CS601: Software Development for

Scientific Computing
Autumn 2021

Week13:
Hierarchical Methods (FMM) and Sparse Matrices

Nikhil Hegde

Course Progress..

* Last week
— Tree-based codes (hierarchical methods)

 Barnes-Hut
 Fast Multipole Method (FMM)

* This week
- FMM
— Sparse matrices and
— PA4 discussion

FMM Algorithm

. Build the quadtree containing all the points.
. Traverse the quadtree from bottom to top,
computing Outer(n) for each square n in the
tree.

. Traverse the quadtree from top to bottom,
computing Inner(n) for each square in the
tree.

. For each leaf, add the contributions of
nearest neighbors and particles in the leaf
to Inner(n)

what is Outer(n) and Inner(n) ?

Well Separated Regions

« Compute the influence of all particles in source region (B)
on every particle in target region (A)
(assumption: A and B are well-separated)

B

A

o % o o'.'
°

°

°

S ¢ > ¢

« At each point p; in A, compute potential:
O(x;,¥i) = Lpepmilog|p; — pj
i=1toN,, j=1toNg
 Cost: O(NyNg)

Well Separated Regions

« Compute the influence of all particles in source region (B)

on every particle in target region (A)

D(xp, Vp;) = 2p;epMilog|p; —pj| ,p;i € A

A

Ca

B
°
° °
.)
* »
) o
mp = z m{ O(x;,y;) = (D(xCA’yCA)
ijB
° >
Cg D (xc Ve) = mplog|Cy — Cpl

Applying the 3-step Approximation

* In N-body simulation every point serves as source as well
as target.

How to identify source and target (boxes A and B In
previous slide) i.e. well-separated regions?

Hierarchical decomposition

Hierarchical Decomposition

* Level-0 decomposition

* Level-1 decomposition

* Level-2 decomposition

Hierarchical Decomposition

N1 | N2 | N3
N4 | B | NS
N6 | N7 | N8

Well-separated from B

Can approximate the influence
of points in B on points in Ai s

What do we do about B’s influence on Ni s?

Hierarchical Decomposition

* Level-3 decomposition

'

2T N3

Influence of points in Bi s on those in Ai s

N4 B1B2| N 5 already computed at the previous level
B3(B4 (level-2)
N6 | N7 | N8

* Level-3 decomposition

Hierarchical Decomposition

nl

n2

n5

no6

n9

nl1l0

n3

n4

n’/

n8

nll

nl2

nil3

nl4

n27

nil5

nl6

B4

n26

nil7

nl8

n25

nl1l9

n20

n21

n22

n23

n24

Influence of points in Bi s on those in Ai s
already computed at the previous level
(level-2)

Well-separated from B4
Influence of B4’ s points on nx’s
points can be approximated

nx’ s constitute the interaction list for BA4.
What is the max size of interaction list? i.e. max

number of nx s that we can have for any Bi?

10

Hierarchical Decomposition

* Level-3 decomposition

Influence of points in Bi s on those in Ai s
already computed at the previous level
B4 (level-2)

Well-separated from B4

Influence of B4’ s points on nx’s
points can be approximated

What do we do about B4's influence on its neighbors

(white/unshaded boxes)?
11

Hierarchical Decomposition

* Level-4 decomposition

Any unshaded box outside can be the
target for computing the influence of points
in M@ (source)

12

1. Computing Potential for Well-
Separated Regions

1. for level L=2 to last level

2. for each Box B at level L

3. ilist = GetInteractionList(B)

4. for each well-separated box A in ilist
//Compute potential

5. potential = mglog|C, — Cg]
//Accumulate potential

6. ®(x¢,, vc,) +=potential

Cost?

13

1. Computing Potential for Well-
Separated Regions

. for level L=2 to last level
for each Box B at level L
ilist = GetInteractionList(B)
for each well-separated box A in ilList

B~ w N R

//Compute potential

5. potential = mglog|C, — Cpl
//Accumulate potential
6. ®(x¢,,yc,) +=potential

Prereqs: we need mg, C4, Cg details. (step 0)

14

2. Assigning Potential to Points

1. for each Box A at level L=0 to last level
2. ®, =P, +DPc, (Wherep; €A and (4 is A's CM)

Cost?

