
1

CS601: Software Development for

Scientific Computing
Autumn 2021

Week11:

Particle Methods, Tree-based codes

Nikhil Hegde

Course Progress..

• Last topic - Computation on unstructured grids

– Finite Element Method (FEM)

• Coming Next

– Particle (Simulation) Methods

– Tree-based codes

Nikhil Hegde 2

Course Progress..

• Pic source: the Parallel Computing Laboratory at U.C. Berkeley: A

Research Agenda Based on the Berkeley View (2008)

Nikhil Hegde 3

Seen earlier

Next..

Particle (Simulation) Methods

• N-Body Simulation – Problem

System of N-bodies (e.g. galaxies, stars, atoms, light rays

etc.) interacting with each other continuously

– Problem:

• Compute force acting on a body due to all other bodies in the

system

• Determine position, velocity, at various times for each body

– Objective:

• Determine the (approximate) evolution of a system of bodies

interacting with each other simultaneously

Nikhil Hegde 4

Particle (Simulation) Methods

• N-Body Simulation - Examples

– Astrophysical simulation: E.g. each body is a

star/galaxy

https://commons.wikimedia.org/w/index.php?title=File

%3AGalaxy_collision.ogv

– Graphics: E.g. each body is a ray of light emanating

from the light source.

https://www.fxguide.com/fxfeatured/brave-new-hair/

• Here each body is a point on a strand of hair

Nikhil Hegde 5

https://commons.wikimedia.org/w/index.php?title=File%3AGalaxy_collision.ogv
https://www.fxguide.com/fxfeatured/brave-new-hair/

N-Body Simulation

• All-pairs Method

– Naïve approach. Compute all pair-wise interactions

• Hierarchical Methods

– Optimize. Reduce the number of pair-wise force

calculations. How? dependence on ‘distant’ particle(s)

can be compressed

– Examples:

• Barnes-Hut

• Fast Multipole Method

Nikhil Hegde 6

N-Body Simulation

• Three fundamental simulation approaches
– Particle-Particle (PP)

– Particle-Mesh (PM)

– Particle-Particle-Particle-Mesh (P3M)

• Hybrid approaches
– Nested Grid Particle Scheme

– Tree Codes

– Tree Code Particle Mesh (TPM)

• Self Consistent Field (SCF), Smoothed-Particle

Hydrodynamics (SPH), Symplectic etc.
Nikhil Hegde 7

Particle-Particle method

• Simplest. Adopts an all-pairs approach.

• State of the system at time t given by particle

positions xi(t) and velocity vi(t) for i=1 to N

{𝑥𝑖 𝑡 , 𝑣𝑖 𝑡 ; 𝑖 = 1, 𝑁}

– Steps:

1. Compute forces

2. Integrate equations of motion

3. Update time counter

Each iteration updates xi(t) and vi(t) to compute

xi(t+ Δt) and vi(t + Δt)

