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CS601: Software Development for 

Scientific Computing
Autumn 2021

Week1: Overview
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Who this course is for?

• Anybody who wishes to develop 

“computational thinking”
• A skill necessary for everyone, not just computer 

programmers

• More on this later…
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Course Takeaways

• Non-CS majors: 

– Write code and

– Develop software (not just write standalone code)

• Numerical software

• CS-Majors:

– Face mathematical equations and implement them 

with confidence
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What is this course about?

Software Development

Scientific Computing

+
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Software Development

• Software development is the process of conceiving,
specifying, designing, programming, documenting,
testing, and bug fixing involved in creating and
maintaining applications, frameworks, or other
software components.

Software development is a process of writing and maintaining the
source code, but in a broader sense, it includes all that is involved
between the conception of the desired software through to the
final manifestation of the software, …

- Wikipedia on “Software Development”
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Scientific Computing

• Also called computational science

– Development of models to understand systems
(biological, physical, chemical, engineering,
humanities)

Collection of tools, techniques, and theories required to solve
on a computer mathematical models of problems in science and
engineering
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This course NOT about..

• Software Engineering

• Systematic study of Techniques, Methodology, and 

Tools to build correct software within time and 

price budget (topics covered in CS305)

• People, Software life cycle and management etc.

• Scientific Computing

• Rigorous exploration of numerical methods, their 

analysis, and theories 

• Programming models (topics covered in CS410) 
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Who this course is for?

• You are interested in scientific computing

• You are interested in high-performance 

computing

• You want to build / add to a large software 

system
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Why C++ ?

• C/C++/Fortran codes form the majority in 

scientific computing codes

• Catch a lot of errors early (e.g. at compile-time

rather than at run-time)

• Has features for object-oriented software 

development

• Known to result in codes with better 

performance
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Who this course is for?

• Anybody who wishes to develop 

“computational thinking”
• A skill necessary for everyone, not just computer 

programmers

• An approach to problem solving, designing 

systems, and understanding human behavior that 

draws on concepts fundamental to computer 

science.
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Computational Thinking -

Examples
• How difficult is the problem to solve? And what is the 

best way to solve?

• Modularizing something in anticipation of multiple users 

• Prefetching and caching in anticipation of future use

• Thinking recursively

• Reformulating a seemingly difficult problem into one 
which we know how to solve by reduction, embedding, 
transformation, simulation

– Are approximate solutions accepted?

– False positives and False negatives allowed? etc.

• Using abstraction and decomposition in tackling large 
problem

• …
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Computational Thinking – 2 As

• Abstractions

– Our “mental” tools 

– Includes: choosing right abstractions, operating at 

multiple layers of abstractions, and defining relationships

among layers

• Automation

– Our “metal” tools that amplify the power of “mental” tools

– Is mechanizing our abstractions, layers, and relationships

• Need precise and exact notations / models for the “computer” 

below (“computer” can be human or machine)
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Computing - 2 As Combined

• Computing is the automation of our abstractions

• Provides us the ability to scale

– Make infeasible problems feasible

• E.g. SHA-1 not safe anymore

– Improve the answer’s precision

• E.g. capture the image of a black-hole

Summary: choose the right abstraction and 

computer



• n! = n x (n-1) x (n-2) x . . . x 3 x 2 x 1

(n–1)! = (n-1) x (n-2) x . . . x 3 x 2 x 1

therefore, 

Definition1: n! = n x (n-1)!            

is this definition complete?

• plug 0 to n and the equation breaks. 

Example - Factorial

n x (n-1)!    when n>=1

1             when n=0
n!=

Definition2:

14
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Exercise 1

• Does this code implement the definition of 

factorial correctly?

int fact(int n){
if(n==0)

return 1;

return n*fact(n-1);

}



Definition2:

is this definition complete?

• n! is not defined for negative n

Example - Factorial

n x (n-1)!    when n>=1

1             when n=0
n!=

16
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Solution - Factorial

int fact(int n){
if(n<0)

return ERROR;
if(n==0)

return 1;

return n*fact(n-1);

}
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Exercise 2

• In how many flops does the code execute? 

