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Course Progress..

* Last week
— Tree-based codes (hierarchical methods)

 Barnes-Hut
 Fast Multipole Method (FMM)

* This week
- FMM
— Sparse matrices and
— PA4 discussion



FMM Algorithm

. Build the quadtree containing all the points.
. Traverse the quadtree from bottom to top,
computing Outer(n) for each square n in the
tree.

. Traverse the quadtree from top to bottom,
computing Inner(n) for each square in the
tree.

. For each leaf, add the contributions of
nearest neighbors and particles in the leaf
to Inner(n)

what is Outer(n) and Inner(n) ?



Well Separated Regions

« Compute the influence of all particles in source region (B)
on every particle in target region (A)
(assumption: A and B are well-separated)
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« At each point p; in A, compute potential:
O(x;,¥i) = Lpepmilog|p; — pj
i=1toN,, j=1toNg
 Cost: O(NyNg)



Well Separated Regions

« Compute the influence of all particles in source region (B)

on every particle in target region (A)

D(xp, Vp;) = 2p;epMilog|p; —pj| ,p;i € A
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Applying the 3-step Approximation

* In N-body simulation every point serves as source as well
as target.

How to identify source and target (boxes A and B In
previous slide) i.e. well-separated regions?

Hierarchical decomposition



Hierarchical Decomposition

* Level-0 decomposition

* Level-1 decomposition




* Level-2 decomposition

Hierarchical Decomposition

N1 | N2 | N3
N4 | B | NS
N6 | N7 | N8

Well-separated from B

Can approximate the influence
of points in B on points in Ai s

What do we do about B’s influence on Ni s?



Hierarchical Decomposition

* Level-3 decomposition

'

2T N3

Influence of points in Bi s on those in Ai s

N4 B1B2| N 5 already computed at the previous level
B3(B4 (level-2)
N6 | N7 | N8




* Level-3 decomposition

Hierarchical Decomposition
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Influence of points in Bi s on those in Ai s
already computed at the previous level
(level-2)

Well-separated from B4
Influence of B4’ s points on nx’s
points can be approximated

nx’ s constitute the interaction list for BA4.
What is the max size of interaction list? i.e. max

number of nx s that we can have for any Bi?
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Hierarchical Decomposition

* Level-3 decomposition

Influence of points in Bi s on those in Ai s
already computed at the previous level
B4 (level-2)

Well-separated from B4

Influence of B4’ s points on nx’s
points can be approximated

What do we do about B4's influence on its neighbors

(white/unshaded boxes)?
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Hierarchical Decomposition

* Level-4 decomposition

Any unshaded box outside can be the
target for computing the influence of points
in M@ (source)
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1. Computing Potential for Well-
Separated Regions

1. for level L=2 to last level

2. for each Box B at level L

3. ilist = GetInteractionList(B)

4. for each well-separated box A in ilist
//Compute potential

5. potential = mglog|C, — Cg]
//Accumulate potential

6. ®(x¢,, vc,) +=potential

Cost?
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1. Computing Potential for Well-
Separated Regions

. for level L=2 to last level
for each Box B at level L
ilist = GetInteractionList(B)
for each well-separated box A in ilList

B~ w N R

//Compute potential

5. potential = mglog|C, — Cpl
//Accumulate potential
6. ®(x¢,,yc,) +=potential

Prereqs: we need mg, C4, Cg details. (step 0)
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2. Assigning Potential to Points

1. for each Box A at level L=0 to last level
2. ®, =P, +DPc, (Wherep; €A and (4 is A's CM)

Cost?
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3. Assigning Potential to Points (last

level)
1. for each Box B at last level
2. q)pi = q)pi + ijENeighborS(B) mBlOg |pi o pjl (Where

p; € B)

Cost?
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0. Computing Prereqs

1. for each Box B at level L=0 to last level
2. mp = ijEB m;

3. //similarly compute C;

Cost?
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Total Cost (steps 0+ 1+ 2 + 3)
O(N log N) + O (N) + O(N log N) + O(N)

Can we do better?
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0’. Computing Preregs

« Traverse the tree bottom up instead of top-down
for each Box B starting from last level to L=0
if B is a leaf box
mpg = ijEB m;
else
mp = Mg, +mg, +mg, +mg,
//B,-B, are children of B

Cost?
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2'. Assigning Potential to Points

1. for each Box A at level L=0 to last level

2.

Cost?

if A 1s a leaf box

else

¢, =d, +D., (wherep, €A and (4 is A's CM)

Dy =Dy, + Dy
Dy, =Dy, + Dy
Dy, =Dy, + Dy
Dy, =Dy, + Dy
//A.-A, are children of A
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Total Cost (steps 0" + 1 + 2" + 3)
O(N) + O (N) + O(N) + O(N)

Problem: low accuracy if source (A) and target (B) are not far
away from each other

Solution: more accurate representations for mgz and
(b(xCA’yCA)
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Multipole expansion

 Like a Taylor series expansion that is accurate when x? +
y? is large (x,y are cartesian coordinates of the point)

* For a quadtree box B centered at (ch,ycB), we compute
and store the terms.  oq, a,, s, ..., ay Zcg)

B
o %o Np j
o o Zi
° . @ = /) mg T
o o =1

zimeans|z;| = |(x;, ¥;)|
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Multipole expansion

« We approximate the potential at point z due to B by:

CD(XZ: YZ) = Mp lOg(Z — CB) +
B a1 +

o z—Cp

o z a>

Cs (z — Cp)? T

_I_
Xp

(z—Cg)P
« Because {mp,ay,Q;,...,a,,Zc,} is used to compute
potential outside B, it is called outer expansion
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Multipole expansion

 Similarly, we have the inner expansion {mg, 1, B2,---,Bp, Zc}

for computing the potential inside the Box due to all other
points outside the box

« Computing outer expansions starts from leaf nodes and
proceeds upwards in the tree.