Nikhil Hegde 8

Particle-Particle Method

1. Compute forces

Typically: Fi = Fexternal + Fnearest_neighbor+ FN-Body

Nikhil Hegde 9

//initialize forces
for i=1 to N

Fi = 0

//Accumulate forces
for i=1 to N-1

for j=i+1 to N
Fi = Fi + Fij
Fj = Fj - Fij

Fij is the force on particle i due to particle j

Particle-Particle Method

2. Integrate equations of motion

3. Update time counter

Nikhil Hegde 10

for i=1 to N

𝑣𝑖
𝑛𝑒𝑤 = 𝑣𝑖

𝑜𝑙𝑑 +
𝐹𝑖

𝑚𝑖
Δ𝑡 //using a=F/m and v=u+at

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖

𝑜𝑙𝑑 + 𝑣𝑖 Δ𝑡

𝑡𝑛𝑒𝑤 = 𝑡𝑜𝑙𝑑 + Δ𝑡

Particle-Particle Method

Nikhil Hegde 11

t=0
while(t<tfinal) {
//initialize forces

for i=1 to N
Fi = 0

//Accumulate forces
for i=1 to N-1

for j=i+1 to N
F[i] = F[i] + Fij
F[j] = F[j] - Fij

//Integrate equations of motion
for i=1 to N

𝑣𝑖
𝑛𝑒𝑤 = 𝑣𝑖

𝑜𝑙𝑑 +
𝐹𝑖

𝑚𝑖
Δ𝑡 //using a=F/m and v=u+at

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖

𝑜𝑙𝑑 + 𝑣𝑖 Δ𝑡
// Update time counter

t = t + Δ𝑡
}

Particle-Particle Method

• Costs (CPU operations)?

Nikhil Hegde 12

t=0
while(t<tfinal) {
//initialize forces

for i=1 to N
Fi = 0

//Accumulate forces
for i=1 to N-1
for j=i+1 to N
F[i] = F[i] + Fij
F[j] = F[j] - Fij

//Integrate equations of motion
for i=1 to N

𝑣𝑖
𝑛𝑒𝑤 = 𝑣𝑖

𝑜𝑙𝑑 +
𝐹𝑖

𝑚𝑖
Δ𝑡 //using a=F/m and v=u+at

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖

𝑜𝑙𝑑 + 𝑣𝑖 Δ𝑡
// Update time counter

t = t + Δ𝑡
}

Particle-Particle Method

• Experimental results (then):

– Intel Delta = 1992 supercomputer, 512 Intel i860s

– 17 million particles, 600 time steps, 24 hours elapsed time

M. Warren and J. Salmon

Gordon Bell Prize at Supercomputing 1992

– Sustained 5.2 Gigaflops = 44K Flops/particle/time step

– 1% accuracy

– Direct method (17 Flops/particle/time step) at 5.2 Gflops would have

taken 18 years, 6570 times longer

13
Courtesy: CS267 Lecture 24 https://sites.google.com/lbl.gov/cs267-spr2019/

Nikhil Hegde

https://sites.google.com/lbl.gov/cs267-spr2019/

Particle-Particle Method

• Experimental results (now):

Vortex particle simulation of turbulence

– Cluster of 256 NVIDIA GeForce 8800 GPUs

– 16.8 million particles

• T. Hamada, R. Yokota, K. Nitadori. T. Narumi, K. Yasoki et al

• Gordon Bell Prize for Price/Performance at Supercomputing

2009

– Sustained 20 Teraflops, or $8/Gigaflop

Nikhil Hegde 14
Courtesy: CS267 Lecture 24 https://sites.google.com/lbl.gov/cs267-spr2019/

https://sites.google.com/lbl.gov/cs267-spr2019/

Particle-Particle (PP) Method

• Discussion

– Simple/trivial to program

– High computational cost

• Useful when number of particles are small (few thousands) and

• We are interested in close-range dynamics when the particles in

the range contribute significantly to forces

• Constant time step must be replaced with variable time steps

and numerical integration schemes for close-range interactions

Nikhil Hegde 15

Particle-Mesh (PM) Method

• Now think of Force as a Field i.e. a quantity that is

pervading all space rather than arising out of (and

concentrated at) the particle.

• Steps (e.g. body of electrically charged particles):

1. Assign charge to mesh

2. Solve the Field Potential equation on the mesh

∇2𝜙 = −𝜌/𝜖0

3. Compute forces from the mesh-defined potential and interpolate

forces at particle positions

4. Integrate forces to get particle positions and velocities

5. Update time counter
Nikhil Hegde 16

What kind of PDE is involved?

Same as PP

Particle-Mesh (PM) Method

1. Assign charge to mesh

– Create a mesh of points for each particle. Assign

“charge” to mesh points

• Many schemes exist. "Nearest-Grid-Point" (NGP) PM method

assigns charge densities to mesh points. The charge densities

are computed as: total amount of "charge" in the cell

surrounding the mesh point, divided by the cell volume.

