CS601: Software Development for

Scientific Computing
Autumn 2021

Weekl: Overview

Who this course Is for?

* Anybody who wishes to develop

“computational thinking"

A skill necessary for everyone, not just computer
programmers

 More on this later...

Course Takeaways

 Non-CS majors:
— Write code and

— Develop software (not just write standalone code)
* Numerical software

« CS-Majors:
— Face mathematical equations and implement them
with confidence

What Is this course about?

Software Development

-+

Scientific Computing

Software Development

+ Software development is the process of conceiving,
specifying, designing, programming, documenting,
testing, and bug fixing involved in creating and
maintaining applications, frameworks, or other
software components.

Software development is a process of writing and maintaining the
source code, but in a broader sense, it includes all that is involved
between the conception of the desired software through to the
final manifestation of the software, ...

- Wikipedia on “Software Development”

Scientific Computing

« Also called computational science

- Development of models to understand systems
(biological, physical, chemical, engineering,
humanities)

Collection of tools, techniques, and theories required to solve
on a computer mathematical models of problems in science and
engineering

This course NOT about..

« Software Engineering

« Systematic study of Techniques, Methodology, and
Tools to build correct software within time and
price budget (topics covered in CS305)

* People, Software life cycle and management etc.

 Scientific Computing
« Rigorous exploration of numerical methods, their
analysis, and theories

* Programming models (topics covered in CS410)

Who this course Is for?

* You are interested In scientific computing

* You are interested in high-performance
computing

* You want to build / add to a large software
system

Why C++ ?

C/C++/Fortran codes form the majority in
scientific computing codes

Catch a lot of errors early (e.g. at compile-time
rather than at run-time)

Has features for object-oriented software
development

Known to result in codes with better
performance

Who this course Is for?

* Anybody who wishes to develop

“computational thinking"

A skill necessary for everyone, not just computer
programmers

« An approach to problem solving, designing
systems, and understanding human behavior that
draws on concepts fundamental to computer
science.

10

Computational Thinking -

Examples

How difficult is the problem to solve? And what is the
best way to solve?

Modularizing something in anticipation of multiple users
» Prefetching and caching in anticipation of future use
Thinking recursively

Reformulating a seemingly difficult problem into one

which we know how to solve by reduction, embedding,
transformation, simulation

- Are approximate solutions accepted?

- False positives and False negatives allowed? eftc.

Using abstraction and decomposition in tackling large
problem

11

Computational Thinking — 2 As

 Abstractions
— Our "mental” tools

— Includes: choosing right abstractions, operating at
multiple layers of abstractions, and defining relationships
among layers

« Automation
— Our "metal” tools that amplify the power of "mental” tools

— |Is mechanizing our abstractions, layers, and relationships

* Need precise and exact notations / models for the “computer”
below (“computer” can be human or machine)

12

Computing - 2 As Combined

« Computing is the automation of our abstractions

* Provides us the abillity to scale

— Make infeasible problems feasible
« E.g. SHA-1 not safe anymore

— Improve the answer’s precision
« E.g. capture the image of a black-hole

Summary: choose the right abstraction and
computer

13

Example - Factorial

en!l =nx (n-1) x (n-2) x . . . x3x2x1
(n-1)! = (n-1) x (n-2) x . . . x3x2x1
therefore,

Definitionl: n! = n x (n-1)!

IS this definition complete?

 plug O to n and the equation breaks.

Definition2: _
n x (n-1)! when n>=1

nl=-
1 when n=0

14

—

Exercise 1

* Does this code implement the definition of
factorial correctly?

int fact(int n){
if(n==0)
return 1;

return n*fact(n-1);

15

Example - Factorial

—

Definition2: n x (n-1)! when n>=1

n!l=+
1 when n=0

~—

IS this definition complete?

* n! Is not defined for negative n

16

Solution - Factorial

int fact(int n){

if(n<0)
return ERROR;
if(n==0)
return 1;

return n*fact(n-1);

17

Exercise 2

* In how many flops does the code execute?
1 flop = 1 step executing any arithmetic operation

int fact(int n){

if(n<0)
return ERROR;
if(n==0)
return 1;

return n*fact(n-1);

18

Exercise 3

* Does the code yield correct results for any n?

int fact(int n){

if(n<0)
return ERROR;
if(n==0)
return 1;

return n*fact(n-1);

19

Recap

Need to be precise
— recall: n! =1 for n=0, not defined for negative n

Choosing right abstractions
— recall: use of recursion, correct data type

Ability to define the complexity
— recall: f1lop calculation

Next?

