

70

Exercise

* Array Iinitializers:

1. int u[3] = {5, 6};
Is this valid?
If yes, what is the value held in the third element u[2]?

2. int u[3] = {5, 6, 7, 8};
Is this valid?

3. char s1[]=“Hi”;
What is the size of s1? (how many bytes are reserved
for s1)

4. char s2[3]=“Si”;
Is this valid? 71

Exercise

int u[3] = {5, 6, 7};

int* p=u;
pl[0]=7;
p[1]=6;
p[2]=5;

//At this line, u would contain the numbers in reverse
order. u[0] = 7, u[1]=6, u[2]=5.

char *str = “Hello”;

char* p=str;

ple]="Y"; |
//At this line, what would str contain?

72

Dynamic Memory Allocation

« Statically allocated arrays:
int arr[3]={1, 2, 3};

Must be known
at compile time

« Can’t expand arr once defined

73

Dynamic Memory Allocation

* What if we don’t know the array length”?

« Option 1: Variable length arrays.

Not an option with -Wvla, -Wall, and -Werror
flags

« Option 2: use heap.
Preferred option

74

Dynamic Memory Allocation

* We interact with heap using

* new
“Give us X bytes of storage space (memory) from
the heap so that we can use it to store data”

e delete

“take back this memory so that it can be used for
something else”

75

Functions

Definition return_type function_name(parameters) {
//statements
return <optional value>

}
Function name and parameters form the signature of the
function

In a program, you can have multiple functions with same
name but with differing signatures - function overloading

Example:
double product(double a, double b) {

double result = a*b;

return result;
76

Functions

Declaration: return_type function_name(parameters);

Function definition provided the complete details of the
Internals of the function. Declaration just indicates the

sighature.
— Declaration exposes the interface to the function

double product(double a, double b); //OK
double product(double, double); //OK

77

The main Function

« Signatures
int main()

int main(int argc, char* argv|[])

« Every program must have exactly one main
function. Program execution begins with this
function.

« Return 0 usually means success and failure
otherwise

— EXIT_SUCCESS and EXIT_FAILURE are useful
definitions provided in the library cstdlib

78

« Calling:
« Example:

Functions

function_name(parameters);

double product(double a, double b) {
double result = a*b;
return result;

int main() {
double retval, pi=3.14, ran=1.2;
retVal = product(pi,ran);
cout<<retVval;

79

« Calling:
« Example:

At least the signature of
function must be visible

Functions

function_name(parameters);

double product(double a, double b) {
double result = a*b;
return result;

int main() {
double retval, pi=3.14, ran=1.2;

at this line — , retVal = product(pi,ran);

cout<<retVval;

80

« Calling:
« Example:

pi and ran are copied to

aandb

Functions

function_name(parameters);

I
double product(double a, double b) {

double result = a*b;

return result;

int main() {
double retval, pi=3.14, ran=1.2;
— retVal = product(pi,ran);
cout<<retVval;

81

« Calling:
« Example:

pi and ran are copied to

aandb
Pass-by-value

Functions

function_name(parameters);

I
double product(double a, double b) {

double result = a*b;

return result;

int main() {
double retval, pi=3.14, ran=1.2;
— retVal = product(pi,ran);
cout<<retVval;

82

« Calling:

« Example:

pi and ran are NOT
copiedtoaandb
Pass-by-reference

Functions

function_name(parameters);

I
double product(double& a, double& b) {

double result = a*b;

return result;

int main() {
double retval, pi=3.14, ran=1.2;
— retVal = product(pi,ran);
cout<<retVval;

83

Reference Variables

 Example: int n=10;
int &re=n;

« Like pointer variables. re is constant pointer to n (re cannot
change its value). Another name for n.
— Can change the value of n through re though

84

Command Line Arguments

bash-4.1%./a.out

/Ithis i1s how we ran 4_8_1.Cpp (refer: weekl_codesample)

» Suppose the initial guess was provided to the
program as a command-line argument (instead of
accepting user-input from the keyboard):

bash-4.1%./a.out 999

85

Command Line Arguments

bash-4.1%./a.out 999

int main(int argc, char* argv[]) {

//some code here.

ldentifier Comments Value
argc Number of command-line
arguments (including the 2
executable)
argv each command-line argument | argv[0]=“./a.out”

stored as a string

argv[1]=7999”

86

Exercise

* Write a C++ program with the following
requirements:

