CS601: Software Development for Scientific Computing Autumn 2021

Week12:

N-Body problems and Hierarchical Methods

Nikhil Hegde

Course Progress..

- Particle (Simulation) Methods / N-Body Problems
	- PP, PM, P3M.
	- Hierarchical Methods
		- Tree-based codes
			- Preliminaries Metric Trees
			- Quad Trees
- Applications:
	- Fluid Dynamics, Electromagnetics, Molecular Dynamics, Statistics, Astrophysics etc.

Quad Tree

- Data structure to subdivide the plane
	- Nodes can contain coordinates of center of box, side length.
	- Eventually also coordinates of CM, total mass, etc.
- In a complete quad tree, each non-leaf node has 4 children

A Complete Ouadtree with 4 Levels

Slide courtesy: CS267 Lecture 24, <https://sites.google.com/lbl.gov/cs267-spr2019/>

Using Quad Tree and Octree

- 1. Begin by constructing a tree to hold all the particles
	- Interesting cases have nonuniformly distributed particles
	- In a complete tree most nodes would be empty, a waste of space and time
	- Adaptive Quad (Oct) Tree only subdivides space where particles are located
- 2. For each particle, traverse the tree to compute force on it

Adaptive Quad Tree

- In practice, #particles/square > 1. tuning parameter
- Child nodes numbered as per *Z-order numbering*

Adaptive Quad Tree Construction

Procedure Quad_Tree_Build Quad_Tree = {emtpy}

for j = 1 to N … loop over all N particles

Quad_Tree_Insert(j, root) … insert particle j in QuadTree

endfor

- **… At this point, each leaf of Quad_Tree will have 0 or 1 particles**
- **… There will be 0 particles when some sibling has 1**

Traverse the Quad_Tree eliminating empty leaves … via, say Breadth First Search

Procedure Quad_Tree_Insert(j, n) … Try to insert particle j at node n in Quad_Tree if n an internal node … n has 4 children

- **- determine which child c of node n contains particle j**
- **- Quad_Tree_Insert(j, c)**

else if n contains 1 particle … n is a leaf

- **- add n**'**s 4 children to the Quad_Tree**
- **- move the particle already in n into the child containing it**
- **- let c be the child of n containing j**
- **- Quad_Tree_Insert(j, c)**

else … n empty

```
- store particle j in node n
```
Nikhia Hegde

Slide courtesy: CS267 Lecture 24, <https://sites.google.com/lbl.gov/cs267-spr2019/>

Adaptive Quad Tree Construction – Cost?

- **… At this point, each leaf of Quad_Tree will have 0 or 1 particles**
- **… There will be 0 particles when some sibling has 1**

Traverse the Quad_Tree eliminating empty leaves … via, say Breadth First Search

Slide courtesy: CS267 Lecture 24, <https://sites.google.com/lbl.gov/cs267-spr2019/>

Adaptive Quad Tree Construction – Cost?

- Max Depth of Tree:
	- For uniformly distributed points?
	- For arbitrarily distributed points?
- Total Cost $= ?$

Adaptive Quad Tree Construction – Cost?

- Max Depth of Tree:
	- For uniformly distributed points? $=$ O(log N)
	- For arbitrarily distributed points? = $O(bN)$
		- b is number bits used to represent the coordinates
- Total Cost = $O($ b N) or $O(N * log N)$

Barnes-Hut

- Simplest hierarchical method for N-Body simulation
	- "A Hierarchical O(n log n) force calculation algorithm" by J. Barnes and P. Hut, Nature, v. 324, December 1986
- Widely used in astrophysics
- Accuracy $\geq 1\%$ (good when low accuracy is desired/acceptable. Often the case in astrophysics simulations.)