« Computing inner expansions starts from root node and
proceeds downwards in the tree.
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0(p%)

3-Step Approximation (accurate)
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FMM Algorithm

. Build the quadtree containing all the points.
. Traverse the quadtree from bottom to top,
computing Outer(n) for each square n in the
tree.

. Traverse the quadtree from top to bottom,
computing Inner(n) for each square in the
tree.

. For each leaf, add the contributions of
nearest neighbors and particles in the leaf
to Inner(n)
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Multipole expansion

 How to obtain the expression for alpha, beta ?
 What is the value of p?
 How to compute alpha and beta?

* Further reading:
https://people.eecs.berkeley.edu/~demmel/cs267/lecture27/lecture27.html
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https://people.eecs.berkeley.edu/~demmel/cs267/lecture27/lecture27.html

Matrix Algebra and Efficient
Computation

 Pic source: the Parallel Computing Laboratory at U.C. Berkeley: A
Research Agenda Based on the Berkeley View (2008)
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Section 3.1. More details on the motifs can be found i (Asanovic, Bodik et al. 2006).
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Matrix Multiplication

« Why study?
— An important “kernel” in many linear algebra algorithms
— Most studied kernel in high performance computing
— Simple. Optimization ideas can be applied to other kernels

« Matrix representation

— Matrix is a 2D array of elements. Computer memory is inherently
linear

— C++ and Fortran allow for definition of 2D arrays. 2D arrays stored
row-wise in C++. Stored column-wise in Fortran. E.g.
// stores 10 arrays of 20 doubles each in C++

double** mat = new double[10][20];
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Storage Layout - Example

A(0,0) A(0,1) A(0,2)]
« Matrix (2D):A = |A(1,0) A(1,1) A(1,2)
A(2,0) A(2,1) A(2,2)]
A(i,j) = A(row, column) refers to the matrix element in the it" row and the
jh column

 Row-wise (/Row-major) storage in memory:

A(0,0)| A(0,1)| A(0,2)| A(1,0)] A(1,1)| A(1,2)| A(2,0)| A(2,1)| A(2,2)
« Column-wise (/Column-major) storage in memory:
A(0,0)| A(1,0)| A(2,0)[ A(0,1)] A(1,1)| A(2,1)| A(0,2)| A(1,2)| A(2,2)

 Generalizing data storage order for ND: last index changes
fastest in row-major. Last index changes slowest in col-major.
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Storage Layout - Exercise

« For a 3D array (tensor) assume A(, j, k) = A(row, column, depth)

A(0,0,0) ... L . A(2,2,2)
Offset; 0O 1 2 . 26

« What is the offset of A(1,2,1) ? as per row-major storage?
« What is the offset of A(1,2,1) ? as per col-major storage?
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Storage Layout

« Layout format itself doesn'’t influence efficiency (i.e. no
general answer to “is column-wise layout better than row-
wise?” )

 However, knowing the layout format is critical for good
performance

— Always traverse the data in the order in which it is laid out

How good performance?
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-
Run on (12 X 2592.01 MHz CPU s)

CPU Caches:
L1 Data 32 KiB (x6) Source code:
L1 Instruction 32 KiB (x6)
L2 Unified 256 KiB (x6)
L3 Unified 12288 KiB (x1)
Load Average: 0.07, 0.02, 0.07

Benchmark Time CPU Iterations UserCounters...

693 ns 693 ns items_per_ second=5.91004G/s

2464 ns 2464 ns items per second=6.64813G/s

11134 ns 11133 ns items per second=5.88639G/s

44353 ns 44353 ns items per second=5.91041G/s

3270 ns 3270 ns items per_second=1.25254G/s

39741 ns 39741 ns items per second=412.272M/s

314880 ns 314878 ns items per second=208.132M/s

1276733 ns 1276723 ns items per second=205.326M/s

des/week13 codesamples$ ./a.out 4096
Rowwise time n=4096 (us): 18967
Colwise time n=4096 (us): 158608
nikhilh@ndhpc@l:/mnt/c/temp/Nikhil/Co
des/week13 codesamples$ ./a.out 2048

Matrix-Matrix Addition benchmarking
(Source code and further reading )

Rowwise time n=2048 (us): 4860 _ _
Colwise time n=2048 (us): 32158 <: Matvec execution time
nikhilh@ndhpc@l:/mnt/c/temp/Nikhil/Co (we used the source code as a

des/week13 codesamples$ ./a.out 1024 basic example to demonstrate row_major vs.

Rowwise time n=1024 (us): 1125 col_major storage.) 2

Colwise time n=1024 (us): 19860



https://github.com/eliben/code-for-blog/tree/master/2015/benchmark-row-col-major
https://hegden.github.io/cs601/slides/week13_codesamples.zip
https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays

Matrix Multiplication

« Three fundamental ways to think of the algorithm

— Dot product

[1 2 % [5 6] _[15+27 1.6+28
3 4 7 8 35+47 3.6+4.8

— Linear combination of left matrix

5 x5 gl=[sll+ 7] olsl+elg]

— Sum of outer products

53X gl=lls e+ [ s

34



