
Notes for the FEM class on 6/10/2021 

 

Prof. Amar started with a recap explaining the fundamental difference (Pros and Cons of) between 

Finite Difference Method (FDM) and Finite Element (FEM): FDMs are used when the domain is 

well structured. With Neumann boundary conditions specified, FDM approach can be 

complicated. FEM is more popular because it can handle unstructured/complicated domains in 

addition to structured domains. In practical scenarios, the domains are often unstructured, and 

FEM can yield better solution accuracy. Prof. Amar also briefly touched upon the concepts of 

primary and secondary variables (Primary variables e.g. are displacements, u, as seen in the Rod 

problem. Secondary variables are associated with Neumann Boundary Conditions (B.C.) e.g. when 

𝐹 = 𝐸𝐴
𝜕𝑢

𝜕𝑥
 the computation of us are for secondary variables. We say that Dirichlet B.C. are 

imposed on primary variables and Neumann B.C. are imposed on secondary variables.). Fact: For 

a well-posed problem, you must have Dirichlet B.C. specified at least one of the nodes.   

 

The main topic of today’s class was 2D steady state diffusion problem. Prof. Amar started with 

the strong-form of the steady state heat diffusion equation and derived the weak-form. The problem 

is as illustrated below: 

 
 

The steady state heat diffusion equation is given by: 

 

Κ (
 𝜕2𝑇

𝜕𝑥2
+

 𝜕2𝑇

𝜕𝑦2
) + 𝑓(𝑥, 𝑦)  = 0 

When 𝑓(𝑥, 𝑦)  = 0, the above equation becomes Κ (
 𝜕2𝑇

𝜕𝑥2
+

 𝜕2𝑇

𝜕𝑦2 ) = 0 and is also called as 

Laplace’s equation. 

We also know that at some boundary Γ𝑢 :  
𝑇Γ𝑢

=  𝑇̃ 

And the Neumann B.C. along boundary Γ𝑞 (𝑛̂𝑥 and 𝑛̂𝑦 are unit vectors along x and y direction 

resp.) 

Κ (
𝜕𝑇

𝜕𝑥
𝑛̂𝑥 +

𝜕𝑇

𝜕𝑦
𝑛̂𝑦) = 𝑞𝑛 

(1) 

(2) 

(3) 



(1), (2), and (3) represent the strong-form of the steady-state 2D heat diffusion problem. 

The first step in the FEM approach is to transform the strong-form to weak-form. This is done by 

integrating the product of the weight function and the residual over the domain and equating to 

zero i.e. 

∫ 𝜔 𝑅 = 0
Ω

 

=      ∫ 𝜔 ( Κ (
 𝜕2𝑇

𝜕𝑥2
+

 𝜕2𝑇

𝜕𝑦2 ) + 𝑓(𝑥, 𝑦))  = 0
Ω

 

 
Road to obtaining weak-form: 

 

We know that: 

𝜕

𝜕𝑥
[𝜔Κ

𝜕𝑇

𝜕𝑥
 ] = Κ

𝜕𝜔

𝜕𝑥

𝜕𝑇

𝜕𝑥
+ 𝜔Κ 

𝜕2T 

𝜕𝑥2
 

𝜕

𝜕𝑦
[𝜔Κ

𝜕𝑇

𝜕𝑦
 ] = Κ

𝜕𝜔

𝜕𝑦

𝜕𝑇

𝜕𝑦
+ 𝜔Κ 

𝜕2T 

𝜕𝑦2
 

  

Substituting for the second-order partial derivative term in (4): 

− ∫ Κ
∂ω

∂x

∂T

∂x
 dΩ

Ω

+ ∫
∂

∂x
(𝜔Κ

∂T

∂x
)  dΩ 

Ω

− ∫ Κ
∂ω

∂y

∂T

∂y
 dΩ + ∫

∂

∂y
(𝜔Κ

∂T

∂y
)  dΩ + ∫ 𝜔𝑓dΩ = 0  

Ω

 
ΩΩ

 

 

Background (vector calculus):  

• A function that takes in e.g. two variables (x,y in 2D) and outputs one value given by 

𝑓(𝑥, 𝑦) is called a scalar-valued function.  

• A function that takes in e.g. two variables (x,y in 2D) and outputs a vector in (x,y), i.e. 

the value of 𝑓(𝑥, 𝑦) is a vector, is called a vector-valued function. 

• Suppose we define a function that outputs a vector [

𝜕𝑓

𝜕𝑥
𝜕𝑓

𝜕𝑦

], where the vector components are 

partial derivatives of the function 𝑓, we call such a vector-valued function the gradient or 

∇ (nabla). 𝛻𝑓 = (
𝜕𝑓

𝜕𝑥
,

𝜕𝑓

𝜕𝑦
) =  

𝜕𝑓

𝜕𝑥
𝑛̂𝑥 +

𝜕𝑓

𝜕𝑦
𝑛̂𝑦   , where 𝑛̂𝑥 and 𝑛̂𝑦 are unit vectors along x 

and y direction resp. 

• Divergence of a vector field ∇  .  (𝑓𝑥, 𝑓𝑦) is a scalar-valued function 
𝜕𝑓

𝜕𝑥
+

𝜕𝑓

𝜕𝑦
 

• Let a be a vector field. Then, the Gauss divergence theorem relates the surface integral 

(2D) to boundary/contour/line integral (1D) through the divergence operator: 

(4) 

(5) 



∫ ∇. 𝑎 𝑑Ω =
Ω

∫ 𝑎𝑖  𝑛̂𝑖𝑑Γ
Γ

 

 

 

Applying Gauss divergence theorem in (5): 

 

− ∫ Κ
∂ω

∂x

∂T

∂x
 dΩ

Ω

+ ∫
∂

∂x
(𝜔Κ

∂T

∂x
)  dΩ 

Ω

− ∫ Κ
∂ω

∂y

∂T

∂y
 dΩ 

Ω

+ ∫
∂

∂y
(𝜔Κ

∂T

∂y
)  dΩ

Ω

+ ∫ 𝜔𝑓dΩ = 0  
Ω

  

 

=∫ Κ
∂ω

∂x

∂T

∂x
 dΩ + ∫ Κ

∂ω

∂y

∂T

∂y
 dΩ = 

Ω
∫ Κω [ 

∂T

∂y
𝑛̂𝑦 +

∂T

∂x
𝑛̂𝑥] dΓ + ∫ 𝜔𝑓dΩ  

Ω
 

ΓΩ
 

 

=∫ Κ (
∂ω

∂x

∂T

∂x
+

∂ω

∂y

∂T

∂y
) dΩ = ∫ Κω [ 

∂T

∂y
𝑛̂𝑦 +

∂T

∂x
𝑛̂𝑥] dΓ + ∫ 𝜔𝑓dΩ  

Ω
 

ΓΩ
 

 

 

 

 

 

 

The stiffness matrix is identified by the bilinear term 
∂ω

∂x

∂T

∂x
 or 

∂ω

∂y

∂T

∂y
 

(6) is the weak-form equation 

∫ Κ𝜔
𝜕𝑇

𝜕𝑥
𝑛̂𝑥𝑑Γ

Γ

 

∫ Κ𝜔
𝜕𝑇

𝜕𝑦
𝑛̂𝑦𝑑Γ

Γ

 

Stiffness matrix Boundary condition term 

(vector) contains coefficient 

of weight function 

Κ [ 
∂T

∂y
𝑛̂𝑦 +

∂T

∂x
𝑛̂𝑥] 

Force vector 

(6) 