1 flop = 1 step executing any arithmetic operation

int fact(int n){
if(n<0)

return ERROR;
if(n==0)

return 1;

return n*fact(n-1);

}
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Exercise 3

• Does the code yield correct results for any n?

int fact(int n){
if(n<0)

return ERROR;
if(n==0)

return 1;

return n*fact(n-1);

}
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Recap

• Need to be precise

– recall: n! = 1 for n=0, not defined for negative n

• Choosing right abstractions

– recall: use of recursion, correct data type

• Ability to define the complexity 

– recall: flop calculation

• Next?
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Recap

• Need to be precise

– recall: n! = 1 for n=0, not defined for negative n

• Choosing right abstractions

– recall: use of recursion, correct data type

• Ability to define the complexity 

– recall: flop calculation

• Choose the right “computer” for mechanizing the 

abstractions chosen
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The von Neumann Architecture

• Proposed by Jon Von Neumann in 1945

• The memory unit stores both instruction and 

data

– consequence: cannot fetch instruction and data 

simultaneously  - von Neumann bottleneck

source: wikipedia
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Harvard Architecture

• Origin: Harvard Mark-I machines

• Separate memory for instruction and data

– advantage: speed of execution 

– disadvantage: complexity
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Memory Hierarchy

• Most computers today have layers of cache in 

between processor and memory

– Closer to cores exist separate D and I caches

• Where are registers?

processor

core core core

core core core

shared cache

cache cache cache

cache cache cache

Second-level

cache

Main 

memory

Secondary

Storage / Disk

Tape / 

Tertiary

Storage 

Latency: 1 ns ~5-10 ns ~102 ns ~107 ns            ~1010 ns

Size: few KBs ~106 / MBs ~109 / GBs ~1012 /TBs    ~1015 /PBs
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Memory Hierarchy

• Consequences on programming?

– Data access pattern influences the performance

– Be aware of the principle of locality

processor

core core core

core core core

shared cache

cache cache cache

cache cache cache

Second-level

cache

Main 

memory

Secondary

Storage / Disk

Tape / 

Tertiary

Storage 
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Principle of Locality

1. If a data item is accessed, it will tend to be 

accessed soon (temporal locality)

– So, keep a copy in cache 

– E.g. loops

2. If a data item is accessed, items in nearby 

addresses in memory tend to be accessed 

soon (spatial locality)

– Guess the next data item (based on access history) 

and fetch it

– E.g. array access, code without any branching
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Memory Hierarchy - Terminology

• Hit: data found in a lower-level memory module
– Hit rate: fraction of memory accesses found in lower-level

• Miss: data to be fetched from the next-level (higher) 

memory module

– Miss rate: 1 – Hit rate

– Miss penalty: time to replace the data item at the lower-level

processor

core core core

core core core

shared cache

cache cache cache

cache cache cache

Second-level

cache

Main 

memory

Secondary

Storage / Disk

Tape / 

Tertiary

Storage 

lower higher
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Scientific Software - Examples

Biology
- Shotgun algorithm expedites sequencing

of human genome

- Analyzing fMRI data with machine   

learning

Credit: Wikipedia

Credit: Wikipedia

Chemistry

- optimization and search algorithms to 

identify best chemicals for improving 

reaction conditions to improve yields

Credit: University of Minnesota
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Scientific Software - Examples

Geology
- Modeling the Earth’s surface to the core

Credit: Wikipedia

Astronomy
- kd-trees help analyze very large multi-

dimensional data sets

Credit: Kaggle.comEngineering

- Boeing 777 tested via computer 

simulation (not via wind tunnel)
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Scientific Software - Examples

Economics
- ad-placement

Entertainment

- Toy Story, Shrek rendered using data 

center nodes
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Toward Scientific Software

Physical process

Mathematical model

Algorithm

Software program

Simulation results
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Toward Scientific Software

• Necessary Skills:

– Understanding the mathematical problem

– Understanding numerics

– Designing algorithms and data structures

– Selecting language and using libraries and tools

– Verify the correctness of the results

– Quick learning of new programming languages

• E.g. Regent

https://regent-lang.org/
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Exercise

Compute root(s) of:

x = cos x; x ϵ ℝ

roots, also called zeros, is the value of the 

argument/input to the function when the function output 
vanishes i.e. becomes zero
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Mathematical Problem

• let 𝑦 = 𝑓 𝑥

𝑓 𝑥 = cos 𝑥 − 𝑥

• At x = xn , the value of y is 𝑓 𝑥𝑛 . The coordinates of the 

point are (xn , 𝑓 𝑥𝑛 ) = known point.

• From calculus: derivative of a function of single variable 

at a chosen input value, when it exists, is the slope of 

the tangent to the graph at that input value.