20

Recap

Need to be precise
— recall: n! =1 for n=0, not defined for negative n

Choosing right abstractions
— recall: use of recursion, correct data type

Ability to define the complexity
— recall: f1lop calculation

Choose the right “computer” for mechanizing the
abstractions chosen

21

The von Neumann Architecture

* Proposed by Jon Von Neumann in 1945

Central Processing Unit

Contral Unit

Impast —> Arithmetic/Logic Unit 1 3
Devica s g

It

Memory Unit

eeeeee

source: wikipedia

« The memory unit stores both instruction and
data

— consequence: cannot fetch instruction and data
simultaneously - von Neumann bottleneck

22

Harvard Architecture

* Origin: Harvard Mark-I machines
« Separate memory for instruction and data

o

£

Instruction (/l—n\ Control /‘—\) Data
memory N—V unit N memory

.
s =

/(o]

— advantage: speed of execution
— disadvantage: complexity

23

Memory Hierarchy

« Most computers today have layers of cache in

between processor and memory N
processor
4)
COre | Core | core
Second-level Main Secondary || Tape/
shared cache) [cache }{ memory } Storage / Disk|| Tertiary
Storage
core | core | core _ -
Latency: 1ns ~5-10ns ~10% ns ~107ns ~10%% ns
Size: few KBs ~10° / MBs ~10°/ GBs ~10'2 /TBs ~10% /PBs
-/

— Closer to cores exist separate D and | caches

 Where are registers?

24

Memory Hierarchy

« Consequences on programming?
— Data access pattern influences the performance
— Be aware of the principle of locality

pProcessor

core |

core

core

(shared cache]

core

core

core

[S

econd-level
cache

|

Main
memory

|

4 N

Secondary
Storage / Disk|

N /

O)

Tape /
Tertiary
Storage

25

1.

2.

Principle of Locality

If a data item Is accessed, it will tend to be
accessed soon (temporal locality)

— SO0, keep a copy in cache

— E.g. loops

If a data item Is accessed, items in nearby
addresses in memory tend to be accessed
soon (spatial locality)

— Guess the next data item (based on access history)
and fetch it

— E.g. array access, code without any branching

26

Memory Hierarchy - Terminology

« Hit: data found in a lower-level memory module
— Hit rate: fraction of memory accesses found in lower-level

« Miss: data to be fetched from the next-level (higher)
memory module
— Miss rate: 1 — Hit rate
— Miss penalty: time to replace the data item at the lower-level

O)
processor

4 N

core | core | core

(shared cache]

cache memory Storage / Disk|

[Second_|eve|1 { Main } Secondary

core | core | core _ -

27

lower > higher -/

Scientific Software - Examples

Biology PN
- Shotgun algorithm expedites sequencing s
of human genome

- Analyzing fMRI data with machine
learning

Chemistry

- optimization and search algorithms to
identify best chemicals for improving
reaction conditions to improve yields

Scientific Software - Examples

Geology

- Modeling the Earth’s surface to the core

Credit: Wikipedia

Astronomy
- kd-trees help analyze very large multi-
dimensional data sets

E n g | n e e rl n g Credit: Kaggle.com

- Boeing 777 tested via computer

simulation (not via wind tunnel) -

Scientific Software - Examples

Economics
- ad-placement

Entertainment

- Toy Story, Shrek rendered using data
center nodes

30

Toward Scientific Software

Physical process

Mathematical model

Algorithm

l

Software program

l

Simulation results

31

Toward Scientific Software

* Necessary Skills:
— Understanding the mathematical problem
— Understanding numerics
— Designing algorithms and data structures
— Selecting language and using libraries and tools
— Verify the correctness of the results
— Quick learning of new programming languages
* E.g. Regent

32

https://regent-lang.org/

Exercise

Compute root(s) of:
X = cos X; X €R

roots, also called zeros, Is the value of the
argument/input to the function when the function output
vanishes i.e. becomes zero

33

Mathematical Problem

+ lety = f(x)
f(x) =cos(x) —x

« Atx=x_,thevalue ofyis f(x,). The coordinates of the
point are (x,, f(x,)) = known point.

