
1

CS601: Software Development for

Scientific Computing
Autumn 2021

Week13:

Hierarchical Methods (FMM) and Sparse Matrices

Nikhil Hegde

Course Progress..

• Last week

– Tree-based codes (hierarchical methods)

• Barnes-Hut

• Fast Multipole Method (FMM)

• This week

– FMM

– Sparse matrices and

– PA4 discussion

Nikhil Hegde 2

FMM Algorithm

Nikhil Hegde 3

1. Build the quadtree containing all the points.
2. Traverse the quadtree from bottom to top,

computing Outer(n) for each square n in the
tree.

3. Traverse the quadtree from top to bottom,
computing Inner(n) for each square in the
tree.

4. For each leaf, add the contributions of
nearest neighbors and particles in the leaf
to Inner(n)

what is Outer(n) and Inner(n) ?

Well Separated Regions

• Compute the influence of all particles in source region (B)

on every particle in target region (A)

(assumption: A and B are well-separated)

• At each point 𝑝𝑖 in A, compute potential:

Φ 𝑥𝑖 , 𝑦𝑖 = σ𝑝𝑗∈𝐵
𝑚𝑖log |𝑝𝑖 − 𝑝𝑗|

𝑖 = 1 𝑡𝑜 𝑁𝐴, 𝑗 = 1 𝑡𝑜 𝑁𝐵
• Cost: 𝑂(𝑁𝐴𝑁𝐵)

4Nikhil Hegde

AB

Well Separated Regions

• Compute the influence of all particles in source region (B)

on every particle in target region (A)

Φ 𝑥𝑝𝑖 , 𝑦𝑝𝑖 = σ𝑝𝑗∈𝐵
𝑚𝑖log |𝑝𝑖 − 𝑝𝑗| , 𝑝𝑖 ∈ 𝐴

5Nikhil Hegde

AB

CACB

𝑚𝐵 = ෍

𝑝𝑗∈𝐵

𝑚𝑗

Φ 𝑥𝐶𝐴, 𝑦𝐶𝐴 = 𝑚𝐵log |𝐶𝐴 − 𝐶𝐵|

Φ 𝑥𝑖 , 𝑦𝑖 = Φ 𝑥𝐶𝐴, 𝑦𝐶𝐴

Applying the 3-step Approximation

• In N-body simulation every point serves as source as well

as target.

How to identify source and target (boxes A and B in

previous slide) i.e. well-separated regions?

Hierarchical decomposition

6Nikhil Hegde

Hierarchical Decomposition

• Level-0 decomposition

• Level-1 decomposition

7Nikhil Hegde

A

A B

C D

Hierarchical Decomposition

• Level-2 decomposition

8Nikhil Hegde

B

A1

A2

A3

A4A5A6A7

Well-separated from B

Can approximate the influence

of points in B on points in Ai s

What do we do about B’s influence on Ni s?

N1 N2 N3

N4 N5

N6 N7 N8

B

Hierarchical Decomposition

• Level-3 decomposition

9Nikhil Hegde

B

A1

A2

A3

A4A5A6A7

Influence of points in Bi s on those in Ai s

already computed at the previous level

(level-2)

N1 N2 N3

N4 N5

N6 N7 N8

B1 B2

B3 B4

Hierarchical Decomposition

• Level-3 decomposition

10Nikhil Hegde

B

A1

A2

A3

A4A5A6A7

Influence of points in Bi s on those in Ai s

already computed at the previous level

(level-2)

N1 N2 N3

N4 N5

N6 N7 N8

B1 B2

B3 B4

n1 n2

n3 n4

n5 n6

n7 n8

n9 n10

n11 n12

n13 n14

n15 n16

n17 n18

n19 n20n21 n22 n23 n24

n25

n26

n27

Well-separated from B4

Influence of B4’s points on nx’s

points can be approximated

What is the max size of interaction list? i.e. max

number of nx s that we can have for any Bi?

nx’s constitute the interaction list for B4.

Hierarchical Decomposition

• Level-3 decomposition

11Nikhil Hegde

B

A1

A2

A3

A4A5A6A7

Influence of points in Bi s on those in Ai s

already computed at the previous level

(level-2)

N1 N2 N3

N4 N5

N6 N7 N8

B1 B2

B3 B4

n1 n2

n3 n4

n5 n6

n7 n8

n9 n10

n11 n12

n13 n14

n15 n16

n17 n18

n19 n20n21 n22 n23 n24

n25

n26

n27

Well-separated from B4

Influence of B4’s points on nx’s

points can be approximated

What do we do about B4’s influence on its neighbors

(white/unshaded boxes)?

Hierarchical Decomposition

• Level-4 decomposition

12Nikhil Hegde

B

A1

A2

A3

A4A5A6A7

Any unshaded box outside can be the

target for computing the influence of points

in (source)

B1 B2

B3 B4

1. Computing Potential for Well-

Separated Regions

1. for level L=2 to last_level

2. for each Box B at level L

3. iList = GetInteractionList(B)

4. for each well-separated box A in iList

//Compute potential

5. potential = 𝑚𝐵log |𝐶𝐴 − 𝐶𝐵|

//Accumulate potential

6. Φ 𝑥𝐶𝐴, 𝑦𝐶𝐴 +=potential

Cost?