– 𝑓′ 𝑥𝑛 is the slope of the line that is tangent to 𝑓 𝑥 at xn

credit: wikipedia
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Mathematical Problem

• From high-school math: point-slope formula for equation 

of a line

• Substituting with:

– (xn , 𝑓 𝑥𝑛 ) = known point

– 𝑓′ 𝑥𝑛 = slope

Equation of the tangent line to graph of 𝒇 𝒙 at xn :

y – 𝑓 𝑥𝑛 = 𝑓′ 𝑥𝑛 (x − xn)

y − y1 = m(x − x1), 

given the slope m and  any known point (x1, y1)
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Mathematical Problem

• Interested in finding roots i.e. value of x at y=0 i.e. at 
point (xnp1, 0).

• Substituting in the equation of the tangent line,

y – 𝑓 𝑥𝑛 = 𝑓′ 𝑥𝑛 (x − xn)

= −𝑓 𝑥𝑛 = 𝑓′ 𝑥𝑛 (xnp1 −
xn)

=     𝒙𝒏𝒑𝟏 = 𝒙𝒏 − 𝒇 𝒙𝒏 / 𝒇′ 𝒙𝒏
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Mathematical Problem

• Visualizing 

(source: https://en.wikipedia.org/wiki/Newton’s_method) :

The function f is shown in blue and the tangent line is in 

red. We see that xn + 1 is a better approximation than xn

for the root x of the function f.

https://en.wikipedia.org/wiki/Newton%27s_method
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Mathematical Problem

𝒙𝟐 = 𝒙𝟏 − 𝒇 𝒙𝟏 / 𝒇′ 𝒙𝟏

𝒙𝟑 = 𝒙𝟐 − 𝒇 𝒙𝟐 / 𝒇′ 𝒙𝟐

𝒙𝟒 = 𝒙𝟑 − 𝒇 𝒙𝟑 / 𝒇′ 𝒙𝟑

. . .
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Numerical Analysis

Talk to domain experts

• Choosing the initial value of x 

• Does the method converge ?

• What is an acceptable approximation?

• etc.
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Designing Algorithms and Data 

Structures
• Start with x1

𝒙𝟐 = 𝒙𝟏 − 𝒇 𝒙𝟏 / 𝒇′ 𝒙𝟏

𝒙𝟑 = 𝒙𝟐 − 𝒇 𝒙𝟐 / 𝒇′ 𝒙𝟐

𝒙𝟒 = 𝒙𝟑 − 𝒇 𝒙𝟑 / 𝒇′ 𝒙𝟑

. . .

• Repeat for up to maxIterations

• Check for xn+1 – xn to be “sufficiently small”

• Choose appropriate data types for x
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Selecting libraries and tools

• E.g. use the math library in C++ (cmath)
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Verify the correctness of results

• Compare with ‘gold’ code / benchmark

• Compare with empirical data
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Recap

• Different architectures of computers

– von Neumann, Harvard (, differences, pros and cons)

– Modern computers and the memory hierarchy

• Implications of memory hierarchy on 

programmer

– Desirable to exploit principle of locality to get better 

performance of programs

• Examples of scientific software

• Toward scientific software – steps and skills

– dry run: toy code sample (never call it software!)

– Demo
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Scientific Software - Motifs

1. Finite State Machines

2. Combinatorial 

3. Graph Traversal

4. Structured Grid

5. Dense Matrix

6. Sparse Matrix

7. FFT

8.   Dynamic Programming

9.   N-Body ( / particle)

10. MapReduce

11. Backtrack / B&B

12. Graphical Models

13. Unstructured Grid
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Real Numbers ℝ

• Most scientific software deal with Real numbers. 

Our toy code dealt with Reals
– Numerical software is scientific software dealing with 

Real numbers

• Real numbers include rational numbers (integers 

and fractions), irrational numbers (pi etc.)

• Used to represent values of continuous quantity 

such as time, mass, velocity, height,  density etc.

– Infinitely many values possible

– But computers have limited memory. So, have to use 

approximations.  
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Representing Real Numbers

• Real numbers are stored as floating point 

numbers (floating point system is a scheme to represent real 

numbers)

• E.g. floating point numbers: 
– 𝜋 = 3.14159,

– 6.03*1023

– 1.60217733*10-19 mantissa

(number ranges from: 

1 to b      OR     1/b to 1)

base

(e.g. base 10, 8, 2, 16 )

exponent

General format:   ±x × be



47

Floating Point System -

Terminology
• Precision (p) - Length of mantissa 

– E.g. p=3 in 1.00 x 10-1

• Unit roundoff (u) – smallest positive number where the 

computed value of 1+u is different from 1

– E.g.   suppose p=4 and we wish to compute 

1.0000+ 0.0001=?
– result = 1.0001. But we can’t store result exactly (since p=4). We end 

up storing 1.000. => computed result of 1+u is same as 1

– Add 0.0005 instead and round. 1.0000+0.0005 = 1.0005 = 1.001

=> u =0.0005

• Machine epsilon (ϵmach) – smallest a-1, where a is the 

smallest representable number greater than 1
– E.g. ϵmach =1.001 – 1.000 = 0.001. usually ϵmach = 2u