Barnes-Hut: Algorithm

(2D for simplicity)

- 1) Build the QuadTree using QuadTreeBuild \ldots already described, cost = O(N log N) or O(b N)
- 2) For each node/subsquare in the QuadTree, compute the Center of Mass (CM) and total mass (TM) of all the particles it contains.
- 3) For each particle, traverse the QuadTree to compute the force on it,

Barnes-Hut: Algorithm (step 2)

Goal: Compute the Center of Mass (CM) and Total Mass (TM) of all the particles in each node of the QuadTree. (TM, CM) = Compute_Mass(root)

```
12
(TM, CM) = Compute Mass(n) //compute the CM and TM of node n
  if n contains 1 particle
       //TM and CM are identical to the particle's mass and location
       store (TM, CM) at n
       return (TM, CM)
 else
    for each child c(j) of n //j = 1, 2, 3, 4(M(j), CM(j)) = Compute_Mass(c(j))endfor
    TM = TM(1) + TM(2) + TM(3) + TM(4)//the total mass is the sum of the children's masses
    CM = (TM(1)*CM(1) + TM(2)*CM(2) + TM(3)*CM(3) + TM(4)*CM(4)) / TM
    //the CM is the mass-weighted sum of the children's centers of mass
     store ( TM, CM ) at n
     return ( TM, CM )
 end if
```
Slide based on : CS267 Lecture 24, <https://sites.google.com/lbl.gov/cs267-spr2019/>

Barnes-Hut: Algorithm (step 2 cost)

(2D for simplicity)

- 1) Build the QuadTree using QuadTreeBuild \ldots already described, cost = O(N log N) or O(b N)
- 2) For each node/subsquare in the QuadTree, compute the Center of Mass (CM) and total mass (TM) of all the particles it contains. \ldots cost = O(number of nodes in the tree) = O(N log N) or O(b N)
- 3) For each particle, traverse the QuadTree to compute the force on it,

Barnes-Hut: Algorithm (step 3)

Goal: Compute the force on each particle by traversing the tree. For each particle, use as few nodes as possible to compute force, subject to accuracy constraint.

- For each node = square, can approximate force on particles outside the node due to particles inside node by using the node's CM and TM
- This will be accurate enough if the node if "far away enough" from the particle
- Need criterion to decide if a node is far enough from a particle
	- **D = side length of node**
	- **r = distance from particle to CM of node**
	- θ = user supplied error tolerance < 1
	- Use CM and TM to approximate force of node on box if $D/r < \theta$

 $x =$ location of center of mass

Slide based on : CS267 Lecture 24, <https://sites.google.com/lbl.gov/cs267-spr2019/>

Barnes-Hut: Algorithm (step 3)

//for each particle, traverse the QuadTree to compute the force on it **for** $k = 1$ **to** N

 $f(k)$ = TreeForce(k , root)

//compute force on particle k due to all particles inside root (except k) **endfor**

function f = TreeForce(k, n)

//compute force on particle k due to all particles inside node n (except k) $f = 0$

if n contains one particle (not k) //evaluate directly **return** f = force computed using direct formula

else

```
r = distance from particle k to CM of particles in n
```
 $D = size of n$

if D/r < q //ok to approximate by CM and TM **return** f = computed approximately using CM and TM

```
else //need to look inside node
```

```
for each child c(j) of n //j=1,2,3,4
```

```
f = f + TreeForce ( k, c(j) )
```
end for return f

end if

Slide based on : CS267 Lecture 24, <https://sites.google.com/lbl.gov/cs267-spr2019/> **end if**

Nikhil Hegde 20

Barnes-Hut: Algorithm (step 3 cost)

- **Correctness** follows from recursive accumulation of force from each subtree
	- Each particle is accounted for exactly once, whether it is in a leaf or other node
- **Complexity** analysis
	- **Cost of TreeForce(k, root) = O(depth of leaf containing k in the QuadTree)**
	- Proof by Example (for $\theta > 1$):
	- For each undivided node = square, (except one containing k), $D/r < 1 < \theta$
	- There are at most 3 undivided nodes at each level of the QuadTree.
		- –There is O(1) work per node
		- $-Cost = O(level of k)$

Total cost = $O(\Sigma_k$ level of k) = $O(N \log N)$

Strongly depends on θ

Sample Barnes-Hut Force calculation For particle in lower right corner Assuming theta > 1

Slide based on : CS267 Lecture 24, <https://sites.google.com/lbl.gov/cs267-spr2019/>

Barnes-Hut: Algorithm (step 3 cost)

(2D for simplicity)