— User should be able to provide the dimension of two
vectors (do not use C++ vectors from STL)

— The program should allocate two vectors of the
required size and initialize them with meaningful data

— The program should compute the scalar product of
the two vectors and print the result

87

Discretization

« Cannot store/represent infinitely many
continuous values

— To model turbulent features of flow through a pipe,

say, | am interested in velocity and pressure at all
points in a region of interest
1. Represent region of interest as a mesh of small discrete
cells - discretization spacing
2. Solve equations for each cell

Example: diameter of the pipe = 5cm
length=2.5cm
discretization spacing = 0.1mm
(volume of cylinder = mr?h)

Exercise: how many variables do you need to declare? 88

Discretization

 All problems with ‘continuous’ quantities don’t

require discretization
— Most often they do.

* When discretization is done:
— How refined is your discretization depends on certain

parameters: step-size, cell shape and size. E.qg.
« Size of the largest cell (PDEs in FEM),
« Step size in ODEs

— Accuracy of the solution is of prime concern
 Discretization always gives an approximate solution. Why?

« Errors may creep in. Must provide an estimate of error.

89

Accuracy

Discretization error

— |Is because of the way discretization is done

— E.g. use more number of rays to minimize discretization
error in ray tracing

Solution error

— The equation to be solved influences solution error

— E.g. use more number of iterations in PDEs to minimize
solution error

Accuracy of the solution depends on both solution
and discretization errors

Accuracy also depends on cell shape

90

Cell Shape

. 2D: A

triangle guadrilateral

« 3D: triangular or quadrilateral faced. E.qg.

Tetrahedron: 4 vertices, 4 edges, 4/\ faces
oo [Pt Pyramid: 5 vertices, 8 edges, 4 /\ and 1 L1 face

-~ Triangular prism: 6 vertices, 9 edges, 2/\ and 3] faces
' < ﬂ Hexahedron: 8 vertices, 12 edges, 6 [faces

Triangular Prism

Hexahedron

source: wikipedia

91

Error Estimate

* You will have to deal with errors in the presence of

discretization
— Providing error estimate is necessary

e Apriori error estimate

— Gives insight on whether a discretization strategy is
suitable or not

— Depends on discretization parameter

— Properties of the (unknown) exact solution

— Error is bound by: Ch? where, C depends on exact
solution, h is discretization parameter, and p is a fixed
exponent. Assumption: exact solution is differentiable,
typically, p+1 times.

92

Error Estimate

 Aposteriori error estimate
— |Is estimation of the error in computed (Approximate)
solution and does not depend on information about
exact solution
— E.g. Sleipner-A oll rig disaster

93

Exercise

— does increasing mesh size always yield better
accuracy?

— does decreasing cell size always yield better
accuracy?

— How does changing mesh size affect
computational cost?

— How does changing cell size affect
computational cost?

94

Structured Grids

« Have regular connectivity between cells

— 1.e. every cell is connected to a predictable number of
neighbor cells

« Quadrilateral (in 2D) and Hexahedra (in 3D) are
most common type of cells

« Simplest grid Is a rectangular region with
uniformly divided rectangular cells (in 2D).

95

credits: nanohub.org

Structured Grids — Problem
Statement

« Given:
— A geometry
— A partial differential equation
— Initial and boundary conditions

« Goal:
— Discretize into a grid of cells

— Approximate the PDE on the grid
— Solve the PDE on the grid

96

Structured Grids - Representation

« Because of regular connectivity between cells

— Cells can be identified with indices (x,y) or (X,y,z) and
neighboring cell info can be obtained.

— How about identifying a cell here?
Given: \
¢ = (“Xi") radius
n = (“Eta”) angle

Compute:

X = (% + f) cos(mn)
1
y = (E + f) sin(mn) 97

Structured Grids - Representation

* |In next class....
— Grid generation and grid types
— Partial Differential Equations (PDES)

— Solving PDEs (turning PDEs into large set of
algebraic equations)

 Now.

