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Course Progress..

• Last topic - Computation on unstructured grids 

– Finite Element Method (FEM)

• Coming Next

– Particle (Simulation) Methods

– Tree-based codes
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Course Progress..

• Pic source: the Parallel Computing Laboratory at U.C. Berkeley: A 

Research Agenda Based on the Berkeley View (2008)
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Seen earlier

Next..



Particle (Simulation) Methods

• N-Body Simulation – Problem

System of N-bodies (e.g. galaxies, stars, atoms, light rays 

etc.) interacting with each other continuously

– Problem:

• Compute force acting on a body due to all other bodies in the 

system 

• Determine position, velocity, at various times for each body

– Objective:

• Determine the (approximate) evolution of a system of bodies 

interacting with each other simultaneously
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Particle (Simulation) Methods

• N-Body Simulation - Examples

– Astrophysical simulation: E.g. each body is a 

star/galaxy 

https://commons.wikimedia.org/w/index.php?title=File

%3AGalaxy_collision.ogv

– Graphics: E.g. each body is a ray of light emanating 

from the light source. 

https://www.fxguide.com/fxfeatured/brave-new-hair/

• Here each body is a point on a strand of hair 
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N-Body Simulation

• All-pairs Method

– Naïve approach. Compute all pair-wise interactions

• Hierarchical Methods

– Optimize. Reduce the number of pair-wise force 

calculations. How? dependence on ‘distant’ particle(s) 

can be compressed

– Examples:

• Barnes-Hut

• Fast Multipole Method
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N-Body Simulation

• Three fundamental simulation approaches
– Particle-Particle (PP)

– Particle-Mesh (PM)

– Particle-Particle-Particle-Mesh (P3M) 

• Hybrid approaches
– Nested Grid Particle Scheme

– Tree Codes

– Tree Code Particle Mesh (TPM)

• Self Consistent Field (SCF), Smoothed-Particle 

Hydrodynamics (SPH), Symplectic etc. 
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Particle-Particle method

• Simplest. Adopts an all-pairs approach.

• State of the system at time t given by particle 

positions xi(t) and velocity vi(t) for i=1 to N

{𝑥𝑖 𝑡 , 𝑣𝑖 𝑡 ; 𝑖 = 1, 𝑁}

– Steps:

1. Compute forces

2. Integrate equations of motion

3. Update time counter 

Each iteration updates xi(t) and vi(t) to compute 

xi(t+ Δt) and vi(t + Δt) 
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Particle-Particle Method

1. Compute forces

Typically: Fi = Fexternal + Fnearest_neighbor+ FN-Body
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//initialize forces
for i=1 to N 

Fi = 0

//Accumulate forces
for i=1 to N-1 

for j=i+1 to N 
Fi = Fi + Fij
Fj = Fj - Fij

Fij is the force on particle i due to particle j



Particle-Particle Method

2. Integrate equations of motion

3. Update time counter
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for i=1 to N

𝑣𝑖
𝑛𝑒𝑤 = 𝑣𝑖

𝑜𝑙𝑑 +
𝐹𝑖

𝑚𝑖
Δ𝑡 //using a=F/m and v=u+at

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖

𝑜𝑙𝑑 + 𝑣𝑖 Δ𝑡

𝑡𝑛𝑒𝑤 = 𝑡𝑜𝑙𝑑 + Δ𝑡



Particle-Particle Method
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t=0
while(t<tfinal) {
//initialize forces

for i=1 to N 
Fi = 0

//Accumulate forces
for i=1 to N-1 

for j=i+1 to N 
F[i] = F[i] + Fij
F[j] = F[j] - Fij

//Integrate equations of motion
for i=1 to N

𝑣𝑖
𝑛𝑒𝑤 = 𝑣𝑖

𝑜𝑙𝑑 +
𝐹𝑖

𝑚𝑖
Δ𝑡 //using a=F/m and v=u+at

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖

𝑜𝑙𝑑 + 𝑣𝑖 Δ𝑡
// Update time counter

t = t + Δ𝑡
}



Particle-Particle Method

• Costs (CPU operations)?
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t=0
while(t<tfinal) {
//initialize forces

for i=1 to N 
Fi = 0

//Accumulate forces
for i=1 to N-1 
for j=i+1 to N 
F[i] = F[i] + Fij
F[j] = F[j] - Fij

//Integrate equations of motion
for i=1 to N

𝑣𝑖
𝑛𝑒𝑤 = 𝑣𝑖

𝑜𝑙𝑑 +
𝐹𝑖

𝑚𝑖
Δ𝑡 //using a=F/m and v=u+at

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖

𝑜𝑙𝑑 + 𝑣𝑖 Δ𝑡
// Update time counter

t = t + Δ𝑡
}



Particle-Particle Method

• Experimental results (then):