- 1) Build the QuadTree using QuadTreeBuild \ldots already described, cost = O(N log N) or O(b N)
- 2) For each node/subsquare in the QuadTree, compute the Center of Mass (CM) and total mass (TM) of all the particles it contains. \ldots cost = O(number of nodes in the tree) = O(N log N) or O(b N)
- 3) For each particle, traverse the QuadTree to compute the force on it, ... cost depends on accuracy desired (θ) but still O(N log N) or O(bN)

Slide courtesy: CS267 Lecture 24, <https://sites.google.com/lbl.gov/cs267-spr2019/>

N-Body Simulation: Big Picture

• Recall:

 $t=0$ while(t<t^{final}) { //initialize forces

```
//Accumulate forces
      BH(steps 1 to 3)
```
//Integrate equations of motion

```
//Update time counter
       t = t + \Delta t}
```
Fast Multipole Method (FMM)

- Can we make the complexity independent of the accuracy parameter (θ) ? FMM achieves this.
	- "Rapid Solution of Integral Equations of Classical Potential Theory", V. Rokhlin, J. Comp. Phys. v. 60, 1985 and
	- **"A Fast Algorithm for Particle Simulations",** L. Greengard and V. Rokhlin, J. Comp. Phys. v. 73, 1987.
- Similar to BH:
	- uses QuadTree and the divide-conquer paradigm
- Different from BH:
	- Uses more than TM and CM information in a box. So, computation is expensive and accurate than BH.
	- The number of boxes evaluated is fixed for a given accuracy parameter
	- Computes potential and not the Force as in BH

Background: Potential

• Force on a particle at (x, y, z) due to a particle at origin

 \propto $$ x,y,z $\frac{37.27}{r^3}$ (This is called inverse-square law. Gravitational and electrostatic forces obey this.) where, $r = \sqrt{x^2 + y^2 + z^2}$

• Force is a vector. Potential is a scalar. Hence, potential is simple to deal with.

Potential $\Phi(x, y, z) = -\frac{1}{x}$ \boldsymbol{r}

Negative of the gradient of potential $=$ force

$$
-\nabla \Phi(x, y, z) = -\left(\frac{d}{dx}\left(-\frac{1}{r}\right), \frac{d}{dy}\left(-\frac{1}{r}\right), \frac{d}{dz}\left(-\frac{1}{r}\right)\right)
$$

Background: Potential

- In 2D, potential $\Phi(x, y) = \log r$
- Suppose we have N points (at $z_1, z_2, ..., z_N$, where $z_i =$ (x_i, y_i)) in a plane with masses $m_1, m_2, ..., m_N$ resp.

then, their potential at
$$
z = (x, y)
$$
 is given by:
\n
$$
\Phi(x, y) = \sum_{i=1}^{N} m_i \log \left(\sqrt{(x - x_i)^2 + (y - y_i)^2} \right)
$$

Goal: evaluate $\Phi(x, y)$ *and its derivatives at N points* $(z_1, z_2, ..., z_N)$ in $O(N)$ time.

FMM Algorithm

- 1. Build the quadtree containing all the points.
- 2. Traverse the quadtree from bottom to top, computing Outer(n) for each square n in the tree.
- 3. Traverse the quadtree from top to bottom, computing Inner(n) for each square in the tree.
- 4. For each leaf, add the contributions of nearest neighbors and particles in the leaf to Inner(n)

what is Outer(n) and Inner(n) ?

Well Separated Regions

• Compute the influence of all particles in source region (B) on every particle in target region (A)

(assumption: A and B are well-separated)

• At each point p_i in A, compute potential:

$$
\Phi(x_i, y_i) = \sum_{p_j \in B} m_i \log |p_i - p_j|
$$

$$
i = 1 \text{ to } N_A, \qquad j = 1 \text{ to } N_B
$$

Cost: $O(N_A N_B)$

Nikhil Hegde 28

Well Separated Regions

• Approximate the potential at every particle in target region (A) by the potential at C_{A} \overline{B} \overline{A}

Cost: $O(N_A+N_B)$

Nikhil Hegde 29

Hierarchical Decomposition

- In N-body simulation, every point serves as source as well as target. *How to identify source, target, well-separated regions?*
	- Partition the space recursively till every leaf box contains O(1) number of points