– Rarely used. Drawback: it gives forces that are

discontinuous in value.

• “Smoothness” is incorporated to ensure continuity of the

derivatives.

– Computational Cost? Assume NGP.
Nikhil Hegde 17

Particle-Mesh (PM) Method

2. Solve the Field Potential equation on the mesh

∇2𝜙 = −𝜌/𝜖0
𝜙 is electrostatic potential and 𝜌 is the charge density.

The Poisson’s equation is solved using finite difference

approximations.

• Cost of solving the equation depends on ???

Nikhil Hegde 18

Particle-Mesh (PM) Method

• Computational Costs?

– Cost for steps 1, 3, and 4: O(N)

– Cost for step 2: depends on number of mesh points

– Cost for step 5: constant

Nikhil Hegde 19

Particle-Mesh (PM) Method

• Discussion

– PM is much faster than PP but less accurate

• Computation cost

𝛼𝑁 + 𝛽𝑁𝑚𝑒𝑠ℎ𝑝𝑜𝑖𝑛𝑡𝑠

• Source of errors:

1) Replacing the charge with charge densities on the mesh

2) Truncation error due to finite differences

3) Interpolation error,

4) Integration error (when numerical integration schemes used)

– Unsuitable for “close-encounters”

Nikhil Hegde 20

Exercise

• Assume 𝛼=20, 𝛽 = 𝑁3 log2𝑁
3 (for 𝑁 × 𝑁 × 𝑁 mesh)

Give an estimate of time taken by PP and PM

methods for:

– Number of particles = 105

– Number of mesh points = 32

– ≈ 1𝜇𝑠 per pair-wise force calculation

Nikhil Hegde 21

N-Body Simulation

• Three fundamental simulation approaches
– Particle-Particle (PP)

– Particle-Mesh (PM)

– Particle-Particle-Particle-Mesh (P3M)

• Hybrid approaches
– Nested Grid Particle Scheme

– Tree Codes

– Tree Code Particle Mesh (TPM)

• Self Consistent Field (SCF), Smoothed-Particle

Hydrodynamics (SPH), Symplectic etc.
Nikhil Hegde 22

Particle-Particle-Particle-Mesh (P3M)

• Combine the advantages of PP and PM
– PP:

• Can be used with smaller systems with long-range forces and

• Large systems with few near-neighbor/long-range forces

– PM:
• Fast but can only handle smoothly varying forces

• 𝐹𝑖 is split into 𝐹𝑖
𝑠ℎ𝑜𝑟𝑡𝑟𝑎𝑛𝑔𝑒

+ 𝐹𝑖
𝑚𝑒𝑠ℎ

– 𝐹𝑖
𝑠ℎ𝑜𝑟𝑡𝑟𝑎𝑛𝑔𝑒

, fast-varying force, calculation done using

PP (assumption:𝐹𝑖
𝑠ℎ𝑜𝑟𝑡𝑟𝑎𝑛𝑔𝑒

is non-zero for only a few particles)

– 𝐹𝑖
𝑚𝑒𝑠ℎ, slow-varying force, calculation done using PM

(assumption: 𝐹𝑖
𝑚𝑒𝑠ℎ is sufficiently smooth to be calculated over a

mesh)
Nikhil Hegde 23

N-Body Simulation

• All-pairs Method

– Naïve approach. Compute all pair-wise interactions

• Hierarchical Methods

– Optimize. Reduce the number of pair-wise force

calculations. How? dependence on ‘distant’ particle(s)

can be compressed

– Examples:

• Barnes-Hut

• Fast Multipole Method

Nikhil Hegde 24

Tree Codes

Fi = Fexternal + Fnearest_neighbor+ FN-Body
• Fexternal can be computed for each body independently. O(N)

• Fnearest_neighbor involve computations corresponding to few

nearest neighbors. O(N)

• FN-Body require all-to-all computations. Most expensive. O(N2)

if computed using all-pairs approach.

for(i = 1 to N)

𝐹𝑖 = σ𝑖≠𝑗 𝐹𝑖𝑗 Fij= force on i from j

Nikhil Hegde 25We can do better.