* From calculus: derivative of a function of single variable
at a chosen input value, when it exists, is the slope of
the tangent to the graph at that input value.

- f'(x,) is the slope of the line that is tangent to f(x) at x,,

34

credit: wikipedia

Mathematical Problem

* From high-school math: point-slope formula for equation
of a line

Yy —y; = m(X —Xy),
given the slope m and any known point (x;, y,)

« Substituting with:
— (x,, f(x,)) =known point

_ f,(xn) - Slope
Equation of the tangent line to graph of f(x) at x,,:

y_f(xn) - f,(xn)(x_ Xn)

35

Mathematical Problem

Interested in finding roots i.e. value of x at y=0 i.e. at
point (x,,1, 0).
Substituting in the equation of the tangent line,

y_f(xn) - f,('xn)(x _Xn)

= —f(x) = f'(x,)(xnp; _xn)

xnpl = Xn — f(xn) /f’(xn)

Mathematical Problem

 Visualizing
(source: https://en.wikipedia.org/wiki/Newton’s_method) :

¥
A

= Funktion

FT T T T T T T T T T T 1711 Tangente
The function f is shown in blue and the tangent line is in

red. We see that x,, , , IS a better approximation than x,
for the root x of the function f.

37

https://en.wikipedia.org/wiki/Newton%27s_method

Mathematical Problem

— flx) 1 f1(xq)

— f(xy) [f'(xy)
— f(x3) [' (x3)

38

Numerical Analysis

Talk to domain experts

Choosing the initial value of x

Does the method converge ?

What is an acceptable approximation?
* etc.

39

Designing Algorithms and Data
Structures

« Start with x;

X, =% — f(x) [f(xy)
X3 =%, — f(xy)] f(x;)
Xy =x3— f(x3) /] f(x3)

 Repeat for up to maxIterations
* Checkfor x,,, - X, to be “sufficiently small”
* Choose appropriate data types for x

40

Selecting libraries and tools

« E.g. use the math library in C++ (cmath)

41

Verify the correctness of results

« Compare with ‘gold’ code / benchmark
« Compare with empirical data

42

Recap

Different architectures of computers

— von Neumann, Harvard (, differences, pros and cons)
— Modern computers and the memory hierarchy
Implications of memory hierarchy on
programmer

— Desirable to exploit principle of locality to get better
performance of programs

Examples of scientific software
Toward scientific software — steps and skills

— dry run: toy code sample (never call it software!)
— Demo 43

N o O s bR

Scientific Software - Motifs

SR

noun

1. a decorative image or design, especially a repeated one forming a pattern.
"the colourful hand-painted motifs which adsrnaicwboars”

Similar: design pattern decoration figure shape logo monogram W

2. a dommant or recurring idea in an artistic work.
"SUBCiSUGan is a recurring motif in the book”

Finite State Machines 8. Dynamic Programming

Combinatorial 9. N-Body (/ particle)

Graph Traversal 10. MapReduce

Structured (?nd 11. Backtrack / B&B
Dense Matrix

Sparse Matrix 12. Graphical Models
FFT 13. Unstructured Grid

44

Real Numbers R

 Most scientific software deal with Real numbers.

Our toy code dealt with Reals
— Numerical software is scientific software dealing with
Real numbers

 Real numbers include rational numbers (integers
and fractions), Irrational numbers (pi etc.)

« Used to represent values of continuous guantity
such as time, mass, velocity, height, density etc.

— Infinitely many values possible

— But computers have limited memory. So, have to use
approximations. 45

Representing Real Numbers

« Real numbers are stored as floating point

numbers (floating point system is a scheme to represent real
numbers)

« E.g. floating point numbers: exponent
7 =314159 | v
General format: X X b
— 6.03*10%3 P
— 1.60217733*101° mantissa base

(number ranges from: (e.g. base 10, 8, 2, 16)
ltob OR 1/bto1l)

46

Floating Point System -
Terminology

Precision (p) - Length of mantissa
— E.g. p=31in 1.00 x 10!