– Intel Delta = 1992 supercomputer, 512 Intel i860s

– 17 million particles, 600 time steps, 24 hours elapsed time

M. Warren and J. Salmon

Gordon Bell Prize at Supercomputing 1992

– Sustained 5.2 Gigaflops = 44K Flops/particle/time step

– 1% accuracy

– Direct method (17 Flops/particle/time step) at 5.2 Gflops would have 

taken 18 years, 6570 times longer

13
Courtesy: CS267 Lecture 24 https://sites.google.com/lbl.gov/cs267-spr2019/
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Particle-Particle Method

• Experimental results (now):

Vortex particle simulation of turbulence

– Cluster of 256 NVIDIA GeForce 8800 GPUs

– 16.8 million particles

• T. Hamada, R. Yokota, K. Nitadori. T. Narumi, K. Yasoki et al

• Gordon Bell Prize for Price/Performance at Supercomputing 

2009

– Sustained 20 Teraflops,  or $8/Gigaflop
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Particle-Particle (PP) Method

• Discussion

– Simple/trivial to program

– High computational cost

• Useful when number of particles are small (few thousands) and

• We are interested in close-range dynamics when the particles in 

the range contribute significantly to forces 

• Constant time step must be replaced with variable time steps 

and numerical integration schemes for close-range interactions
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Particle-Mesh (PM) Method

• Now think of Force as a Field i.e. a quantity that is 

pervading all space rather than arising out of (and 

concentrated at) the particle.

• Steps (e.g. body of electrically charged particles):

1. Assign charge to mesh

2. Solve the Field Potential equation on the mesh 

∇2𝜙 = −𝜌/𝜖0

3. Compute forces from the mesh-defined potential and interpolate 

forces at particle positions 

4. Integrate forces to get particle positions and velocities

5. Update time counter
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What kind of PDE is involved?

Same as PP



Particle-Mesh (PM) Method

1. Assign charge to mesh

– Create a mesh of points for each particle. Assign 

“charge” to mesh points

• Many schemes exist. "Nearest-Grid-Point" (NGP) PM method 

assigns charge densities to mesh points. The charge densities 

are computed as: total amount of "charge" in the cell 

surrounding the mesh point, divided by the cell volume.

– Rarely used. Drawback: it gives forces that are 

discontinuous in value. 

• “Smoothness” is incorporated to ensure continuity of the 

derivatives.

– Computational Cost? Assume NGP.
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Particle-Mesh (PM) Method

2. Solve the Field Potential equation on the mesh

∇2𝜙 = −𝜌/𝜖0
𝜙 is electrostatic potential and 𝜌 is the charge density.

The Poisson’s equation is solved using finite difference 

approximations.

• Cost of solving the equation depends on ???
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Particle-Mesh (PM) Method

• Computational Costs?

– Cost for steps 1, 3, and 4: O(N)

– Cost for step 2: depends on number of mesh points

– Cost for step 5: constant
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Particle-Mesh (PM) Method

• Discussion

– PM is much faster than PP but less accurate

• Computation cost

𝛼𝑁 + 𝛽𝑁𝑚𝑒𝑠ℎ𝑝𝑜𝑖𝑛𝑡𝑠

• Source of errors: 

1) Replacing the charge with charge densities on the mesh 

2) Truncation error due to finite differences

3) Interpolation error,  

4) Integration error (when numerical integration schemes used)

– Unsuitable for “close-encounters”
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Exercise

• Assume 𝛼=20, 𝛽 = 𝑁3 log2𝑁
3 (for 𝑁 × 𝑁 × 𝑁 mesh)

Give an estimate of time taken by PP and PM 

methods for:

– Number of particles = 105

– Number of mesh points = 32

– ≈ 1𝜇𝑠 per pair-wise force calculation
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N-Body Simulation

• Three fundamental simulation approaches
– Particle-Particle (PP)

– Particle-Mesh (PM)

– Particle-Particle-Particle-Mesh (P3M) 

• Hybrid approaches
– Nested Grid Particle Scheme

– Tree Codes

– Tree Code Particle Mesh (TPM)

• Self Consistent Field (SCF), Smoothed-Particle 

Hydrodynamics (SPH), Symplectic etc. 
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Particle-Particle-Particle-Mesh (P3M) 

• Combine the advantages of PP and PM
– PP: 