13Nikhil Hegde

1. Computing Potential for Well-

Separated Regions

1. for level L=2 to last_level

2. for each Box B at level L

3. iList = GetInteractionList(B)

4. for each well-separated box A in iList

//Compute potential

5. potential = 𝑚𝐵log |𝐶𝐴 − 𝐶𝐵|

//Accumulate potential

6. Φ 𝑥𝐶𝐴, 𝑦𝐶𝐴 +=potential

Prereqs: we need mB, CA, CB details. (step 0)

14Nikhil Hegde

2. Assigning Potential to Points

1. for each Box A at level L=0 to last_level

2. Φ𝑝𝑖 = Φ𝑝𝑖 +Φ𝐶𝐴 (where 𝑝𝑖 ∈ 𝐴 and 𝐶𝐴 is A’s CM)

Cost?

15Nikhil Hegde

3. Assigning Potential to Points (last

level)

1. for each Box B at last_level

2. Φ𝑝𝑖 = Φ𝑝𝑖 + σ𝑝𝑗∈𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝐵)
𝑚𝐵log |𝑝𝑖 − 𝑝𝑗| (where

𝑝𝑖 ∈ 𝐵)

Cost?

16Nikhil Hegde

0. Computing Prereqs

1. for each Box B at level L=0 to last_level

2. 𝑚𝐵 = σ𝑝𝑗∈𝐵
𝑚𝑗

3. //similarly compute CB

Cost?

17Nikhil Hegde

Total Cost (steps 0 + 1 + 2 + 3)

O(N log N) + O (N) + O(N log N) + O(N)

Can we do better?

18Nikhil Hegde

0’. Computing Prereqs

• Traverse the tree bottom up instead of top-down

for each Box B starting from last_level to L=0

if B is a leaf box

𝑚𝐵 = σ𝑝𝑗∈𝐵
𝑚𝑗

else

𝑚𝐵 = 𝑚𝐵1 +𝑚𝐵2 +𝑚𝐵3 +𝑚𝐵4

//B1-B4 are children of B

Cost?

19Nikhil Hegde

2’. Assigning Potential to Points

1. for each Box A at level L=0 to last_level

2. if A is a leaf box

Φ𝑝𝑖 = Φ𝑝𝑖 +Φ𝐶𝐴 (where 𝑝𝑖 ∈ 𝐴 and 𝐶𝐴 is A’s CM)

else

Φ𝐴1 = Φ𝐴1 +Φ𝐴

Φ𝐴2 = Φ𝐴2 +Φ𝐴

Φ𝐴3 = Φ𝐴3 +Φ𝐴

Φ𝐴4 = Φ𝐴4 +Φ𝐴

//A1-A4 are children of A

Cost?

20Nikhil Hegde

Total Cost (steps 0’ + 1 + 2’ + 3)

O(N) + O (N) + O(N) + O(N)

Problem: low accuracy if source (A) and target (B) are not far

away from each other

Solution: more accurate representations for 𝑚𝐵 and

Φ 𝑥𝐶𝐴, 𝑦𝐶𝐴

21Nikhil Hegde

Multipole expansion

• Like a Taylor series expansion that is accurate when 𝑥2 +
𝑦2 is large (𝑥, 𝑦 are cartesian coordinates of the point)

• For a quadtree box B centered at 𝑥𝐶𝐵, 𝑦𝐶𝐵 , we compute

and store the terms:

22Nikhil Hegde

B

CB 𝑥𝐶𝐵, 𝑦𝐶𝐵

{𝒎𝑩, 𝜶𝟏, 𝜶𝟐, . . . , 𝜶𝒑, 𝒛𝑪𝑩}

𝛼𝑗 =෍

𝑖=1

𝑁𝐵

𝑚𝑖

𝑧𝑖
𝑗

𝑗

𝑧𝑖means 𝑧𝑖 = |(𝑥𝑖 , 𝑦𝑖)|

Multipole expansion

• We approximate the potential at point z due to B by:

• Because is used to compute

potential outside B, it is called outer expansion
23Nikhil Hegde

Φ 𝑥𝑧, 𝑦𝑧 = 𝑚𝐵 log 𝑧 − 𝐶𝐵 +
𝛼1

𝑧 − 𝐶𝐵
+

𝛼2
𝑧 − 𝐶𝐵

2
+

. . .
+
𝛼𝑝

𝑧 − 𝐶𝐵
𝑝

CB

z

B

{𝒎𝑩, 𝜶𝟏, 𝜶𝟐, . . . , 𝜶𝒑, 𝒛𝑪𝑩}

Multipole expansion

• Similarly, we have the inner expansion

for computing the potential inside the Box due to all other

points outside the box

• Computing outer expansions starts from leaf nodes and

proceeds upwards in the tree.