Unit roundoff (u) — smallest positive number where the
computed value of 1+u is different from 1
— E.g. suppose p=4 and we wish to compute
1.0000+ 0.0001="?
— result = 1.0001. But we can'’t store result exactly (since p=4). We end
up storing 1.000. => computed result of 1+u is same as 1
— Add 0.0005 instead and round. 1.0000+0.0005 = 1.0005 = 1.001
=> u =0.0005
Machine epsilon (e, ..,) — Smallest a-1, where a Is the
smallest representable number greater than 1
- E.g.€,,,,=1.001 - 1.000 = 0.001. usually €., =2u

a7

mach

IEEE 754 Floating Point System

* Prescribes single, double, and extended
precision formats

Precision u Total bits used (sign, exponent, mantissa)
Single 6x10® 32 (1, 8, 23)

Double 2x10-16 64 (1, 11, 52)

Extended 5x10-20 80 (1, 15, 64)

single precision binary IEEE 754 floating point format

0 1 . 89

Sign Exponent Mantissa 48

Curious case of 0.1

 The decimal number 0.1 cannot be represented
exactly in binary even with p=24

— 1.100 110011 001 100 110 011 01 x 2“is the
approximation

49

Exercise

« What is the largest possible non-negative integer
number representable in 4 bits?

* What Is the smallest possible negative integer
number representable in 4 bits?

« What is the largest possible number possible in
IEEE 754 single-precision floating point format?

— Smallest?

Suggested reading: Numerical Computing with IEEE Floating
Point Arithmetic, Michael Overton (chapter 4)

50

Bits, Nibble, ..Giga Word

Bit — smallest unit of information storage can
belor0O

Nibble — 4 bits
Byte — 8 bits
Half-word — 2 bytes
Word — 4 bytes
Giga word — 8 bytes

51

Number Bases

— We use decimal (base-10), Computers use
binary (base-2).

— Binary is difficult to read. So, we use
Hexadecimal (base-16).

— Octal (base-8) is the other popular number
format.

52

Number Bases - Hexadecimal

— Hexadecimal uses 16 digits: 0 to 9 and A to F.
A to F represent decimal numbers 10 to 15.

— A digit iIn hexadecimal needs 4 bits. Therefore,
a byte of information (8 bits) represents two
digits.

— Example:
Decimal Binary Hexadecimal
10 1010 OxA
16 1 0000 0x10
43981 1010 1011 1100 1101 OxABCD 53

How are Numbers Stored In
Memory? - Endianness

— Assume an integer needs 4 bytes of storage

* E.g. 1193 in Hexadecimal = 0x4A9 = 0x 00 00 04 A9
when stored in 4 bytes of memory.

« How are those 4 bytes ordered in memory? —
Endianness

— Two popular formats: Big-Endian and Little-
Endian

54

Big-Endian

— Most-significant-byte (MSB) at low-address and
least-significant-byte (LSB) at high-address

« E.g. 1193 =0x000004 A9 (=4*16°+A*16+9)

« MSB (0x00) is written at lower address, LSB (0xA9)
IS written at higher address.

Address: 0x00000001 0x00000002 0x00000003 0x00000004
0000 0000 0000 0000 0000 0100 1010 1001
(00) (00) (04) (A9)

 Motorola 68000 Series, IBM-Z Mainframes.

55

Little-Endian

— Most-significant-byte (MSB) at high-address
and least-significant-byte (LSB) at low-address

« E.g. 1193 =0x000004 A9 (=4*16°+A*16+9)

« MSB (0x00) is written at higher address, LSB (0xA9)
IS written at lower address.

Address: 0x00000001 0x00000002 0x00000003 0x00000004
1010 1001 0000 0100 0000 0000 0000 0000
(A9) (04) (00) (00)

* Intel x86 Architecture

56

Endianness

— Fortunately, we don’t have to worry about
endianness.

* You don’t have to reverse bytes when you read an
Integer.

* Processor and Compiler do the job for you.

57

Processor

Hardware component
Massive collection of and and or gates

CPU only knows how to perform operations and,
or, Xor.

Has a small set of instructions (machine language)
It can execute.

Number of instructions per second is determined
by clock speed. 1 clock tick = cycle. Modern CPUs
execute more than 1 instruction per cycle. 58

Translation Systems

« Software components: Compilers, preprocessor,
loader, linker, assembler, interpreters

 All programs ultimately need to be translated to
set of instructions that CPU can understand

59

Operating System

Software component

Controls everything about how the computer
works

— E.g. Input/Output (I0), memory management

« E.g. the OS should keep track of which parts of memory are
being used and which parts are still free for use by programs
and data

Not tied to processor mostly

Programming: depending on the language used,
OS interface may or may not be important %0