• Can be used with smaller systems with long-range forces and

• Large systems with few near-neighbor/long-range forces

– PM:
• Fast but can only handle smoothly varying forces

• 𝐹𝑖 is split into 𝐹𝑖
𝑠ℎ𝑜𝑟𝑡𝑟𝑎𝑛𝑔𝑒

+ 𝐹𝑖
𝑚𝑒𝑠ℎ

– 𝐹𝑖
𝑠ℎ𝑜𝑟𝑡𝑟𝑎𝑛𝑔𝑒

, fast-varying force, calculation done using 

PP (assumption:𝐹𝑖
𝑠ℎ𝑜𝑟𝑡𝑟𝑎𝑛𝑔𝑒

is non-zero for only a few particles)

– 𝐹𝑖
𝑚𝑒𝑠ℎ, slow-varying force, calculation done using PM 

(assumption: 𝐹𝑖
𝑚𝑒𝑠ℎ is sufficiently smooth to be calculated over a 

mesh)
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N-Body Simulation

• All-pairs Method

– Naïve approach. Compute all pair-wise interactions

• Hierarchical Methods

– Optimize. Reduce the number of pair-wise force 

calculations. How? dependence on ‘distant’ particle(s) 

can be compressed

– Examples:

• Barnes-Hut

• Fast Multipole Method
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Tree Codes

Fi = Fexternal + Fnearest_neighbor+ FN-Body
• Fexternal can be computed for each body independently. O(N)

• Fnearest_neighbor involve computations corresponding to few 

nearest neighbors. O(N)

• FN-Body require all-to-all computations. Most expensive. O(N2) 

if computed using all-pairs approach. 

for(i = 1 to N)

𝐹𝑖 = σ𝑖≠𝑗 𝐹𝑖𝑗 Fij= force on i from j

Nikhil Hegde 25We can do better.

𝐹𝑖𝑗 =c*v/||v||3   in 3D, 𝐹𝑖𝑗 = c*v/||v||2   in 2D

v = vector from particle i to particle j , ||v|| = length 

of v, c = product of masses or charges 



Tree Codes: Divide-Conquer Approach

• Consider computing force on earth due to all celestial bodies

➢ Look at the night sky. Number of terms in σ𝑖≠𝑗 𝐹𝑖𝑗 is greater than the 

number of visible stars

➢ One “star” could really be the Andromeda galaxy, which contains 

billions of real stars. Seems like a lot more work than we thought … 

– Idea: Ok to approximate all stars in Andromeda by a single point at its 

center of mass (CM) with same total mass (TM)

– Require that D/r be “small enough” (D = size of box containing Andromeda , r 

= distance of CM to Earth).
26

Slide contents based on: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Nikhil HegdeIdea is not new. Newton approximated earth and falling apple by CM
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Tree Codes: Divide-Conquer Approach

– If you are in Andromeda, Milky Way 

(the galaxy we are part of) could 

appear like a white dot. So, can be 

approximated by a point mass.

– Within Andromeda, picture repeats 

itself
• As long as D1/r1 is small enough, 

stars inside smaller box can be 

replaced by their CM to compute 

the force on Vulcan

• If you are on Vulcan, another solar 

system in Andromeda can be a 

white dot. 

• Boxes nest in boxes recursively

27

Slide contents based on: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/
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• New idea: recursively divide the box.

https://sites.google.com/lbl.gov/cs267-spr2019/


Tree Codes: Divide-Conquer Approach
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• Data structures needed:

– Quad-trees

– Octrees



Background – metric trees

A

B

C

D

E
F

G

2-dimensional space of points

G

FEA C

B D

Binary kd-tree, 1 point /leaf cell

e.g. K-dimensional (kd-), Vantage Point (vp-), quad-trees, octrees, ball-

trees

X

Y

29Nikhil Hegde



G

30

Background - metric trees

Typical use: traverse the tree (often repeatedly), truncate 

the traversal at some intermediate node if a domain-

specific criteria is not met.

Cost ???

N21

E.g. Does the distance 

from CM to me < D/r?
Input points = {1, 2, … , N}   ℝK

Kd-tree

FEA C

B D
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• Data structure to subdivide the plane

– Nodes can contain coordinates of center of box, side 

length.

– Eventually also coordinates of CM, total mass, etc.

• In a complete quad tree, each non-leaf node has 4 children

31

Quad Tree

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/
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• Similar data structure for subdividing 3D space
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Octree or Oct Tree

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/
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• Begin by constructing a tree to hold all the 

particles

– Interesting cases have nonuniformly distributed particles

– In a complete tree most nodes would be empty, a waste 

of space and time

– Adaptive Quad (Oct) Tree only subdivides space where 

particles are located 

• For each particle, traverse the tree to compute 

force on it

33

Using Quad Tree and Octree

Slide contents based on: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/
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• In practice, have q>1 particles/square; tuning 

parameter (code to build data structure on hidden slide)
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Using Quad Tree and Octree

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Child nodes enumerated counterclockwise

from SW corner, empty ones excluded
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