IEEE 754 Floating Point System

• Prescribes single, double, and extended 

precision formats
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Precision u Total bits used (sign, exponent, mantissa)

Single 6x10-8 32 (1, 8, 23)

Double 2x10-16 64 (1, 11, 52)

Extended 5x10-20 80 (1, 15, 64)

0   1    …………………8  9………………………………………………  31

Sign        Exponent                           Mantissa

single precision binary IEEE 754 floating point format



Curious case of 0.1

• The decimal number 0.1 cannot be represented 

exactly in binary even with p=24

– 1.100 110 011 001 100 110 011 01 x 2-4 is the 

approximation

49



Exercise

• What is the largest possible non-negative integer

number representable in 4 bits?

• What is the smallest possible negative integer

number representable in 4 bits?

• What is the largest possible number possible in 

IEEE 754 single-precision floating point format?

– Smallest?
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Suggested reading: Numerical Computing with IEEE Floating 

Point Arithmetic, Michael Overton (chapter 4)



Bits, Nibble, ..Giga Word

• Bit – smallest unit of information storage can 
be 1 or 0

• Nibble – 4 bits

• Byte – 8 bits

• Half-word – 2 bytes

• Word – 4 bytes

• Giga word – 8 bytes

51



Number Bases

– We use decimal (base-10), Computers use 

binary (base-2).

– Binary is difficult to read. So, we use 

Hexadecimal (base-16). 

– Octal (base-8) is the other popular number 

format.

52



Number Bases - Hexadecimal

– Hexadecimal uses 16 digits: 0 to 9 and A to F. 

A to F represent decimal numbers 10 to 15. 

– A digit in hexadecimal needs 4 bits. Therefore, 

a byte of information (8 bits) represents two 

digits.

– Example: 
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Decimal Binary Hexadecimal

10 1010 0xA

16 1 0000 0x10

43981 1010 1011 1100 1101 0xABCD



How are Numbers Stored in 

Memory? - Endianness

– Assume an integer needs 4 bytes of storage

• E.g. 1193 in Hexadecimal = 0x4A9 = 0x 00 00 04 A9 

when stored in 4 bytes of memory.

• How are those 4 bytes ordered in memory? –

Endianness

– Two popular formats: Big-Endian and Little-

Endian

54



Big-Endian

– Most-significant-byte (MSB) at low-address and 

least-significant-byte (LSB) at high-address

• E.g. 1193 = 0x00 00 04 A9 (= 4 * 162 + A * 16 + 9)

• MSB (0x00) is written at lower address, LSB (0xA9) 

is written at higher address.

• Motorola 68000 Series, IBM-Z Mainframes.
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0000 0000

(00)

0000 0000

(00)

0000 0100

(04)

1010 1001

(A9)

Address:     0x00000001          0x00000002         0x00000003           0x00000004             



Little-Endian

– Most-significant-byte (MSB) at high-address 

and least-significant-byte (LSB) at low-address

• E.g. 1193 = 0x00 00 04 A9 (= 4 * 162 + A * 16 + 9)

• MSB (0x00) is written at higher address, LSB (0xA9) 

is written at lower address.

• Intel x86 Architecture
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1010 1001

(A9)

0000 0100

(04)

0000 0000

(00)

0000 0000

(00)

Address:     0x00000001          0x00000002          0x00000003        0x00000004             



Endianness

– Fortunately, we don’t have to worry about 

endianness.

• You don’t have to reverse bytes when you read an 

integer.

• Processor and Compiler do the job for you. 
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Processor

• Hardware component

• Massive collection of and and or gates

• CPU only knows how to perform operations and, 
or, xor. 

• Has a small set of instructions (machine language) 

it can execute.

• Number of instructions per second is determined 

by clock speed. 1 clock tick = cycle. Modern CPUs 

execute more than 1 instruction per cycle. 58



Translation Systems

• Software components: Compilers, preprocessor, 

loader, linker, assembler, interpreters

• All programs ultimately need to be translated to 

set of instructions that CPU can understand

59



Operating System

• Software component

• Controls everything about how the computer 

works

– E.g. Input/Output (IO), memory management

• E.g. the OS should keep track of which parts of memory are 

being used and which parts are still free for use by programs 

and data

• Not tied to processor mostly

• Programming: depending on the language used, 

OS interface may or may not be important 60