• Computing inner expansions starts from root node and

proceeds downwards in the tree.

24Nikhil Hegde

{𝑚𝐵, 𝛽1, 𝛽2, . . . , 𝛽𝑝, 𝑧𝐶𝐵}

3-Step Approximation (accurate)

25Nikhil Hegde

AB

CACB

𝑂(𝑝𝑁𝐵)

𝑂(𝑝2)

𝑂(𝑝𝑁𝐴)

FMM Algorithm

Nikhil Hegde 26

1. Build the quadtree containing all the points.
2. Traverse the quadtree from bottom to top,

computing Outer(n) for each square n in the
tree.

3. Traverse the quadtree from top to bottom,
computing Inner(n) for each square in the
tree.

4. For each leaf, add the contributions of
nearest neighbors and particles in the leaf
to Inner(n)

Multipole expansion

• How to obtain the expression for alpha, beta ?

• What is the value of p?

• How to compute alpha and beta?

• Further reading:

27Nikhil Hegde

https://people.eecs.berkeley.edu/~demmel/cs267/lecture27/lecture27.html

https://people.eecs.berkeley.edu/~demmel/cs267/lecture27/lecture27.html

Matrix Algebra and Efficient

Computation
• Pic source: the Parallel Computing Laboratory at U.C. Berkeley: A

Research Agenda Based on the Berkeley View (2008)

Nikhil Hegde 28
Seen earlier

Next..

Matrix Multiplication

• Why study?

– An important “kernel” in many linear algebra algorithms

– Most studied kernel in high performance computing

– Simple. Optimization ideas can be applied to other kernels

• Matrix representation

– Matrix is a 2D array of elements. Computer memory is inherently

linear

– C++ and Fortran allow for definition of 2D arrays. 2D arrays stored

row-wise in C++. Stored column-wise in Fortran. E.g.

// stores 10 arrays of 20 doubles each in C++

double** mat = new double[10][20];

29Nikhil Hegde

Storage Layout - Example

• Matrix (2D):A =

𝐴(0,0) 𝐴(0,1) 𝐴(0,2)
𝐴(1,0) 𝐴(1,1) 𝐴(1,2)
𝐴(2,0) 𝐴(2,1) 𝐴(2,2)

𝐴 𝑖, 𝑗 = 𝐴(𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛) refers to the matrix element in the ith row and the

jth column

• Row-wise (/Row-major) storage in memory:

• Column-wise (/Column-major) storage in memory:

• Generalizing data storage order for ND: last index changes

fastest in row-major. Last index changes slowest in col-major.

30Nikhil Hegde

𝐴(0,0) 𝐴(0,1) 𝐴(0,2) 𝐴(1,0) 𝐴(1,1) 𝐴(1,2) 𝐴(2,0) 𝐴(2,1) 𝐴(2,2)

𝐴(0,0) 𝐴(1,0) 𝐴(2,0) 𝐴(0,1) 𝐴(1,1) 𝐴(2,1) 𝐴(0,2) 𝐴(1,2) 𝐴(2,2)

Storage Layout - Exercise

• For a 3D array (tensor) assume 𝐴 𝑖, 𝑗, 𝑘 = 𝐴(𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛, 𝑑𝑒𝑝𝑡ℎ)

• What is the offset of 𝐴 1, 2, 1 ? as per row-major storage?

• What is the offset of 𝐴 1, 2, 1 ? as per col-major storage?

31Nikhil Hegde

𝐴(0,0,0) A(2,2,2). . .

Offset: 0 1 2 . . . 26

Storage Layout

• Layout format itself doesn’t influence efficiency (i.e. no

general answer to “is column-wise layout better than row-

wise?”)

• However, knowing the layout format is critical for good

performance

– Always traverse the data in the order in which it is laid out

How good performance?

32Nikhil Hegde

Nikhil Hegde 33

Source code: https://github.com/eliben/code-for-

blog/tree/master/2015/benchmark-row-col-major

Matvec execution time
(we used the source code as a

basic example to demonstrate row_major vs.

col_major storage.)

Matrix-Matrix Addition benchmarking

(Source code and further reading)

https://github.com/eliben/code-for-blog/tree/master/2015/benchmark-row-col-major
https://hegden.github.io/cs601/slides/week13_codesamples.zip
https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays

Matrix Multiplication

• Three fundamental ways to think of the algorithm

– Dot product

1 2
3 4

×
5 6
7 8

=
1.5 + 2.7 1.6 + 2.8
3.5 + 4.7 3.6 + 4.8

– Linear combination of left matrix

1 2
3 4

×
5 6
7 8

= 5
1
3
+ 7

2
4

6
1
3
+ 8

2
4

– Sum of outer products

1 2
3 4

×
5 6
7 8

=
1
3

5 6 +
2
4

7 8

34Nikhil Hegde