𝐹𝑖𝑗 =c*v/||v||3 in 3D, 𝐹𝑖𝑗 = c*v/||v||2 in 2D

v = vector from particle i to particle j , ||v|| = length

of v, c = product of masses or charges

Tree Codes: Divide-Conquer Approach

• Consider computing force on earth due to all celestial bodies

➢ Look at the night sky. Number of terms in σ𝑖≠𝑗 𝐹𝑖𝑗 is greater than the

number of visible stars

➢ One “star” could really be the Andromeda galaxy, which contains

billions of real stars. Seems like a lot more work than we thought …

– Idea: Ok to approximate all stars in Andromeda by a single point at its

center of mass (CM) with same total mass (TM)

– Require that D/r be “small enough” (D = size of box containing Andromeda , r

= distance of CM to Earth).
26

Slide contents based on: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Nikhil HegdeIdea is not new. Newton approximated earth and falling apple by CM

https://sites.google.com/lbl.gov/cs267-spr2019/

Tree Codes: Divide-Conquer Approach

– If you are in Andromeda, Milky Way

(the galaxy we are part of) could

appear like a white dot. So, can be

approximated by a point mass.

– Within Andromeda, picture repeats

itself
• As long as D1/r1 is small enough,

stars inside smaller box can be

replaced by their CM to compute

the force on Vulcan

• If you are on Vulcan, another solar

system in Andromeda can be a

white dot.

• Boxes nest in boxes recursively

27

Slide contents based on: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Nikhil Hegde

• New idea: recursively divide the box.

https://sites.google.com/lbl.gov/cs267-spr2019/

Tree Codes: Divide-Conquer Approach

28Nikhil Hegde

• Data structures needed:

– Quad-trees

– Octrees

Background – metric trees

A

B

C

D

E
F

G

2-dimensional space of points

G

FEA C

B D

Binary kd-tree, 1 point /leaf cell

e.g. K-dimensional (kd-), Vantage Point (vp-), quad-trees, octrees, ball-

trees

X

Y

29Nikhil Hegde

G

30

Background - metric trees

Typical use: traverse the tree (often repeatedly), truncate

the traversal at some intermediate node if a domain-

specific criteria is not met.

Cost ???

N21

E.g. Does the distance

from CM to me < D/r?
Input points = {1, 2, … , N}  ℝK

Kd-tree

FEA C

B D

Nikhil Hegde

• Data structure to subdivide the plane

– Nodes can contain coordinates of center of box, side

length.

– Eventually also coordinates of CM, total mass, etc.

• In a complete quad tree, each non-leaf node has 4 children

31

Quad Tree

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Nikhil Hegde

https://sites.google.com/lbl.gov/cs267-spr2019/

• Similar data structure for subdividing 3D space

32

Octree or Oct Tree

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Nikhil Hegde

https://sites.google.com/lbl.gov/cs267-spr2019/

• Begin by constructing a tree to hold all the

particles

– Interesting cases have nonuniformly distributed particles

– In a complete tree most nodes would be empty, a waste

of space and time

– Adaptive Quad (Oct) Tree only subdivides space where

particles are located

• For each particle, traverse the tree to compute

force on it

33

Using Quad Tree and Octree

Slide contents based on: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Nikhil Hegde

https://sites.google.com/lbl.gov/cs267-spr2019/

• In practice, have q>1 particles/square; tuning

parameter (code to build data structure on hidden slide)
34

Using Quad Tree and Octree

Slide courtesy: CS267 Lecture 24, https://sites.google.com/lbl.gov/cs267-spr2019/

Child nodes enumerated counterclockwise

from SW corner, empty ones excluded

Nikhil Hegde

https://sites.google.com/lbl.gov/cs267-spr2019/