98

2D Arrays

« 1D array gives us access to a row of data

« 2D array gives us access to multiple rows of data
« A 2D array is basically an array of arrays

« Consider a fixed-length 1D array:

int arrl[4];//defines array of 4 elements; every
element is an integer. Reserves contiguous memory to

store 4 integers.
arrl[0] arrl[1l] arrl[2] arrl[3]

Starting addr:
100 104 108 112

We have seen this 99

2D Arrays (fixed-length)

« Consider a fixed-length 2D array (array of arrays). Think:
array of integers => every element is an int
array of characters => every element is a char
array of array => every element is an array

« Example:

int arr[2][4];//defines array of 2 elements; every
element is an array of 4 integers. Therefore, reserves
contiguous memory to store 8 integers

Q

wan em—wews S —————————-—————————————-Ioo——

rting addr:

100 104 108 112 116 120 124 128

2D Arrays (on heap)

« What if we don’t know the length of the array upfront?

E.g. Aline in a file contains number of people riding a bus every trip.
Multiple trips happen per day and the number can vary depending on the
traffic.

Dayl numbers: 10 23 45 44
Day2 numbers: 5 33 38 34 10 4
Day3 numbers: 9 17 10

DayN numbers: 13 15 28 22 26 23 22 21

//we need array arr of N elements; every element is an
array of M integers. Both N and M vary with every file

input.
101

2D Arrays (on heap)

1. First, we need to create an array arr2D of N elements.
So, get the number of lines in the input file.

« But what is the type of every element? - array of M
elements, where every element is an integer (i.e. every
element is an integer array). int *

 What is the type of arr2D? (array of array of integers)
Think:
type of an integer => int

type of array of integers => int *
(append a * to the type for every occurrence of the term array)

type of array of array of integers => int **
102

2D Arrays (on heap)

1. First, we need to create an array arr2D of N elements.
So, get the number of lines in the input file.

 What is the type of arr2D? (int **)

int N = GetNumberOfLinesFromFile(fileName);

int** arr2D = new int*[N];

103

Recall boxes with dashed linesin int arr[2][4];

[——=
I

Starting addr:
100 104 108 112 116 120 124 128

int N = GetNumberOfLinesFromFile(filename);
int** arr2D = new int*[N];

arr2D[0] arr2D[1] @ arr2D[N-1]

71—~ [
|

| | |

| | | |

I R L 1
Starting addr(assuming 64-bit machine/pointer stored in 8 bx&ps):

100 108 100+(N-1)*8

arr2D[0] arr2D[1] arr2D[N-1]

[R T = 7 7

| | | |

| | | |

I R S L —
Starting addr(assuming 64-bit machine/pointer stored in 8 bytes):

100 108 100+ (N-1)*8

2. arr2D[@], arr2D[1], etc. are not initialized. They hold
garbage values. How do we Iinitialize them?

for(int 1=0;i<N;i++) {
char* line = ReadlLineFromFile(filename);

int M = GetNumberOfIntegersPerLine(line);
arr2D[1i] = new int[M]

105

arr2D[0] arr2D[1] arr2D[N-1]

————

I e

| 1000 | 5004 | | 50 |

R R S L
Starting addr(assuming 64-bit machine/pointer stored in 8 bytes):

100 108 100+ (N-1)*8

for(int i=0;i<N;i++) {
char* line = ReadlLineFromFile(filename);

int M = GetNumberOfIntegersPerLine(line);
arr2D[i] = new int[M]

}

Starting addr:
1000
5004
9000

106

50

2D Arrays (on heap)

Summary:
Creation: 2-steps
Initializing: 2-steps
Releasing: 2-steps

for(int 1=0;i<N;i++)
delete [] arr2D[1]; //frees memory at 1000, 5004,
etc.

delete [] arr2D;//frees memory at 100

107

2D Arrays (trivia)

 Notation used to refer to elements different from cartesian
coordinates

>

+ Cartesian: vy (M,N) = move M along X axis,

N along Y axis

0 X

. 2D Arrays: arr2D[M][N] = move to (M+1)™
row (along Y axis), to (N+1)t

arr2D[0][0] accesses 1t row, 1stelement cOlumn (along X axis)!
arr2D[0][1] accesses 15t row, 2" element
arr2D[1][1] accesses 2" row, 2"d element

arr2D[N][M] accesses N+1% row, M+1% element
108

* From the previous bus trip data, what if we wanted to:
Dayl numbers: 10 23 45 44

Day2 numbers: 5 33 38 34 10 4
Day3 numbers: 9 17 10

DayN numbers: 13 15 28 22 26 23 22 21

* Drop certain days as we analyzed arr2D?
« Add more days to (read from another file) to arr2D ?
l.e.

modify arr2D as program executes?

109