15

3. Assigning Potential to Points (last

level)
1. for each Box B at last level
2. q)pi = q)pi + ijENeighborS(B) mBlOg |pi o pjl (Where

p; € B)

Cost?

16

0. Computing Prereqs

1. for each Box B at level L=0 to last level
2. mp = ijEB m;

3. //similarly compute C;

Cost?

17

Total Cost (steps 0+ 1+ 2 + 3)
O(N log N) + O (N) + O(N log N) + O(N)

Can we do better?

18

0’. Computing Preregs

« Traverse the tree bottom up instead of top-down
for each Box B starting from last level to L=0
if B is a leaf box
mpg = ijEB m;
else
mp = Mg, +mg, +mg, +mg,
//B,-B, are children of B

Cost?

19

2'. Assigning Potential to Points

1. for each Box A at level L=0 to last level

2.

Cost?

if A 1s a leaf box

else

¢, =d, +D., (wherep, €A and (4 is A's CM)

Dy =Dy, + Dy
Dy, =Dy, + Dy
Dy, =Dy, + Dy
Dy, =Dy, + Dy
//A.-A, are children of A

20

Total Cost (steps 0" + 1 + 2" + 3)
O(N) + O (N) + O(N) + O(N)

Problem: low accuracy if source (A) and target (B) are not far
away from each other

Solution: more accurate representations for mgz and
(b(xCA’yCA)

21

Multipole expansion

 Like a Taylor series expansion that is accurate when x? +
y? is large (x,y are cartesian coordinates of the point)

* For a quadtree box B centered at (ch,ycB), we compute
and store the terms. oq, a,, s, ..., ay Zcg)

B
o %o Np j
o o Zi
° . @ = /) mg T
o o =1

zimeans|z;| = |(x;, ¥;)|

22

Multipole expansion

« We approximate the potential at point z due to B by:

CD(XZ: YZ) = Mp lOg(Z — CB) +
B a1 +

o z—Cp

o z a>

Cs (z — Cp)? T

I
Xp

(z—Cg)P
« Because {mp,ay,Q;,...,a,,Zc,} is used to compute
potential outside B, it is called outer expansion

23

Multipole expansion

 Similarly, we have the inner expansion {mg, 1, B2,---,Bp, Zc}

for computing the potential inside the Box due to all other
points outside the box

« Computing outer expansions starts from leaf nodes and
proceeds upwards in the tree.

« Computing inner expansions starts from root node and
proceeds downwards in the tree.

24

0(p%)

3-Step Approximation (accurate)

25

FMM Algorithm

. Build the quadtree containing all the points.
. Traverse the quadtree from bottom to top,
computing Outer(n) for each square n in the
tree.

. Traverse the quadtree from top to bottom,
computing Inner(n) for each square in the
tree.

. For each leaf, add the contributions of
nearest neighbors and particles in the leaf
to Inner(n)

26

Multipole expansion

 How to obtain the expression for alpha, beta ?
 What is the value of p?
 How to compute alpha and beta?

* Further reading:
https://people.eecs.berkeley.edu/~demmel/cs267/lecture27/lecture27.html

27

https://people.eecs.berkeley.edu/~demmel/cs267/lecture27/lecture27.html

Matrix Algebra and Efficient
Computation

 Pic source: the Parallel Computing Laboratory at U.C. Berkeley: A
Research Agenda Based on the Berkeley View (2008)

g 0 = ‘f._) 2 | :-_J' 0 = 5
= .2 5 2 o = .2 3
5z 8 £ 2 S EmaP2z28E 2
3528 2 [ECSESEEE S
Motif =Y T = Motif a - > v T =
1 Finite State Mach. 9 N-Body
2 Combinational 10 MapReduce .

11 Backtrack/B&B
12 Graphical Models
13 Unstructured Grid
o0 Sparse Matrix | Temperature Chart of Need |DB = database

7 Spectral (FFT) Hot | Warm | Med | Cool ML = machine learning
8 Dynamic Prog HPC = High Perf. Comp.

Figure 4. Temperature Chart of the 13 Motifs. It shows their importance to each of the original
six application areas and then how important each one 1s to the five compelling applications of
Section 3.1. More details on the motifs can be found i (Asanovic, Bodik et al. 2006).

3 Graph Traversal
4 Structured Grid

r------

5 Dense Matrix
I Sparse Matrix ||

-)
-ISeen earlier

i Next.. *8

Matrix Multiplication

« Why study?
— An important “kernel” in many linear algebra algorithms
— Most studied kernel in high performance computing
— Simple. Optimization ideas can be applied to other kernels

« Matrix representation

— Matrix is a 2D array of elements. Computer memory is inherently
linear

— C++ and Fortran allow for definition of 2D arrays. 2D arrays stored
row-wise in C++. Stored column-wise in Fortran. E.g.
// stores 10 arrays of 20 doubles each in C++

double** mat = new double[10][20];

29

Storage Layout - Example

A(0,0) A(0,1) A(0,2)]
« Matrix (2D):A = |A(1,0) A(1,1) A(1,2)
A(2,0) A(2,1) A(2,2)]
A(i,j) = A(row, column) refers to the matrix element in the it" row and the
jh column

 Row-wise (/Row-major) storage in memory:

A(0,0)| A(0,1)| A(0,2)| A(1,0)] A(1,1)| A(1,2)| A(2,0)| A(2,1)| A(2,2)
« Column-wise (/Column-major) storage in memory:
A(0,0)| A(1,0)| A(2,0)[A(0,1)] A(1,1)| A(2,1)| A(0,2)| A(1,2)| A(2,2)

 Generalizing data storage order for ND: last index changes
fastest in row-major. Last index changes slowest in col-major.

30

Storage Layout - Exercise

« For a 3D array (tensor) assume A(, j, k) = A(row, column, depth)

A(0,0,0) ... L . A(2,2,2)
Offset; 0O 1 2 . 26

« What is the offset of A(1,2,1) ? as per row-major storage?
« What is the offset of A(1,2,1) ? as per col-major storage?

31

Storage Layout

« Layout format itself doesn'’t influence efficiency (i.e. no
general answer to “is column-wise layout better than row-
wise?”)

 However, knowing the layout format is critical for good
performance

— Always traverse the data in the order in which it is laid out

How good performance?

32

-
Run on (12 X 2592.01 MHz CPU s)

CPU Caches:
L1 Data 32 KiB (x6) Source code:
L1 Instruction 32 KiB (x6)
L2 Unified 256 KiB (x6)
L3 Unified 12288 KiB (x1)
Load Average: 0.07, 0.02, 0.07

Benchmark Time CPU Iterations UserCounters...

693 ns 693 ns items_per_ second=5.91004G/s

2464 ns 2464 ns items per second=6.64813G/s

11134 ns 11133 ns items per second=5.88639G/s

44353 ns 44353 ns items per second=5.91041G/s

3270 ns 3270 ns items per_second=1.25254G/s

39741 ns 39741 ns items per second=412.272M/s

314880 ns 314878 ns items per second=208.132M/s

1276733 ns 1276723 ns items per second=205.326M/s

des/week13 codesamples$./a.out 4096
Rowwise time n=4096 (us): 18967
Colwise time n=4096 (us): 158608
nikhilh@ndhpc@l:/mnt/c/temp/Nikhil/Co
des/week13 codesamples$./a.out 2048

Matrix-Matrix Addition benchmarking
(Source code and further reading)

Rowwise time n=2048 (us): 4860 _ _
Colwise time n=2048 (us): 32158 <: Matvec execution time
nikhilh@ndhpc@l:/mnt/c/temp/Nikhil/Co (we used the source code as a

des/week13 codesamples$./a.out 1024 basic example to demonstrate row_major vs.

Rowwise time n=1024 (us): 1125 col_major storage.) 2

Colwise time n=1024 (us): 19860

https://github.com/eliben/code-for-blog/tree/master/2015/benchmark-row-col-major
https://hegden.github.io/cs601/slides/week13_codesamples.zip
https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays

Matrix Multiplication

« Three fundamental ways to think of the algorithm

— Dot product

[1 2 % [5 6] _[15+27 1.6+28
3 4 7 8 35+47 3.6+4.8

— Linear combination of left matrix

5 x5 gl=[sll+ 7] olsl+elg]

— Sum of outer products

53X gl=lls e+ [s

34

